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Abstract:

The last decade has witnessed a fast increase of the repertoir of available sophisticated data mining
methods, based on a broad spectrum of quite diverse paradigms. Besides a number of traditional and recent
statistical methods, increasingly frequent are various kinds of graphical dependence models, classification
and regression trees, as well as methods based on nonstatistical paradigms, such as artificial neural networks,
inductive logic programming, fuzzy sets theory or rough sets theory. Such a diversity leads to problems when
interpreting, comparing and consolidating results obtained with different methods. Therefore, a unifying
framework of view for different data mining methods would be very useful. Several frameworks of that kind
have indeed been proposed in recent years, and also the present paper is a contribution in that direction.
It proposes a framework based on the theory of relations, conceived not only in the classical sense of set-
theoretical relations, but in the broader sense of fuzzy sets. Underlying assumptions and basic principles
of the framework are explained, and a survey of the main classes of data mining methods to which it is
applicable is given. The survey points a specificity of applying the framework to the extraction of rules from
data by means of artificial neural networks. The applicability of the framework is documented through
elaborating it for two particular data mining methods. One of them is the method GUHA, a classical
method of exploratory data analysis, the other is a method for rule extraction by means of piecewise-linear
multilayer perceptrons.

Keywords:
Data mining frameworks, rules extraction from data, method Guha, observational calculus,
neural-networks based rules extraction

1Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věž́ı 2, CZ-182 07
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1 Introduction

The term data mining emerged some 20 years ago in statistics. Originally, it was used rather deroga-
torily, to denote a search for the best fitting model or the most significant hypothesis by trying a large
number of models or hypotheses on the same body of data, not worrying about the interpretability and
reproducibility of the obtained results [47, 13]. Nowadays, data mining belongs to the most prominent
information technologies, experiencing a boom of interest from users and software producers. During
the late 90s, companies in commerce, finance and other sectors started to introduce specialized data
mining systems, and many important software producers launched their own systems of that kind.
Meanwhile, the meaning of the term has shifted and it is nowadays mostly understood as searching
large amounts of data for some formalized patterns of interest [20, 18].

In connection with data mining, another term, originating in artificial intelligence, is very often
used – knowledge discovery. Differently to data mining, knowledge discovery is usually understood
as the overall process of extracting from data what is deemed to be the inherently present knowledge
[7, 18]. In addition to the data mining step, that process covers a number of further, interactively
interleaved steps, most importantly:

• data selection;

• data cleaning;

• data reduction;

• data projection and feature selection;

• incorporating prior knowledge;

• evaluation of the found patterns;

• interpreting the obtained results;

• consolidating the results with previous knowledge.

Needless to say, data mining is the core step of the knowledge discovery process. However, to be
able to really discover new valid knowledge, data mining needs to be appropriately combined with the
remaining steps. Otherwise, it degrades to its original derogatory meaning.

Traditionally, analysing data and extracting useful knowledge from them has been a domain of
statisticians. Therefore, many methods used in data mining are actually statistical data analysis
methods, most of them known for decades before data mining emerged (see [16] or [30] for a survey),
though several statistical methods important in data mining have been elaborated only during the
last 20–30 years [23, 17, 22]. In addition, a statistical component is crucially important in graphical
dependency models, belonging primarily to the area of combinatorial graph theory [56, 66], and
in various kinds of classification and regression trees, which belong primarily to machine learning
[8, 58]. Moreover, since data mining sometimes needs to be performed in situations when rigorous
statistical methods are not applicable, it has encouraged the development of alternative data analysis
approaches, relying on artificial neural networks, fuzzy logic and other comparatively recent approaches
[46, 63, 64], cf. Figure 1.1. The diversity of existing data mining methods inevitably entails problems
when interpreting, comparing and consolidating results obtained with different of them. To face those
problems, a unifying framework of view for different data mining methods can be very useful, and
several frameworks of that kind have been indeed proposed in recent years [3, 44, 69]. However, none
of them has found a broader acceptance, indicating that further research in this area is still needed.
In this paper, a framework based on the theory of relations is proposed, which is simple yet covers
the broad spectrum of all those methods whose results can be expressed in the language of some
formal logic. The basic principles of the approach are explained in the next section and illustrated
on a classical method of exploratory data analysis, the method GUHA, in Section 3. Then Section 4
shows that the framework implies a specific position of methods for knowledge extraction from data by
means of artificial neural networks because they use an intermediate representation at an intermediate
stage between data and rules. That specificity is illustrated on a method for rule extraction by means
of piecewise-linear multilayer perceptrons.
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Figure 1.1: Main data mining approaches and supporting technologies

2 Data mining viewed as a transformation of relations

The proposed framework is based on the following assumptions:
(i) The input to each data mining method consists of tuples of data values. Each component of

each tuple corresponds to a particular attribute, and is possibly known only with some incom-
plete certainty. The same input may occur several times in the method. Finally, the number
of components can vary between tuples, to accomodate for missing values and not applicable
attributes.

(ii) The output from a data mining method is assumed to be expressible as sentences of some
formal logic, which in the context of data mining are usually called logical rules. Although this
assumption does not hold for all data mining methods, it still covers many methods based on
quite diverse paradigms. Examples will be given in the sequel. Moreover, every covered method
is assumed to be coherent, in the sense that for any input, the set of sentences expressing the
output is not contradictory. Notice that the expressibility in the language of some logic does
not imply that existing implementations of the method really output results expressed in that
way. For comprehensibility reasons, other representations may be preferred, most often various
graphical representations. The probably best known example of such situation are classification
trees [8, 58, 5].

The input tuples are nowadays usually obtained from a relational database – being either directly
stored there as rows of a particular table, or derived from stored tables through the application of
relational operators. In the past, they were typically obtained from data matrices stored in flat files,
or through navigational operators from records stored in hierarchical and network databases. As far
as the output is concerned, in all existing methods whose outputs are expressible using a formal logic,
that logic is always either the classical Boolean logic or its generalization, such as the observational
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calculus or some fuzzy logic. To simplify the discussion in the sequel, let us add this restriction to the
assumption (ii) above.

The fact that each component of each input tuple corresponds to a particular attribute implies that
each input tuple is an element of the product space of value sets of particular attributes. To record
possible multiple occurrences of each tuple, an auxiliary attribute can be added, and the product space
can be extended with the value set of this attribute – the set of natural numbers. Consequently, all
input tuples whose components correspond to the same set of attributes together with their number of
occurrences form an extensionally described relation in such an extended product space. For example,
think of mining data from a patient database. Then the components of the input values record, e.g.,
results of laboratory tests, subjective complaints of the patient, medical diagnoses. Especially the
last two kinds of values may be known only with incomplete certainty. Different sets of data are due
to different tables of the database (such as “Family History”, “Laboratory Tests”, “Treatments”),
and due to values that are either missing (a particular laboratory test was not performed) or not
applicable (e.g., attributes concerning pregnancy if sex=male). In all cases, tuples with components
corresponing to the same attributes together with the number of their occurrences form a particular
input relation.

