narodni
N U dlozisté
1 L Sedé
6 literatury

Coupling Computational and Non-Computational Processes: Minimal Artificial
Life

Wiedermann, Jifi
2004

Dostupny z http://www.nusl.cz/ntk/nusl-19519

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 19.04.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-19519
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Coupling computational and
non—computational processes:
minimal artificial life

Ji¥i Wiedermann
Technical report No. 907

May 2004

Pod Vodarenskou vézi 2, 18207 Prague 8, phone: (+420) 266 053 520, fax: (+420) 286585 789,
e-mail:jiri.wiedermann@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Coupling computational and
non—computational processes:
minimal artificial life'

Ji¥i Wiedermann
Technical report No. 907

May 2004

Abstract:

We propose a formal abstract hybrid system, so—called bacteroid that combines computational and non—
computational mechanisms in its activity. We show that in the environment underlying certain physical laws
and consisting of artificial molecules endowed with a certain self-assembly properties there exist bacteroids
hallmarking minimal life: they are autonomous, replicate and are subject to darwinian evolution. More
complex models equipped with sensor and motor organs exhibit preferential behavior and chemotaxis. The
design of bacteroids is inspired by ideas of contemporary molecular biology on no longer existing (or perhaps
so—far undiscovered) forms of protolife and from the computational viewpoint it presents a variation on
the theme of membrane computing applied to cognitive multiset processing within artificial life.

Keywords:
artificial life, minimal life, membrane computing, self—assembly, bacteroid, darwinian evolution

1 This research was partially supported by GA CR grant No. 201/02/1456.

1 Introduction

Is there a computational definition of life? Can we describe all aspects of living systems purely in
computational terms? What is the difference between animated and unanimated matter? These and
similar questions are traditionally also dealt with in the disciplines of artificial intelligence (AI) and
artificial life (AL) (cf. [3], [4]). Despite numerous efforts no sufficient insight into the mechanisms
of life has been achieved. In these efforts computer science is playing an increasingly important role.
The history of computer science abounds with computational models that, being inspired by abilities
of real biological systems, can be seen as highly oversimplified mathematical models of living systems.
From this viewpoint the respective models usually capture but some aspects of AL. Such an aspect
could be e.g. the information processing ability (in the sense of Turing—computability) and the degree
of such ability. Recently, a lot of attraction was gained by membrane computing (cf. [11]) which is
clearly inspired by cellular biology and rewriting systems. Other model, self-assembly systems (cf.
[1], [18]), motivated by self-assembly abilities of biomolecules present the recent hit. Typical for all
these models is their declination from their original biological inspiration when it comes to evaluation
of their meaning within computer science. Membrane systems, especially the earlier approaches, can
serve as typical examples: in [10] it is stressed that their goal lies not in cellular life modelling, but
rather in studying the computational power of models inspired by cellular biology. It is true than
in these days the area is much concerned with applications in biology trying to cover as much as
possible from the real cell [11]. On the other hand, although the universal computational potential of
self-assembly systems was recognized a long time ago, nowadays the use of the respective processes
is seen in the (nano)technology (cf. [18]). Of course, by this the respective models place themselves
out of the scope of AL since e.g. the computational universality (in the sense of Turing) which seems
to be the Holy Grail of these and similar models, is not a fundamental property of the living systems.
Contrary to that, the ability of self-reproduction and darwinian evolution — the basic elements of
life — are not captured by these models.

In the sequel we will focus onto those computational aspects of life that have been omitted in
the above mentioned models. We propose a model that is designed so as to satisfy a minimal set
of conditions needed for life to exist. It should be stressed that our goal is not modelling a real
life — nevertheless we will be inspired by recent ideas and knowledge about mechanisms of real life.
Henceforth we firmly stay on the platform of artificial life. Currently, there is no generally accepted
definition of life (cf. [15]) that would capture the full richness of life. In contrast to that, the case of
minimal life seems to be better understood. Here, the prevailing and generally agreed—on operational
definition could go as follows [16]: a (cellular) system is alive if it is both autonomously replicating
and subject to darwinian evolution. Autonomous replication is understood as continued growth and
division which is reliant on the input of small molecules and energy only, and does not depend on
the products of preexisting living systems. Darwinian evolution requires essential biological aspects
of genetic variation and its phenotypic expression as variation in survival and reproduction.

We will call our model of minimal living system a bacteroid. It is an abstract model that is in-
spired by our ideas on the emergence of the first protocells (cf. [16]). The bacteroid is a hybrid system
combining two components in its design. The first one corresponds to so—called epistemic work of the
bacteroid at hand. That is, this component deals with bacteroid’s information gleaning, processing
and exploiting. The other component takes care of the bacteroid’s “body” growth, maintenance, and
multiplication, i.e., ontic work of a bacteroid [7]. The epistemic work amounts to the computational
mechanism of a bacteroid while the ontic work amounts to the non—computational one. The com-
putational mechanism is modelled by a so—called multitransducer with a reconfigurable set of initial
states which by itself is a novel computational mechanism. It corresponds to a genom and controls
all internal and external activities of a bacteroid as well as its phenotypic expression. The body of a
bacteroid is created by a membrane that encompasses the multitransducer and supports bacteroid’s
sensors and motor units (if any). The growth and fission of a bacteroid is governed by self-assembly
and other processes obeying physical laws. Neither the self-assembly processes nor the physical laws
are under the computational control. In a sense the respective non—computational mechanism evokes
an oracle that is used by a Turing machine in order to obtain the results that principally cannot be
obtained by a machine itself. The properties of both the bacteroidal body and its behavior depend on

the multitransducer’s work; thus, a survival of a bacteroid and its evolution depends on the mutual
cooperation and evolution of its epistemic and ontic components.

When compared with the existing models consisting of a computational mechanism encapsulated
in a membrane, such as P—systems, the bacteroid differs in several issues.

e First, it is designed to solve a different kind of problems than most P—systems are: these are
problems of survival, reproduction, and darwinian evolution;

e its computational mechanism is based on the formalism of finite automata rather than on the
rewriting systems?;

e the time to realize transitions in finite automata can vary;
e the automata can switch their initial states on and off;

e the automata controlling the bacteroid’s work in an asynchronous manner and this is essential
for bacteroid’s work;

e a bacteroid produces material for its “body” (especially its membrane) construction and for the
construction of its genetic information;

e this information becomes a subject of the bacteroid’s own information processing;

e the bacteroid’s membrane and its sensor and motor organs are constructed by self-assembly
processes that are not under a computational control;

e last but not least, in the bacteroid’s activity, development and reproduction we count on the
effects of physical laws.

The main results of the paper can be summarized as follows. First, a proof that in a universe
allowing existence of suitable objects with self-assembly properties and obeying certain physical laws,
bacteroids fulfilling all properties of minimal life can be designed. Second, a more evolved variant of a
bacteroid is shown to possess a rudimentary cognitive ability: it can prefer a certain type of nutrition.
Third, a motile bacteroid is constructed so that it features a variant of so—called chemotaxis meaning
that it actively seeks to return into areas abounding with nutrition. Finally, it is pointed out that the
lineages of bacteroids exhibit a super—-Turing computational power.

The paper consists of four main sections. The first section, the introduction, gives a brief overview
of the history of the subject from the viewpoint of computational models and summarizes the main
results of the paper. The second section introduces a model of a bacteroid. Its computational part is
represented by a multitransducer whose definition is given in the first subsection. The embodiment
of the multitransducer into the membrane and the mechanisms of membrane growth and division
are described in the second subsection. This section is closed by a short discussion concerning the
realness of the proposed model. The third section gives a brief overview of the main results. First,
a protobacteroid is defined fulfilling the conditions of minimal life. Second, it is shown that a so—
called selective bacteroid exhibits certain primitive cognitive abilities by distinguishing between two
kinds of nutrition. The next result deals with a motile bacteroid that actively returns to areas with
plenty of nutrition. The last result concerns the super—Turing ability of lineages of bacteroids. The
fourth section contains the conclusion summarizing the main achievements and gives ideas for further
research.

The paper describes the research under development, and so far neither the model nor the formal-
ism and nor the terminology are definitive; similarly, the results and their interpretation only start to
emerge. In addition to the page limitations this is the main reason why the paper has the form of an
extended abstract.

2In the context of the formal languages theory the idea of multiset processing by finite transducers occurred already
in [12].