On the other hand, the interpretation of an n-ary predicate used to express the output from a data
mining method is always an intensionally described relation in the product space of some n sets serving
as domains of individual object variables. The kind of that relation depends on the considered logic –
for the classical Boolean logic, it is a traditional set-theoretic relation (”crisp” relation), whereas for
a fuzzy logic, it is a fuzzy set on the product space of the sets interpreting the individual variables.
As far as the semantics of the individual components of that space is concerned, i.e., the choice of
the domains of individual object variables, it depends exclusively on the nature and purpose of the
considered data mining method. Often, they are again the value sets of some variables, maybe even
value sets of the input attributes. However, if the purpose of the data mining method is to state
some probabilistic properties of the input data, then sets of probability distributions are involved as
components of the product space in which the output relation lies (cf. Section 3.1).

These fundamental observations already suggest that relations can serve as a means to abstractly
describe arbitrary data mining methods. Moreover, they suggest that each data mining method can be
viewed, basically, as a transformation of extensionally described input data relations into intensionally
described interpretations of output predicates. Stated in a formal way, if VA denotes the value set of
an attribute A, Dx denotes the domain of an object variable x, and P(S) denotes the power set of a set
S, then each data mining method can be viewed, for an appropriate choice of attributes A1, . . . , Am

and object variables x1, . . . , xn, as a transformation

M : RM → P(
n⊗

j=1

Dxj ), (2.1)

where RM ⊂ P(
⊗m

i=1 VAi ×N ) denotes the set of input data relations acceptable by the method.
Nonetheless, this basic scheme needs some details to be clarified:

• According to assumption (i), different input tuples of data values may have different numbers
of components. Moreover, also tuples with equal number of components may correspond to
different sets of attributes. Similarly, different output sentences may contain different sets of
object variables. The basic transformation scheme (2.1) can not accomodate variability in sets
of attributes and sets of object variables. However, a standard remedy helps – to form an
extended product space from the value sets of all attributes corresponding to any input data
tuple, and another extended product space from the domains of all object variables involved in
any output sentence, and to establish a correspondence between the relations occurring in (2.1)
and relations in those product spaces by means of cylindric extensions and projections. Only
after the input data relations and interpretations of output sentences have been projected to the
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extended product spaces, the transformation (2.1) is applied:

R final−−−−−−−−−→
transformation

P(
⊗N

j=1 Dxj
),

cylindric extensions

x
yprojections

RM original−−−−−−−−−→
transformation

P(
⊗n

j=1(Dxj )

(2.2)

where M denotes the number of all attributes corresponding to any input data tuple, N denotes
the number of all object variables involved in any output sentence, and R ⊂ P(

⊗M
i=1 VAi

×N ).

• The assumption that each component of each input tuple may be known only with some certainty
implies that the extensional input relation is actually a fuzzy relation on the value sets of all
attributes corresponding to any input data tuple. Similarly, as we already know, the intensional
output relation can be a fuzzy relation on the domains of object variables involved in any output
sentence. Needless to say, fuzzy relations already cover, as their special cases, also set-theoretic
relations. Denoting F(S) the set of all fuzzy subsets of a set S, (2.2) finally turns to

R final−−−−−−−−−→
transformation

F(
⊗n

j=1 Dxj
),

cylindric
extensions

x
yprojections

RM original−−−−−−−−−→
transformation

F(
⊗n

j=1 Dxj )

(2.3)

where the sets RM and R of input data relations are now sets of fuzzy relations, i.e., RM ⊂
F(

⊗m
i=1 VAi ×N ), R ⊂ F(

⊗M
i=1 VAi ×N ).

3 Direct methods

For most data mining methods to which the above proposed relational framework is applicable, i.e.,
for most data mining methods that fulfill the assumption (ii) stated at the beginning of the previous
section, the scheme (2.2) or its fuzzy extension (2.3) are already sufficient to completely describe
the application of the method to data from a relational point of view. In those methods, no other
relations or transformations between relations can be identified, the extensionally described input data
relations are transformed directly into the intensionally described interpretations of output predicates.
Therefore, the term direct methods will be used in connection with this majority situation. A brief
survey of those methods will be given below in Subsection 3.2. Before in Subsection 3.1, one particular
method will be presented in some detail and used to illustrate the applicability of the proposed
approach.

3.1 Example 1 – the method GUHA

The example to be presented here is the method GUHA (General unary hypotheses automaton). That
example has not been chosen arbitrarily – GUHA is presumably the oldest method for automated
extraction of sentences of a formal logic from data. It originated in the mid-sixties [27], and its
development has been basically finished in the late seventies, witnessed with the monograph [28], with
two issues of the International Journal of Man-Machine Studies that focused on GUHA [39, 40], and
with an elaborate mainframe implementation. But even nowadays, several PC implementations of the
method exist and are used in real-world applications (cf. the survey papers [31, 35, 29]).

As input, GUHA takes only binary data matrices. However, each implementation of the method in-
corporates some preprocessing routines for discretization of continuous attributes and dichotomization
of nominal or discretized attributes. As output, GUHA extracts sentences of a two-valued predicate
logic. Those sentences concern the (finite or infinite) population from which the data originated, more
precisely the probability distributions of various properties of that population. But to deduce such
sentences, GUHA makes use also of sentences concerning only the observed data. To differentiate
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between both kinds of sentences, sentences concerning the whole population are called theoretical
sentences in GUHA, whereas sentences concerning the observed data are called observational sen-
tences. To combine both kinds of sentences, GUHA uses the observational calculus, which extends
the traditional Boolean logic in two respects [28]:
(i) The classical quantifiers ∀ and ∃, which are used to form sentences concerning the whole con-

sidered population, are extended with generalized quantifiers, used to form sentences concerning
the observed data. Like the classical quantifiers, also generalized quantifiers bind free variables
in open formulae. Since they concern finite data sets, sentences of the observational calculus
are interpreted in finite Boolean structures, or equivalently, in sets of binary matrices. To this
end, a specific binary function Tf∼ on the set of all binary matrices with m columns is related
to each m-ary generalized quantifier ∼, i.e., Tf :

⋃
n∈N {0, 1}n,m → {0, 1}, and this function

is called truth function of ∼. Using Tf∼, the observational sentence (∼ x) (ψ1(x), . . . , ψm(x)),
built from the quantifier ∼ and formulae ψ1, . . . , ψm free in x evaluates in the available data on
n objects as

‖(∼ x) (ψ1(x), . . . , ψm(x))‖ = Tf∼(‖ψ1‖, . . . , ‖ψm‖), (3.1)

where for j = 1, . . . , m, ‖ψj‖ denotes the evaluation of ψj(x) in the data, i.e., a column vector
of length n consisting of the evaluations of ψj(x) on the n individual objects.