2 Basic model: the bacteroid

Interactive finite multitransducer First, we will concentrate on the epistemic aspects of our
model. For that purpose we will make use of modified finite automata. We will use them in the
mode of transducers (or as Mealy automata) — i.e., as the automata processing multisets of finite
input strings of symbols and producing similar strings of output symbols. Moreover, we will consider
a so—called multitransducer which is a multiset of transducers of finitely many types that all work
asynchronously. Even though the description of a multitransducer, that is, of all types of automata
together, is finite, the cardinality of their multiset can be arbitrarily large. This cardinality varies
with time and depends on the number of objects that are available for processing at each time — see
the description of multitransducer’s activity in the sequel. Thus, from the computational viewpoint a
multitransducer is a highly parallel information processing device.

Now we shall give the formal definition of a multitransducer for the simplest case when each
automaton reads its inputs via a single input port. Then we describe the way the machine works.

Definition 2.1 An interactive asynchronous finite multitransducer with single—input ports is the siz—
tuple T = (1,0, S, B, F,0), where

e [and O are finite alphabets of symbols, I is the input and O is the output alphabet;
e S is a finite alphabet of states;

e B C S is the subset of initially active states;

F C S is the subset of final states;

d is the transition function of form I x S — S x O x S x {0,1} x N which for each stringv € I
read (and “consumed”) at the input port of some automaton and each state s € S assigns a new
state r € S, sends w € O at the input port, and sets the activation value of state g € S to either
0 or 1; here 0 denotes non—initial (passive) and 1 initial (active) state; this is formally written
as §(v,s) = (r,w,q,0,t) or §(v,s) = (r,w,q,1,t), respectively; t is the speed parameter saying
that it takes t € N time units to realize the transition at hand.

In the multitransducer each type of the Mealy automaton is described by its own transition function
of form as given in Definition 2.1. We assume that the multitransducer finds itself in an environment
consisting of a multiset of strings. Also this multiset is not given beforehand, it can change over time,
that is, the multiplicity of the same strings in it can vary. A multitransducer operates by systematically
and repeatedly transforming strings into other strings. The input strings are read sequentially, symbol
by symbol by automata via their input ports and output strings are produced in a similar way at their
output ports. The automata work in an asynchronous manner. We assume that each automaton has
its own clock. For simplicity we also suppose that in all automata the duration of one unit of time is
the same, however, the clocks are not synchronized. Since there is no notion of global time it is not
possible to define a “configuration of the system” at a given time. By allowing more than one input
port each automaton can be designed so as to be able to process several strings in parallel, similarly as
classical multihead automata. In order that the operation of a multitransducer can work smoothly we
assume that each automaton reads the strings in a selective way, that is, it has a specific ability to find
this string in the environment for the processing that it is programmed for, as long as such a string
exists in the environment. This property can also be seen as a property of the environment — it is as
though the environment attempted to process each string by each multitransducer’s automaton, and as
long as such a pair (string, automaton—able—to—process—this—string) exists, then the processing takes
place. Henceforth, the environment has a potential for realization of highly parallel computations.
Should there be two automata able to process a given string, one of them is selected randomly. After
being processed, a string “disappears”, being transformed into a corresponding output string.

A multitransducer differs from the set of standard Mealy automata in two aspects. First, the
set of initial states of all automata is not fixed, i.e., it is not given once for all at the beginning
of a computation. Rather, depending on the course of computation this set can change over time:
some states can loose their property of being initial states, others can obtain this property. The

instructions for activation/deactivation of initial states are included in the transition function of the
multitransducer. The states that are at the moment initial states will be also called active states.
The initial activation of states is given as a part of the multitransducer’s definition. The dynamic
activation of its states enables the multitransducer to switch “off” or “on” certain automata and to
control the interactive processing in this way. The intended use of this mechanism is to model the
gene switching in real cells. The second point of departure of a multitransducer from the definition
of classical automata is the possibility of controlling the processing speed of individual transitions. In
order to be able to change the speed of transitions we assume that with each transition, a so—called
speed parameter (a natural number), is associated that defines the speed taken by the realization of
that transition. This possibility will be used in tuning the synchronization among various automata3.

It seems natural to require that a multitransducer cannot transform non—empty strings into empty
strings and vice versa, that is, a multitransducer can neither generate something from nothing nor
nothing from anything. Note that syntactically, in the transition function representation, there is no
visible “boundary” between the automata of which the multitransducer consists — from the descrip-
tion of its activity it is clear that once the processing of a string gets started by a transition containing
an active state in its left hand side the processing will be prolonged by whatever transition that applies
to the new state and the symbol read at that very moment. In this way the processing prolongs via
a chain of admissible transitions until the string gets “consumed” and a final state is reached. If the
initial state of the automaton at hand is still active, than a new processing can be launched. In what
follows instead of the term “string” we will often use the term “object” to denote either a symbol or
a string of symbols.

So far we have not counted on evolution of a multitransducer — a change of its activity can only
be made by changing its transition function. It is obvious that at the very beginning of a computation
the activity of individual states is given by set B. Depending on the inputs read in subsequent steps
and their order, (recall that automata work asynchronously) the activity of states can change.

Embodying the multitransducer In our intended application in minimal life modelling we will have
to consider different multitransducers (or even off—springs of a transducer) as agents acting in the same
environment. So far this has not been possible since all of them would behave as a single multiset
of automata controlled by the union of all transition functions of all multitransducers. Thus we need
a way to separate individual transducers from each other. For such a purpose (but also for other
purposes — cf. [13] for the current views on embodied cognition) we will endow each multitransducer
with a “body” .

A membrane will represent the simplest model of an agent’s body. Its purpose will be to protect
the control and information mechanisms of an agent from the environmental influence, to provide a
support for agent’s perception—motor units, and, last but not least, to enable the agent’s development
(especially its growth and multiplication). The membrane will be modelled as a three—dimensional
spherical structure consisting of special objects called tiles. A membrane is constructed from tiles “all
by itself”, by self-assembly under certain physio—chemical circumstances. That is, under reasonable
circumstance any random cluster of tiles that are sufficiently close to each other will spontaneously
self-assemble into a membrane and, moreover, if there should be further tiles in the vicinity of such
a membrane they will become spontaneously incorporated into it. In this way a membrane can grow.
When roughly doubling its size a membrane can tear in two approximatively equal parts that both
spontaneously again organize into membranes. Henceforth, both properties of the membrane growing
and splitting are a consequence of physical (and hence chemical) laws acting in the given environment.
The pace of membrane growth depends, among other things, on the supply of tiles which are generated,
as we will see, by automata from elements that are not endowed by self-assembly property. Perception
and motor units can also find themselves in a membrane. Their presence is controlled by automata
and their number also depends on the supply of the respective material.

The activities of a multiset of automata comprising a multitransducer are controlled by a “program”
that takes the form of a rewritten tape which finds itself inside the membrane. This tape contains the
description of the multitransducer’s transition function in a linear form. This description consists of a
series of segments each of which corresponds to one transition of form I xS — S x O xS x {0,1} x N.

3The speed parameter can be avoided at the expense of allowing epsilon transitions in the formal definition of a
multitransducer.

Of course, such a program resembles a genome residing inside a cell. Similarly, as a genome it consists
of instruction for production of various objects that can further be used for membrane, receptor or
motor units construction. The program also contains instructions for initiating and terminating an
object or unit construction, or for their de—assemblage. All this happens via activation or deactivation
of the respective automata. From the viewpoint of a multitransducer, a program is an object as any
other objects and therefore the program tape can also become a subject of an automaton’s processing
within that multitransducer. An important automaton in that respect is a copying automaton whose
task is to produce a copy of the program tape. Such an automaton has two inputs — one by which
it reads the current program tape and one by which it accepts “stuff” (objects) from which a tape’s
copy is to be constructed. * Of course, the copying process does not destroy the original tape.

In its activity, especially in the membrane growth and splitting, and in organ development, a
multitransducer counts on the self-assembly ability of some objects and on the functioning of physical
laws as we have seen it in the case of tiles. In greater detail we will describe the corresponding
mechanisms in the sequel.

A bacteroid is a generic name for a system consisting of a multitransducer and a membrane sur-
rounding it. Similarly as in the case of real bacteria also bacteroids differ in their genotype (that,
roughly, corresponds to the way a multitransducer controls a bacteroid in) and phenotype (that corre-
sponds to the “physical” equipment of a bacteroid — what its membrane is like, what are its organs,
where they are located, what are their properties, etc.). The simplest of all bacteroids is a so—called
protobacteroid possessing no sensory or motor organs and consisting of only a membrane encompass-
ing a program tape. The reason for the existence of such an entity is this: inside the membrane
from the objects floating in the environment and freely permeating this membrane, a protobacteroid’s
multitransducer synthesizes the tiles that are incorporated, by self-assembly, into an already existing
membrane. The respective synthesizing automata will be called tile automata. In parallel with this
process a replication of the bacteroid’s tape is in progress. This process is accomplished by a so—called
copying automaton. The new tape is also constructed from objects that permeate the membrane.