(ii) In addition to the classical deduction rule modus ponens
”from Φ and Φ → Ψ, deduce Ψ”,

an arbitrary number of additional inference rules may be employed, which provide the possibility
to deduce, from theoretical sentences concerning the probability distributions of properties of
the population underlying the observed data, and from observational sentences concerning the
data themselves, another theoretical sentence concerning those probability distributions. Hence,
those inference rules always have the form

”from theoretical assumptions
∧
A and observations/data

∧
D,

deduce a theoretical sentence TS”, (3.2)

where
∧A = TS1 ∧ · · · ∧ TSa is the conjunction of a set of theoretical sentences expressing the

considered theoretical assumptions, A = {TS1, . . . , TSa}, whereas
∧D = OS1∧ · · · ∧OSd is the

conjunction of a set of observational sentences, D = {OS1, . . . , OSa}, found valid in the observed
data. A particular inference rule is typically related to a particular generalized quantifier or a
small number of related quantifiers. Examples will be given below.

To apply the framework presented in Section 2 to the GUHA method is straightforward, provided
the following conditions are met:
(i) the theoretical sentence TS is a statement about relationships between probability distributions

(it is immaterial whether also any of the theoretical sentences TS1 . . . TSa is such a statement)
;

(ii) at least one of those probability distributions is on the value set VA of some input data attribute
A ∈ {A1, . . . , Am} or on the cartesian product VAi1

×· · ·×VAik
of several distinct input attributes

VAi1
. . . VAik

∈ {A1, . . . , Am};
(iii) the employed inference rule connects the validity of the sentences OS1, . . . , OSd with the prob-

ability distribution on VA, respectively with the probability distribution on VAi1
× · · · × VAik

(such a connection can be of various kinds, examples will be given below).
Indeed, in virtue of the conditions (i)–(iii), TS is interpreted by means of a relation on sets of prob-
ability distributions, and there is a connection between that relation and the input data relation. It
is this connection that determines the transformation of the extensionally described input relation to
the intensionally described interpretation of TS in the GUHA method.

Although the generalized quantifiers and additional inference rules of GUHA can be defined in an
arbitrarily abstract way compatible with (3.1) and (3.2), and they do not necessarily have to fulfill
the above conditions [59], in an overwhelming majority of practical applications of the method they
fulfill them. The reason is that the quantifiers and inference rules encountered in applications nearly
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always rely on statistical fundamentals, and statistics leads in a natural way to the validity of such
conditions. In the remainder of this section, main statististics-based generalized quantifiers of GUHA
and their related inference rules will be reviewed. All of them fulfill the above conditions (i)–(iii),
hence they allow a straightforward application of the relational framework of Section 2.

First, all generalized quantifiers encountered in the existing implementations of GUHA are binary.
Moreover, their truth functions have the specific property of being the composition of a Boolean
function on quadruples of nonnegative integers with the four-fold table of evaluations of the formulae
to which the quantifier is applied. Using a simplified notation ϕ ∼ ψ instead of the rigorous (∼
x) (ϕ(x), ψ(x)) for the observational sentence built from a binary generalized quantifier∼ and formulae
ϕ, ψ, and calling the function on quadruples of nonnegative integers corresponding to ∼ for simplicity
again truth function of ∼, Tf∼ (i.e., now Tf∼ : N 4

0 → {0, 1}), the evaluation (3.1) reads

‖ϕ‖ = Tf∼(a, b, c, d), (3.3)

where

a = aϕ,ψ =#{i : ‖ϕ‖i = ‖ψ‖i = 1} (3.4)
b = bϕ,ψ =#{i : ‖ϕ‖i = 1 & ‖ψ‖i = 0} (3.5)
c = cϕ,ψ =#{i : ‖ϕ‖i = 0 & ‖ψ‖i = 1} (3.6)
d = dϕ,ψ =#{i : ‖ϕ‖i = ‖ψ‖i = 0}, (3.7)

using the notation #S for the number of elements of a set S.
Second, to connect the validity of the observational sentences with the probability distribution

on the value sets of the involved attributes, the additional inference rules employed in GUHA always
start with the usual statistical assumption that the input data are a random sample, i.e., a sequence of
independent identically distributed random vectors. Notice that then also the sequence of evaluations
(‖ϕ‖i, ‖ψ‖i)n

i=1) is a random sample, more precisely a two-dimensional binary random sample, whereas
a = aϕ,ψ, b = bϕ,ψ, c = cϕ,ψ, d = dϕ,ψ and, consequently, also Tf∼(a, b, c, d) are random variables.

Using the notation Π(S) for the set of Borel probability distributions on a space S, these two
fundamental features of GUHA entail the possibility to express the application of a binary quantifier
∼ to a data matrix IR serving as an extensional input relation as the value M(IR) of a relational
transformation M : P(

⊗m
i=1 VAi ×N ) → Π(

⊗m
i=1 VAi)⊗Π({0, 1}2), such that

M(IR) ⊂ {(P⊗
VAi

, P{0,1}2) : P⊗
VAi

∈ Π(

m⊗
i=1

VAi) &

P{0,1}2 ∈ Π({0, 1}2) & P{0,1}2 is induced from P⊗
VAi

by (‖ϕ‖i, ‖ψ‖i)}. (3.8)

For individual generalized quantifiers, (3.8) is always complemented with some specific additional
condition, reflecting the definition of the quantifier’s truth function and the related inference rule.