Now we describe the mechanism of the bacteroid’s fission. Assume that after the copying operation
is finished both the new and original tape are rolled into separate balls. Further assume that the
membrane encompassing both balls is not stretched, it is rather larger than necessary in order to
tightly encompass the balls. That means that the resulting shape of the protobacteroid in this phase
starts to resemble a sort of a three—dimensional eight and at the moment, when the interior of the
membrane between the two balls has a sufficiently small diameter, the self-assembly mechanism of
tiles will split the membrane into two parts, each containing one copy of the program tape rolled into
a ball. Hence, two protobacteroids emerge. In order to make this work properly there must be a
proper synchronization between the copying process and that of the membrane growth. This timing
is achieved via the proper settings of the speed parameters in transitions of the respective automata;
the corresponding parameter optimization is again a result of an evolution.

Note that in contrast to the P—systems a bacteroid is defined in a way similar to real bacteria, with
the help of a single membrane. In P—systems there is the idea of localization by means of embedded
membranes that protect the encapsulated objects from “reactions” from outside. In our setting a
similar effect is achieved by automata that do not “drop” an object until its processing is finished.
Moreover, they can “keep” an object as long as necessary by adjusting the speed of its production. The
additional flexibility is offered by initial state switching, that is, we can switch off certain automata
to prevent them in processing some objects. Of course, the latter mentioned mechanism is crucial for
phenotypic differentiation at the level of either unicellular or multicellular organisms.

Even from the above informal description one can see that for its existence a protobacteroid
needs a hierarchy of objects with various properties. We start with simple objects possessing no
self-assembly abilities. However, these objects must be such that a multitransducer can generate out

4When it comes to modelling of self-reproduction of living organisms some authors seem to claim that in addition
to a genetic information copying mechanism, a genetic description of an organism must also include a description of a
self-replication mechanism (this is the essence of the well-known von Neumann’s result on self-reproducing automata).
In our setting this would mean that a part of the multitransducer’s description should be devoted to the “recipe” how
to build a membrane, when and how to split it, how to see that there is a single copy of the program tape in each
newly emerging membrane, etc. While this is technically possible, from the evolutionary point of view this seems to be
unnecessarily complicated and therefore less probable.

of them other objects already possessing self-assembly properties (e.g. tiles). These self-assembly
objects further self-organize into complex structures (such as membranes) that, obeying the physical
laws, are endowed with still other emergent properties not possessed by their parts (e.g., membrane
splitting). Moreover, the physical laws should work “as needed” for a bacteroid to operate correctly.
The self-assembly property similarly as the physical laws are “present” all the time without a need
to be invoked; what is done in a bacteroid is harnessing these non-computational phenomena for the
purpose of artificial life as we shall see in Section 3.

Bacteroids and real bacteria A few words concerning the realness of the proposed computational
and non—computational mechanism of bacteroids are in place. In fact, the computational mechanisms
are a radical simplification of so—called central dogma of molecular biology (cf. [5]) that states that
each gene in the DNA molecule (genom) carries the information needed to construct one protein,
which, acting as an enzyme, controls one chemical reaction in the cell. In our model one transition
instruction corresponds to a gene and the automaton realizing that transition corresponds to that
protein. The objects correspond to chemical compounds and computations over objects correspond to
chemical reactions. That means that the objects can be seen as physical data representation, they are
their “embodiment”. Both computations and self-assembly correspond to the construction of more
complex objects. In real life the genom is wound up onto a group of proteins called histones. In real
cells gene switching is probably carried out by chemical switches (cf. operon hypothesis) that “cover”
the required gene in the genom and thus the gene cannot operate in the same way as before. The
communication within a cell works with the help of chemical or other signals along so—called signalling
pathways. Self-assembly of certain types of molecules (e.g. of amphiphilic molecules into three—
dimensional vesicles) is an experimentally verified fact (cf. [6]). The translocation of input objects via
the membrane, or via specialized pores or channels, respectively (see the case of selective bacteroids in
the sequel), also corresponds to reality where it is a consequence of the Brownian motion and physio—
chemical properties of the participating molecules (both in the membrane and those translocating
it). For more information about the self-organization and its molecular realization see the survey
paper [18]. The theory of self-assembly is in its beginning (cf. [1]). So far, mostly square— or cube—
shaped objects have been considered from which it is not possible to construct all organs found in
real bacteria. Nevertheless, even such results point to the fact that in principle the self-assembly is
possible and the resulting shape of the assembled objects depends on the shape and properties of
the parts from which the complex is built. Last but not least, these results clearly demonstrate that
mathematic modelling of self-assembly is possible. Along these lines, a formal definition of the shape
and properties of self-assembly objects, in a way similar to that used e.g. in [14], could be introduced
into the definition of a bacteroid.