The most simple among the generalized quantifiers employed in GUHA is the founded implication
with threshold θ ∈ (0, 1), in symbols →θ. Its truth function is defined:

Tf→θ
(a, b, c, d) =

{
1 if a ≥ 1 & a

a+b > θ,

0 else.
(3.9)

To that quantifier, the following inference rule is related:

“If a consistent unbiased estimate of the conditional probability of
‖ψ‖i evaluating as 1 conditioned on ‖ϕ‖i evaluating as 1 is greater
than θ, then the probability distribution P(ϕ,ψ) of (‖ϕ‖i, ‖ψ‖i) is

such thatP(ϕ,ψ)(‖ψ‖i = 1|‖ϕ‖i = 1) > θ”. (3.10)

Due to the above inference rule and due to the fact that a
a+b indeed is a consistent unbiased estimate

of ‖ψ‖i evaluating as 1 conditioned on ‖ϕ‖i evaluating as 1, the condition (3.8) concerning the value
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that the relational transformation M takes for the input relation IR is complemented with

Tf→θ
(a, b, c, d) = 1 iff the conditional probability distribution

P{0,1}|{0,1}(1|1) corresponding to the second component
of M(IR) = (P⊗

VAi
, P{0,1}2) fulfills P{0,1}|{0,1}(1|1) ≥ θ. (3.11)

Another quantifier related to estimation is the simple quantifier with threshold δ > 0, denoted ∼δ.
Its truth function is

Tf∼δ
(a, b, c, d) =





1 if min{a, b, c, d} ≥ 1 &
& ad

bc > exp(δ),
0 else,

(3.12)

and the related inference rule is

“If a consistent estimate of the logarithmic interaction of the vector
(‖ϕ‖i, ‖ψ‖i) is greater than δ, then the probability distribution P(ϕ,ψ)

of (‖ϕ‖i, ‖ψ‖i) is such that the logarithmic interaction of (‖ϕ‖i, ‖ψ‖i)
corresponding to P(ϕ,ψ) is greater than δ. ” (3.13)

Taking into consideration the fact that ln ad
bc is a consistent estimate of the logarithmic interaction of

the vector (‖ϕ‖i, ‖ψ‖i), the condition (3.8) for the value M(IR) = (P⊗
VAi

, P{0,1}2) of the relational
transformation M is complemented with

Tf→θ
(a, b, c, d) = 1 iff ln

P{0,1}2(1, 1)P{0,1}2(0, 0)
P{0,1}2(1, 0)P{0,1}2(0, 1)

> δ. (3.14)

Several further important quantifiers are based on statistical hypotheses testing. All of them
share the related inference rule, which could be paraphrased reject distributions making the obtained
observations unlikely:

”If the realization of the random sample (‖ϕ‖i, ‖ψ‖i)n
i=1

corresponding to the extensionally described

input relation IR lies within a given set Cn ⊂ {0, 1}n,2,

then P{0,1}2 is not such that Pn
{0,1}2(Cn) would be small”. (3.15)

The most simple among those quantifiers is the lower critical implication (someitmes called also
likely implication) with threshold θ ∈ (0, 1) and significance level α ∈ (0, 1), in symbols →!

θ,α. It has
the truth function

Tf→!
θ,α

(a, b, c, d) =





1 if
a+b∑
i=a

(
a+b

i

)
θi(1− θ)a+b−i ≤ α,

0 else.
(3.16)

Taking into account (3.3), the definition (3.16) of the truth function Tf→!
θ,α

can be reformulated in
statistical terms as

Tf→!
θ,α

(a, b, c, d) =

=





1 if the binomial test rejects at the significance level α the
null hypothesis Pψ|ϕ ≤ θ against the alternative Pψ|ϕ > θ

for conditional probability Pψ|ϕ of ‖ψ‖i evaluating as 1
conditioned on ‖ϕ‖i evaluating as 1,

0 else.

(3.17)
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Provided the chosen significance level (e.g., 0.05, 0.01) can be considered small, combining this defi-
nition with the inference rule (3.15) leads to the following additional condition for the value that the
relational transformation M takes for the data matrix IR:

Tf→!
θ,α

(a, b, c, d) = 1 iff

the conditional probability distribution P{0,1}|{0,1}(1|1)
corresponding to the second component of

M(IR) = (P⊗
VAi

, P{0,1}2) fulfills P{0,1}|{0,1}(1|1) > θ. (3.18)

Another often used quantifier based on statistical hypotheses testing is the Fisher quantifier with
significance level α ∈ (0, 1), denoted ∼F

α . Its truth function is defined

Tf∼F
α
(a, b, c, d) =

=





1 if ad > bc &∑min(a+b,a+c)
i=a

(a+b)!(a+c)!(b+d)!(c+d)!
(a+b+c+d)!i!(a+b−i)!(a+c−i)!(d+i−a)! ≤ α,

0 else,

(3.19)

which in statistical terms means

Tf∼F
α

(a, b, c, d) =

=





1 if the one-sided Fisher test rejects at the significance level α

the null hypothesis of independence of marginal probability

distributions Pϕ, Pψ of ‖ϕ‖i and ‖ψ‖i, respectively, against the

alternative of a positive logarithmic interaction of (‖ϕ‖i, ‖ψ‖i),

0 else.

(3.20)

If the chosen significance level can be considered small, then combining (3.20) with (3.15) yields
the additional condition for the value clM(IR) of the relational transformation M:

Tf→F
α
(a, b, c, d) = 1 iff ln

P{0,1}2(1, 1)P{0,1}2(0, 0)
P{0,1}2(1, 0)P{0,1}2(0, 1)

> 0. (3.21)

Finally, the quantifier ∼χ2

α , α ∈ (0, 1), called χ2-quantifier with significance level α, has the truth
function

Tf∼χ2
α

(a, b, c, d) =





1 if ad > bc &
(a+b+c+d)(ad−bc)2

(a+b)(a+c)(b+d)(c+d) ≥ χ2(1− 2α),

0 else,

(3.22)

where χ2(1 − 2α) is the (1 − 2α)-quantile of the χ2 distribution with one degree of freedom. Again,
this definition can be rewritten in statistical terms as

Tf∼χ2
α

(a, b, c, d) =

=





1 if the χ2 test asymptotically rejects at the significance level α

the null hypothesis of independence of marginal probability

distributions Pϕ, Pψ of ‖ϕ‖i and ‖ψ‖i, respectively, against the

alternative of a positive logarithmic interaction of (‖ϕ‖i, ‖ψ‖i),

0 else.

(3.23)

In this case, combining (3.23) with (3.15) complements the condition (3.8) for the relational transfor-
mation M with
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Tf→χ2
α

(a, b, c, d) = 1 iff asymptotically ln
P{0,1}2(1, 1)P{0,1}2(0, 0)
P{0,1}2(1, 0)P{0,1}2(0, 1)

> 0. (3.24)

Figure 3.1 shows a typical output from the GUHA method. In that output, the Fisher quantifier
has been used.

DB "carab" analysis: non-dichotomously present species + 1-5 ecological factors

shortest hypotheses with support 5 by Fisher quantifier, significance level 0.01 %

Ecological factors Species Fisher
quantifier

G_1_1 = yes Pseudoophonus_rufipes = 1 - 2 1.9e-006

distance WL = < 40 G_1_1 = yes Bembidion_semipunctatum = 3 - 5 7.9e-005

distance WL = < 40 G_1_1 = yes Loricera_pilicornis = at least 2 9.1e-005

distance WL = < 40 G_1_2 = no Elaphrus_riparius = 1 - 2 8.8e-005

distance WL = < 40 height herbs = < 20 Bembidion_argenteolum = 2 - 10 2.2e-005

distance WL = < 40 height herbs = < 70 Bembidion_femoratum = 1 - 2 6.6e-005

distance WL = < 40 height herbs = > 40 Pseudoophonus_rufipes = 1 - 2 4.5e-005

distance WL = < 40 cover herbs = < 50 Bembidion_femoratum = 1 - 2 3.9e-005

distance WL = < 40 cover herbs = < 60 Bembidion_femoratum = 1 - 2 3.9e-005

distance WL = < 60 height herbs = < 20 Bembidion_argenteolum = 2 - 10 8.8e-005

distance WL = < 60 height herbs = > 40 Pseudoophonus_rufipes = 1 - 2 3.1e-005

distance WL = < 60 height herbs = > 40 Pseudoophonus_rufipes = 2 - 6 1.9e-005

distance WL = < 70 height herbs = > 40 Pseudoophonus_rufipes = 2 - 6 5.9e-005

distance WL = > 70 cover herbs = < 50 Formicidae = yes 3.9e-006

distance WL = > 70 cover herbs = < 60 Formicidae = yes 1.6e-005

distance WL = > 70 cover litter = < 20 Formicidae = yes 1.3e-005

distance WL = > 70 cover litter = < 40 Formicidae = yes 1.3e-005

distance WL = > 70 cover litter = < 50 Formicidae = yes 1.3e-005

distance WL = > 70 cover litter = < 60 Formicidae = yes 1.3e-005

distance FG = -50 - 30 G_1_1 = yes Loricera_pilicornis = at least 2 4.9e-005

distance FG = -50 - 30 G_1_1 = yes Pseudoophonus_rufipes = 1 - 2 5.7e-007

distance FG = -50 - 70 G_1_1 = yes Loricera_pilicornis = at least 2 4.9e-005

distance FG = -50 - 70 G_1_1 = yes Pseudoophonus_rufipes = 1 - 2 5.7e-007

G_1_1 = yes cover litter = < 20 Bembidion_semipunctatum = 3 - 5 7.9e-005

G_1_1 = yes cover litter = < 20 Loricera_pilicornis = at least 2 9.1e-005

G_1_1 = yes cover litter = < 40 Bembidion_semipunctatum = 3 - 5 7.9e-005

G_1_1 = yes cover litter = < 40 Loricera_pilicornis = at least 2 9.1e-005

G_5 = no height herbs = > 40 Pseudoophonus_rufipes = 2 - 6 4.6e-005

sand = 1 height herbs = > 40 Pseudoophonus_rufipes = 1 - 2 1.2e-005

height herbs = > 40 cover litter = < 20 Pseudoophonus_rufipes = 1 - 2 4.9e-005

height herbs = > 40 cover litter = < 20 Pseudoophonus_rufipes = 2 - 6 2.6e-005

height herbs = > 40 cover litter = < 40 Pseudoophonus_rufipes = 2 - 6 7.7e-005

height herbs = > 40 cover litter = < 50 Pseudoophonus_rufipes = 2 - 6 7.7e-005

height herbs = > 40 cover litter = < 60 Pseudoophonus_rufipes = 2 - 6 7.7e-005

distance WL = < 40 distance FG = < 30 G_1_2 = no Elaphrus_riparius = 1 - 2 7.4e-005

Figure 3.1: An example html-output from one of the recent implementations of the GUHA method
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3.2 Survey of main direct methods

Among modern data mining methods, the closest relatives of GUHA are methods for mining asso-
ciation rules, i.e., Boolean sentences valid with at least a prescribed confidence and supported with
at least a prescribed proportion of the available data [1, 68, 45]. Admittedly, the two decades that
separate the advent of these modern methods from that of GUHA brought various shifts in the related
terminology. Already the term ”association rules” evokes a correspondence to a class of generalized
quantifiers of GUHA called associational quantifiers. However, modern association rules are actually
always Boolean implications, due to which they correspond to the much narrower class of implicational
quantifiers. Nevertheless, terminological differences only obscure a surprisingly strong similarity be-
tween methods for association rules mining and the method GUHA, as a recent comparative analysis
of both approaches has shown [29].

Inductive logic programming (ILP) consists basically in the induction of an intensional description
of a relation from the extensional descriptions of the intersection of that relation with the data and of
the intersection of its complement with the data, i.e., from the positive and negative examples that
are for the relation available in the data [11, 53]. When inducing the intensional description of a new
relation, use may be made of intensional descriptions of already existing relations. Nowadays, already
numerous implemented ILP-systems exist, for the induction of relations corresponding to a single
concept as well as of relations corresponding to a relationship between several concepts, for both the
batch-mode and the incremental induction, for both interactive and noninteractive induction.

Decision trees are a machine learning method for the extraction of classification rules from data
[8, 58, 54]. Due to the hierarchical structure of systems of such rules, they can be easily visualized as
tree graphs. It is this visualizability that accounts for the name of the method, and more importantly,
for its great popularity - provided the height of the tree is small, the obtained classification rules are
well comprehensible. In addition, decision trees are very robust against outliers because the borders
between validity regions of individual antecedents are piecewise constant, and usually do not depend
on distant data.

Differently to inductive logic programming, the induction of intensionally described relations by
means of rough sets relies not on positive and negative examples, but instead on lower and upper
approximations [43, 50, 57]. The former are examples that are completely covered with the induced
relation, the latter are examples that have an nonempty intersection with that relation. Hence, the
uncertainty of the extracted rules is captured by means of a pair of set-theoretic relations in the case
of the rough-set approach, rather than with a fuzzy relation like in the extraction of fuzzy rules.