To get an idea about the complexity of real bacteria we mention the following figures. The number
of genes in real bacteria starts with approximately 300 in the case of the simplest bacteria and for
other bacteria averages around 2000 genes. The notoriously known bacteria FEscherichia Coli has 4288
genes and utilizes about 20 signal pathways for information transfers inside a cell. It can choose from
among approximately 30 types of chemoreceptors; all of them need not be always present but can
be “synthesized” on demand. At each time in average there are about 1500 of chemoreceptors of 5
different types expressed in E. Coli’s membrane.

3 Main results

Protobacteroids and minimal life The minimal life definition includes the idea of the organism that
fulfills the minimal requirements for it to be considered alive. An entity satisfying less requirements
cannot be seen as a living system. It seems that the currently favored operational definition asks
for meeting two conditions [16]: a minimal life system must be both autonomously replicating and
subject to darwinian evolution. Autonomous replication means a continuous growth and division
which is reliant on the input of simple input objects only, and does not depend on the product of
other living systems. Darwinian evolution requires variations in survival and reproduction resulting
from the genetic variation and its phenotypic expression.

Asg far as our protobacteroid is concerned, from its very design it is easily seen that the first

condition of the above mentioned definition is satisfied. Under a sufficient supply of input objects the
protobacteroid survives and multiplies; in this process we assumed that the input objects are “simpler”
than the derived ones since the latter are “computed” from the former ones. The darwinian evolution
is ensured by insisting on the copying mechanism being unreliable. This means that it is likely that
the copying automaton makes an error when copying the tape — not only “typos”, but perhaps such
that some program segments get not copied at all while some others may get duplicated. In this way
some mutations may immediately lead to a loss of functionality of a protobacteroid while others may
open, perhaps in a long run, a way to the increased rate of survivability. It is interesting to note that
the copying automaton (that is, the “mutation” mechanism it implements) itself can become a subject
of a mutation. In this way various innovation strategies can be realized. Consequently, we see that
the protobacteroids fulfill the definition of a minimal artificial life, indeed.

For our system of minimal life to work it has been essential that the “future” of a bacteroid
depends on the proper interplay between its epistemic and ontic parts that in turn depends on the
proper interaction with the world. Without explicitly introducing a membrane and its structure and,
as we shall see later, a possibility of its further development (by accommodating sensor and motor
organs in it), we cannot make the multitransducer’s evolution dependent on the functioning of its
“body”. Thus, unlike as in the case of P—systems where the membrane appearance is a matter of one
instruction, in bacteroids membrane growth and development is a process dependent on information
processing abilities (and vice versa) and consuming a substantial amount of information processing
power (see the case of selective bacteroids in the sequel). In fact the mutual dependence among the
information processing, body control and body evolution, “powered by” physical laws, has been the
main animation trick for a bacteroid to become “alive” in our model.

Selective behavior In order to exist and survive, protobacteroids did not make any use of the
information on the environment. They were not actively selective — they tried to “consume” whatever
had permeated their membranes. We show that so—called selective bacteroids that take into account
information from the environment get an evolutionary advantage.

Consider a bacteroid S in an environment consisting of two types of nutrients that are modelled
by objects of type A and B, respectively. S can consume both types of nutrients, but a nutrient of
type A is more nutritious than type B — e.g., from type A bacteroid S can produce substantially
more tiles than from type B nutrient. The protobacteroid from the previous subsection — let us call
it P — can exist in such an environment without any problems, since it can “eat” both types of food
substances. Nevertheless, in an environment that abounds in type A nutrients, a bacteroid preferring
this type could be evolutionary privileged in a long run. Note that from the viewpoint of the theory
of formal languages there is no finite state automaton accepting strings in which as prevail over bs.
Thus, our problem cannot be solved at the level of individual automata: some cooperation among
them would be necessary.

There is no problem in constructing an automaton A accepting solely as, and B accepting both
as and bs. Call such automata (translocation) channels, or pores and place them into the membrane
of S. Obviously, A can be active all the time (it makes no sense to reject any as). What makes
sense is to switch off B in the case when there is plenty of as in the environment. In order to do
so let us equip S with the following additional organs: assume that in the membrane of S there are
receptors of type A and receptors of type B nutrients. These receptors are special automata denoted
as R, and Ry, respectively, that scan the objects (nutrients) of the respective type appearing at their
inputs. In fact, they merely make a transition that activates or deactivates the initial states of the
above introduced pores, and leave free the objects they scanned without changing them. Thus, the
“program” controlling & might contain the following segment:

e A is always active allowing translocation of as into the membrane;
e upon detecting a, R, closes pores Bs letting pass both as and bs; otherwise R, opens Bs;
e upon detecting b, Ry opens pores Bs; otherwise it closes them.

In order to see that the above described mechanism works as we intend it is important to real-
ize that each receptor opens/closes all channels of the respective type and that all receptors work

asynchronously. That is, as long as there is a majority of as in the immediate environment of S, the
majority of R, send the signal for closing pores B most of the time and therefore S consumes type A
nutrients most of the time. Otherwise, the signals from R; prevail most of the time keeping pores B
open most of the time and S accepts nutrients of both types. Note that in this way a selective bac-
teroid can switch between the two modes of behavior, but in the long run the more efficient behavior
keeps prevailing. The switching moments depend on many parameters that are difficult to analyze;
nevertheless, the task of switching mechanism optimization is taken over by evolution, by trial and
error process. Similarly, the “upgrade” from P to S is also a result of evolution. The new organs —
pores and receptors — are built by self-assembly processes. The task of the evolution is to “discover”
the availability and usefulness of such an upgrade. Note that the behavior just sketched bears the
hallmarks of a cognitive behavior — the selective bacteroid discriminates between “good” and “bad”.

Chemotaxis Motile real bacteria (such as Escherichia Coli) also display another type of “intelligent”
behavior — they keep swimming roughly in the direction of the largest nutrient gradient. This is called
chemotazis. Such behavior can also be modelled within our framework. First of all, we will need a
further evolutionary innovation — flagellar motors (cf. [9]). In reality, these are tiny (nanoscale)
motors powered by ions that rotate the flagella sticking out from the membrane. Rotating the flagella
in one direction causes a move of a bacteria along a direct line. Rotating the flagella in an opposite
direction causes so—called “tumbling” of a bacteria — it turns randomly in a three-dimensional space
so that its next move will proceed along a new, randomly chosen direction. Now assume that a
bacteroid, M, is an upgraded version of a selective bacteroid equipped by flagellar motors (emerging
by evolution and constructed by self-assembly). As before, let type A nutrient be “much better”
than type B nutrient and assume that the amount of a nutrient consumed depends on the distance
the bacteroid has travelled while consuming. Consider the behavior of M according to the following
program segment,:

e L: while nutrient is OK do keep eating and running in the same direction od;
e otherwise make a stop, do not eat and rotate randomly;

e then make a short trip in the new direction;

e gotoL

Clearly, realization of the above described behavior can be seen as a simple type of chemotaxis:
when running out of an area with type A nutrient M tries to return to that area making short trips
in random directions. The duration of a short trip is controlled by a special timer that makes use of
a speed parameter in its transitions (see the definition of transition function from Definition 2.1).

Computational power It was stressed in the Introduction that achieving the Turing universality
had not been the main goal of our design. Keeping the descriptional complexity of our model in
a finite range without allowing a use of any additional memory cannot give rise to a device with a
universal computing power. Instead of isolated bacteroids we can consider evolutionary sequences
of bacteroids in which the successor of each bacteroid is its offspring emerging by a random genetic
mutation and surviving under unpredictable conditions (whose description is not a part of the sequence
model). Since there is always a subset of states being “transferred” to the next generation, such a
sequence of bacteroids corresponds to a so—called lineage of automata as introduced in [17]. A lineage
of bacteroids can start with a protobacteroid and its subsequent members will correspond to a single
random path in its bacteroid’s evolutionary tree. Obviously, there is no way to algorithmically specify
such a lineage. Considering computations of lineages of bacteroids leads to so—called non—terminating
interactive evolutionary computations whose power gets beyond that of the classical Turing machine.
This has been proved in a series of recent papers by van Leeuwen and Wiedermann, most notably in
[17]. Tt is not clear whether the notion of a lineage can naturally be modelled by P-systems.