Rule extraction by means of genetic algorithms is nowadays probably the most elaborate application
of evolutionary methods to knowledge extraction from data [21]. To use genetic algorithms for the
extraction of rules from data is possible due to the fact that they are an optimization method that
requires only the function values of the objective function. As an objective function serves in the
case of rule extraction some quantitative property of the resulting set of obtained rules, e.g., its
confidence, accuracy, completeness, some interestingness measure, or a combination of several such
properties. As any other other optimization method, also a genetic algorithm needs to start from some
initial element of a sequence of points intended to converge to the sought optimum of the objective
function. Differently to other optimization methods, however, genetic algorithms seek the optimum
using a whole population of such sequences, hence they need to start from a whole population of
initial points, forming together the first generation of the algorithm. To obtain that first generation
is an independent problem, intensively studied both in general, and in the specific context of using
genetic algorithms for rule extraction from data [67, 21]. As far as the optimization procedure itself
is concerned, i.e., the application of the genetic operators selection, crossover and mutation to the
individuals forming the population, there exist two principally different approaches. In the Pittsburgh
approach, the optimized individuals are whole sets of rules, each of which attempts to completely
describe the data. In each generation, a population of such rulesets is obtained. In the Michigan
approach, on the other hand, individual rules are optimized, and the population of a generation is a
set of rules. Hence, the Michigan approach is computationally simpler, but it has to externally solve
the problems of inconsistence, redundancy, and incompleteness of data description, the solution of
which can in the Pittsburgh approach be directly built into the genetic operators.
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4 Knowledge discovery with neural networks

However broad the spectrum of existing direct methods is, those methods still do not cover all situa-
tions when the above relational framework can be used. More precisely, there exists an important class
of data mining methods that do not belong to direct methods as defined above, yet admit applying the
relational framework - methods for knowledge discovery in data by means of artificial neural networks
(ANNs).

Actually, already the mapping computed by the network incorporates knowledge transferred to
the ANN during its training, knowledge about implications that certain values of network inputs have
for the values of its outputs. That knowledge is captured in the ANN architecture, and especially in
a multidimensional parameter vector, which together with the architecture uniquely determines the
computed mapping. As an example, parameters of the most common kind of neural networks, the
multilayer perceptron, are the connection weights of all connections between subsequent layers, as
well as the activation thresholds of all hidden and output neurons. It is this distributed knowledge
representation that accounts for the excellent approximation properties of multilayer perceptrons (cf.,
e.g., [36, 42, 37]). However, it is not easily human-comprehensible (in terms that data mining borrowed
from the cognitive science, this representation has a high ”data fit”, but a low ”mental fit”). That is
why methods attempting to transform the ANN-inherent knowledge into the form of logical rules have
been developed since the late eighties ([14, 2, 19, 6, 9, 15, 41, 62, 10], references to methods published
before 1998 can be found in the survey papers [4, 61, 52]).

Up to now, already several dozens ANN-based rule extraction methods exist. Individual methods
differ from each other in at least one of the following aspects:

expressive power of the extracted rules, given by the meaning they are able to convey (since it depends
mainly on the set of possible truth values, it divides the existing rule extraction methods basically
into two broad classes - methods extracting Boolean rules, and those extracting fuzzy rules);

relationship between the extracted rules and network architecture (decompositional methods and
black-box methods);

computational complexity of the method;

universality of the method (to which kind or kinds of ANNs it is applicable, and whether its appli-
cability depends on the training algorithm that has been used for the network;

soundness, completeness, accuracy and fidelity of the extracted rules.

Nevertheless, all the existing ANN-based rule extraction methods share one common feature – they
employ not only those input-output pairs that have been employed already for network training, but
at least in a certain extent also additional pairs from the product of the network input space and its
output space, obtained through the mapping computed by the network. Some rule extraction methods
actually employ only pairs obtained through the computed mapping, and do not need the original
training pairs any more. Hence, the mapping computed by the network is always inserted between the
data and the extracted rules in ANN-based rule extraction methods, and the distributed knowledge
representation by means of the network architecture and the parameter vector is an intermediate
knowledge representation, a specific feature of this kind of rule extraction methods.

To capture the ANN-based rule extraction and its specificity within the relational framework of
Section 2 is straightforward, due to the fact that the mapping computed by a neural network is a
special kind of a relation, and that this mapping is uniquely determined by the network architecture
and the parameters. Indeed, consider an ANN with a particular architecture containing nI input
neurons and nO output neurons, in which the computed mapping F : <nI → <nO is parametrized
with a k-dimensional parameter vector v. For example, if the considered neural network is a multilayer
perceptron with one hidden layer consisting of nH neurons, then k = nH(nI + 1) + nO(nH + 1) and

v = (w1,1, . . . ,w1,nH , w2,1, . . . ,w2,nO , θ1,1, . . . ,θ1,nH , θ2,1, . . . ,θ2,nO ), (4.1)

where w1,h = (w1
1,h, . . . , wnI

1,h) for h = 1, . . . , nH are weights of connections between the input and the
hidden layer, w2,o = (w1

2,o, . . . , w
nH
2,o ) for o = 1, . . . , nO are weights of connections between the hidden
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and the output layer, whereas θ1,1, θ1,2, . . . , θ1,nH
and θ2,1, θ2,2, . . . , θ2,nO

are scalar activity thresholds
of, respectively, the hidden and the output neurons. The parametrizability of F means that there
exists an architecture-specific parametrizing mapping π such that F = π(v). In the above example
of a multilayer perceptron with one hidden layer, if the specification of the architecture is completed
with the requirements that all hidden neurons share the same activation function f and no activation
function is assigned to output neurons, the parametrizing mapping π is defined by:

(∀v=(w1,1, . . . ,w1,nH , w2,1, . . . ,w2,nO , θ1,1, . . . ,θ1,nH , θ2,1, . . . ,θ2,nO )∈<k)

(∀x ∈ <nI ) π(v)(x) = F (x) =

= (

nH∑

h=1

wh
2,1f(w1,h·x− θ1,h)− θ2,1, . . . ,

nH∑

h=1

wh
2,nO

f(w1,h·x− θ1,h)− θ2,nO ). (4.2)

Then F is a relation with the following properties:
(i) it is a relation between the input space and the output space of the neural network, F ∈

P(<nI ×<nO );
(ii) differently to the extensional input data relation, F is intensional;
(iii) the intensional definition of F does not rely on the output logical rules, but on the parametrizing

mapping π:

F = {(x, y) ∈ <nI ×<nO : y = π(v)(x)}, (4.3)

e.g., for the parametrizing mapping (4.2):

F ={(x, y) ∈ <nI ×<nO : y =

= (

nH∑

h=1

wh
2,1f(w1,h·x− θ1,h)− θ2,1, . . . ,

nH∑

h=1

wh
2,nO

f(w1,h·x− θ1,h)− θ2,nO ). (4.4)

Taking into account this additional, intermediate relation, the relational transformationM in (2.1)
needs to be split as follows:

M : RM → P(<nI ×<nO ) → P(
n⊗

j=1

Dxj ), (4.5)

or equivalently,

M = M1 ◦M2. (4.6)

where

M1 : R→ P(<nI ×<nO ),M2 : P(<nI ×<nO ) → P(
n⊗

j=1

Dxj ). (4.7)

Here, the transformationM1 transforms an input data relation into a mapping computed by the neural
network. Hence, like the overall transformation M1, it transforms an extensionally described relation
into an intensionally described one. The transformation is performed in course of network training.
On the other hand, the transformation M2 transforms a computed mapping into the interpretation
of a set of extracted logical rules, thus being a transformation between two intensionally described
relations. This transformation is performed in course of the rule extraction from a trained neural
network.

This general characterization of ANN-based rule extraction will now be illustrated on one particular
method.

4.1 Example 2 – rule extraction by means of piecewise-linear neural networks

Most of the existing ANN-based rule extraction methods rely mainly on heuristics, and their under-
lying theoretical principles are not very deep. There are only few methods with solid mathematical
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foundations. This subsection outlines one of them – a method for the extraction of Boolean rules from
multilayer perceptrons, based on switching from a sigmoidal activation function to a piecewise-linear
activation function.

Multilayer perceptrons (MLPs) are nowadays the most popular kind of artificial neural networks
– both in general [65, 25, 32], and in the specific context of rule extraction [4, 55, 51, 14, 38, 62].
Basically, all multilayer perceptrons are very similar:
(i) Topologically, their set of neurons is partitioned into a finite linearly ordered set of layers, while

the set of connections consists of the union of Cartesian products of each two neighbors in that
linear ordering.

(ii) All hidden neurons (those that belong neither to the first, nor to the last layer) share the same
activation function, and so do also all output neurons (those from the last layer).

(iii) An activation function is only required to be nonconstant and Borel measurable.
The considered rule extraction method focuses on multilayer perceptrons with the following additional
properties:

• only one layer of hidden neurons;

• the activation function of the hidden neurons is continuous sigmoidal, more precisely continuous
nondecreasing with two different finite limits in −∞ and ∞;

• the activation function of the output neurons is the identity.

Moreover, the ultimate objective of network training is in this rule extraction method a mapping
computed by an even much more specific multilayer perceptron, namely by a MLP in which the
activation function of the hidden neurons is a piecewise-linear sigmoidal. Given a sequence of input-
output training pairs, (x1, y1), . . . , (xp, yp) ∈ <nI × <nO , such a computed mapping can be obtained
in two principally different ways:
(i) Using some special training method developed specifically for that kind of neural networks [24].

A disadvantage of this approach is that special training methods for ANNs with piecewise-linear
activation functions are not available in common neural networks software.

(ii) Training a neural network with a general continuous sigmoidal activation function f (e.g., logis-
tic or arctangens), and then switching from the mapping computed by that network to another
mapping, obtained from the original one through replacing f with a piecewise-linear sigmoidal
fPL close enough to f in the metric space of continuous sigmoidal functions [49]. Then any train-
ing method available for the original network can be used, such as backpropagation, conjugate
gradient methods, or the Levenberg-Marquardt method [12, 60, 26].

Both approaches are equivalent from the point of view of the optimization task to find the vector
of parameters that minimizes with respect to the available training data a prescribed error function.
That equivalence is established in [33], here only the main reasons will be recalled: Since all algorithms
for the optimization of general functions are iterative, after a finite number of iterations they in general
find only some suboptimal solution, i.e., a solution that does not guarantee to yield the minimal value
of the error function, but still guarantees not to exceed that minimal value more than a prescribed
tolerance ε. And instead of finding such an ε-suboptimal solution directly in a MLP with a piecewise-
linear sigmoidal activation function, we can find it in the following two steps:

1. An ε
2 -suboptimal solution is found in a MLP with a general continuous sigmoidal activation

function.

2. For the found solution, the activation function of the MLP is everywhere replaced with a
piecewise-linear sigmoidal activation function, sufficiently close to the original function in the
metric space of continuous sigmoidals for the error function not to increase more than ε/2. The
feasibility of this step is due to the density of the space of piecewise-linear sigmoidals in the
space of continuous sigmoidals.

However, the approaches are not equivalent from the computational complexity point of view, since
MLPs with piecewise-linear sigmoidal activation functions have a lower Vapnik-Chervonenkis dimen-
sion than MLPs with general continuous sigmoidal activation functions [48].
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No matter in which way it is obtained, the final result is always the piecewise-linear computed
mapping F : <nI → <nO . From the point of view of the relational framework, F ∈ valM1 ∩domM2,
with the additional property

(∃r ∈ N )(∃P1, . . . , Pr – polyhedra in <nI )
r⋃

i=1

Pi = <nI &

(∀j = i, . . . , r) F |Pi is a linear operator. (4.8)

Consequently, to any polyhedron in the output space of the network, Q ⊂ <nO , there exist r′ < r
polyhedra in its input space, P1, . . . , Pr′ ⊂ <nI such that

Q = F (
r′⋃

i=1

Pi). (4.9)

Suppose that in any pair (xj , yj) = ((x1
j , . . . , x

nI
j ), (y1

j , . . . , ynO
j )), j = 1, . . . , p, the numbers

x1
j , . . . , x

nI
j and y1

j , . . . , ynO
j are values of object variables X1, . . . , XnI and Y 1, . . . , Y nO capturing

quantifiable properties of objects in the application domain. Then (4.9) directly yields the following
Boolean rule

r′∨

i=1

(X1, . . . , XnI ) ∈ Pi → (Y 1, . . . , Y nO ) ∈ Q, (4.10)

which is equivalent to the conjunction of Boolean rules

(X1, . . . , XnI ) ∈ Pi → (Y 1, . . . , Y nO ) ∈ Q (4.11)

for i = 1, . . . , r′. If the polyhedron Q ⊂ <nO in (4.9) is in addition chosen to be a hyperrectangle with
projections O1, . . . , OnO , then (4.10) and (4.11) turn to

r′∨

i=1

(X1, . . . , XnI ) ∈ Pi →
∧

j∈O
Y j ∈ Oj , (4.12)

and

(X1, . . . , XnI ) ∈ Pi →
∧

j∈O
Y j ∈ Oj , (4.13)

respectively, where O = {j : Oj 6= <}.
Since the interpretation of any of the rules (4.10)–(4.13) in <nI+nO is a relation in <nI+nO , their

extraction directly fits into the proposed relational framework, with n = nI + nO, and the object
variables X1, . . . , XnI and Y 1, . . . , Y nO . Moreover, that relation has the specific property that its cut
through the first nI components always coincides with its projection into those components, namely
in (4.11) and (4.13) with the polyhedron Pi, i = 1, . . . , r′, whereas in (4.10) and (4.12) with the union
of polyhedra

⋃r′

i=1 Pi (Figure 4.1). Similarly, its cut through the last nO components always coincides
with the respective projection, i.e., the polyhedron Q in (4.10)–(4.11), and the hyperrectangle with
projections O1, . . . , OnO in (4.12)–(4.13). Due to those properties, the projection into the first nI

components can be seen as an interpretation of the antecedent of the considered rule, whereas the
projection into the last nO components can be seen as an interpretation of its consequent.