4 Conclusion

We have proposed an abstract embodied hybrid system — a bacteroid — that in its activity couples
a computational mechanism with that of self-organization. In the field of AL this seems to represent

the first system provably exhibiting minimal life within an artificial universe ruled by laws allowing
existence of suitable self-assembly objects. From the computational point of view a bacteroid can
be seen as a multiset of communicating asynchronous automata performing a specific sort of real—
time multiset cognitive processing that leads to a purposeful behavior (i.e., autonomous growth and
replication, and evolution) in the given environment. The computing power of a bacteroid is primarily
used to control its body and its organs which are all seen as a result of non—computationally controlled
self-assembly processes. In the bacteroid’s activity the stress is put on cognitive task solution by
relying on a proper interactive coupling of sensory and motor actions. The reproduction involves
a learning aspect due to the nature of darwinian evolution. The context of minimal life leads to a
consideration of entirely new types of problems whose formulation, in terms of classical finite state
automata framework, has not been possible. In addition to the problem of nutrition selectivity and
chemotaxis considered here there is a lot of other problems inspired by real bacteria (cf. [8]) that
seem to be amenable to a modelling in a similar spirit as sketched in this paper. These problems and
extension of our modelling to the case of multicellular organisms represent a possible avenue for further
research. Such efforts can shed new light on the computational complexity related to construction and
epistemic work of minimal life systems and consequently to the synthesis de nuovo of real artificial
organisms (cf. [2], [6], [16]).

Acknowledgement Thanks go to G. Paun for his comments on the earlier version of the paper.

Bibliography

[1] Adleman, L.: Toward a mathematical theory of self-assembly. Tech. Rep. 00-722, Dept. of Com-
puter Science, University of Southern California, 2000.

[2] Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and
autonomous computing machines made of biomolecules. Nature 414 (2001), 430-434.

[3] Brooks, R.: The relationship between matter and life. Nature, Vol. 409, 18 January 2001, pp.
409411

[4] Brooks, R.: Beyond Computation. EDGE 132, June (2002)
(http://www.edge.org/3rd_culture/brooks_beyond/beyond_index.html).

[5] Central dogma of molecular biology:
cf. http://www.bartleby.com/59/21/centraldogma.html.

[6] Hanczyc, M. M., Fukijawa, S. M., Szostak, J. W.: Experimental Models of Primitive Cellular
Compartments: Encapsulation, Growth, and Division. Science. 302 (2003), 618-622.

[7] Kovag, L., Nosek, J., Tomagka, L.: An Overlooked Riddle of Lifes Origin: Energy Dependent
Nucleic Acid Unzipping. J. Mol. Evol. Vol. 57 Suppl 1:5182-9, 2003.

[8] Lengeler. J. W., Miiller, B. S., di Primio, F.: Neubewertung kognitiver Leistungen im Lichte der
Fhigkeiten einzelliger Lebewesen. Kognitionswissenschaft 8 (2000) 160-178.

[9] Musgrave, I.: Evolution of the Bacterial Flagellum. In: Why Intelligent Design Fails: A Scientific
Critique of the Neocreationism. Young, M., and Edis, T. (Eds.), forthcoming from Rutgers
University Press, Piscataway, N.J. 2004.

[10] Paun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer Science 287
(2002), 73-100.

[11] Paun, G.: Membrane Computing. An Introduction, Springer, 2002

[12] Paun, G., Thierrin, G.: Multiset processing by means of systems of sequential transducers,
In: Proc. Workshop on Implementing Automata WIA99, Potsdam, August 1999, LNCS 2214,
Springer 2001, 140-157

[13] Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge, 1999, 697 s.

[14] Rothemund, P, Winfree, E.: The program-size complexity of self-assembled squares (extended
abstract). In Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pages 459468. ACM Press, 2000.

[15] Shenhav, B., Lancet, D.: Prospects of a computational origin of life endeavor. Origins of Life
and Evolution in the Biosphere, Kluwer Academic Publishers, Vol. 34, pp. 181-194, 2004

[16] Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing Life. Nature 409 (2001) 389-390.
[17] Wiedermann, J., van Leeuwen, J.: The Emergent Computational Potential of Evolving Artificial

Living Systems. Ai Communications 15, 4 (2002), 205-216.

10

[18] Winfree, E.: DNA Computing by Self-Assembly. National Academy of Engineering Website, The
Bridge 33, 4 (2003), 31-38.

11