Due to the linearity of polyhedra, rules of the kinds (4.10)–(4.13) are easy to store and manipulate
in a computer. However, their comprehensibility is hindered by the difficult interpretation of the
antecedent (X1, . . . , XnI ) ∈ P for a general polyhedron P , especially if the dimension nI is high.
Therefore, an additional step usually follows the extraction of rules of the kind (4.12)–(4.13), namely,
replacing some of the polyhedra P1, . . . , Pr′ in (4.12) with hyperrectangles.

The decision whether to replace a polyhedron P with a hyperrectangle H depends on our dissatis-
faction with that part of P that does not belong to H and that part of H that does not belong to P ,
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Figure 4.1: A two-dimensional cut through the union of polyhedra interpreting the antecedent of a
particular rule of the kind (4.12), i.e., through the projection of the relation interpreting that rule into
its first nI components

i.e., on our dissatisfaction with the symmetric difference P∆H of P and H. Let us denote that dis-
satisfaction µP (P∆H) (to express its possible dependence on P ) and make the following assumptions
about the way how it determines the replacement decision:
(i) the dissatisfaction is nonnegative (µP (P∆H) ≥ 0);
(ii) increasing the area P∆H increases the dissatisfaction µP (P∆H);
(iii) the dissatisfaction µP (P∆H) is minimal among the dissatisfactions µP (P∆H ′) for hyperrect-

angles H ′ in the considered space;
(iv) for P to be replaceable with H, the dissatisfaction µP (P∆H) must not exceed some prescribed

limit ε > 0;
(v) to be eligible for the replacement, P has to cover at least one point of the available data.
The assumptions (i)–(ii) imply that µP is a nonnegative monotone measure on the considered space,
such that its domain contains P∆H for any polyhedron P and any hyperrectangle H in that space,
e.g., a nonnegative Borel measure on the space. If the considered space is the input space of a neural
network, two measures are particularly attractive:

A. The empirical distribution of x1, . . . , xp, i.e., the empirical distribution of the input components of
the sequence (x1, y1), . . . , (xp, yp) of training pairs (observe that this measure does not depend
on P ).

B. The conditional empirical distribution of the input components of the training sequence, condi-
tioned (hence, also dependent) on P .

An important property of the measures A. and B., not holding for general nonnegative Borel
measures, is that for any polyhedron P in the input space of the network, a hyperrectangle HP in
that space can be found such that the assumption (iii.) is fulfilled, i.e.,

µP (P∆HP ) = min{µP (P∆H ′) : H ′ is a hyperrectangle
in the input space of the network }. (4.14)

Denote the projections of a hyperrectangle H in the input space of the network I1
H , . . . , InI

H , introduce
the notation IH = {j : Ij

H 6= <}, and consider only polyhedra compatible with the assumptions
(iv.)–(v.), i.e., polyhedra from the set

C = {Pi : i = 1, . . . , r′ & µP (P∆HP ) ≤ ε &
& Pi covers at least one point of the available data}. (4.15)
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Then (4.13) turns for P ∈ C into
∧

j∈IHP

Xj ∈ Ij
HP

→
∧

j∈O
Y j ∈ Oj , (4.16)

whereas (4.12) implies
∨

P∈C

∧

j∈IHP

Xj ∈ Ij
HP

→
∧

j∈O
Y j ∈ Oj . (4.17)

From the point of view of the proposed relational framework, the specificity of the relations (4.16)
and (4.17) is that their projection into the first nI components is a hyperrectangle and a union of
hyperrectangles, respectively (Figure 4.2).

To illustrate the difference between a rule (4.12) and the rule (4.17) obtained from it in the above
described way, Figures 4.1–4.2 show mutually corresponding 2-dimensional cuts through antecedents
of those rules, i.e., through their projections into the first nI components, for a particular rule (4.12)
extracted from data in an ecological application [34].

0 22 44
0.5

3

5.5

Figure 4.2: A two-dimensional cut through the union of hyperrectangles replacing those polyhedra
from Figure 4.1 that are replaceable in accordance with the above assumptions (i)–(iv)

5 Conclusion

In this paper, a unifying relational framework for a broad class of data mining methods has been
proposed. Its underlying assumptions and basic principles have been explained, and a survey of
areas for which the assumptions make the framework appropriate has been given. To exemplify its
usability, the framework has then been elaborated for two particular data mining methods of very
different nature – the classical method of exploratory data analysis GUHA, and an ANN-based rule
extraction method.

Needless to say, the framework needs to be elaborated for other relevant data mining methods
before it can be routinely used. This will be a matter of further research, as well as elaborating the
applicability of the framework for fuzzy data and for methods extracting fuzzy rules, which has been
indicated in Section 2. Therefore, it would be premature to already attempt to seriously compare it
with other data mining frameworks, such as those proposed in [3, 44, 69]. Much more important is
to realize the fact that the new framework shares with the previous ones the final objective why they
have been proposed, namely that a unifying framework of view is a prerequisite for the synergy of
different data mining methods, for the comparison and consolidation, and consequently for a more
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appropriate interpretation, of their results. Moreover, it shares with them the starting assumption
that such a unifying framework should be abstract enough to be able to handle methods relying on
different paradigms.

An interesting feature of the new approach is the fact that it assigns a specific position to methods
for the extraction of rules from data by means of artificial neural networks, compared to other classes
of methods to which the framework is applicable. Such a specificity of ANN-based rule extraction
methods have not been indicated by any other data mining framework. That specificity might be
worth investigation in the context of the many hopes that ANN-based rule extraction methods have
raised in the early 90s, but then mostly failed to fulfill (cf. [4, 61] and references therein).
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[28] P. Hájek and T. Havránek. Mechanizing Hypothesis Formation. Springer Verlag, Berlin, 1978.
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