
Matrix-Free Preconditioning using Partial Matrix Estimation

Cullum, J.
2004

Dostupný z http://www.nusl.cz/ntk/nusl-19518

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 11.07.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-19518
http://www.nusl.cz
http://www.nusl.cz


INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Matrix-free preconditioning using partial matrix
estimation

Jane Cullum Miroslav Tůma

Technical report No. 898

April 16, 2004

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

phone: (+420) 2 6605 3251 fax: (+420) 2 8658 5789
e-mail: tuma@cs.cas.cz, cullumj@lanl.gov



INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Matrix-free preconditioning using partial matrix
estimation

Jane Cullum 1 Miroslav Tůma 2

Technical report No. 898
April 16, 2004

Abstract

We consider matrix-free solver environments where information about the underlying
matrix is available only through matrix vector computations which do not have access
to a fully assembled matrix. We introduce the notion of partial matrix estimation for
use in constructing good algebraic preconditioners for use in Krylov iterative methods
in such matrix-free environments, and formulate three new graph coloring problems for
partial matrix estimation. Numerical experiments utilizing one of these formulations
demonstrate the viability of this approach.

Keywords
numerical linear algebra, sparse matrices, matrix-free, preconditioned iterative

methods, Newton-Krylov methods

1Los Alamos National Laboratory, Los Alamos, 87545 NM, USA
2Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı

2, 18207 Praha 8, Libeň.



MATRIX-FREE PRECONDITIONING
USING PARTIAL MATRIX ESTIMATION ∗

JANE CULLUM † AND MIROSLAV TŮMA ‡

Abstract. We consider matrix-free solver environments where information about the underlying
matrix is available only through matrix vector computations which do not have access to a fully
assembled matrix. We introduce the notion of partial matrix estimation for use in constructing good
algebraic preconditioners for use in Krylov iterative methods in such matrix-free environments, and
formulate three new graph coloring problems for partial matrix estimation. Numerical experiments
utilizing one of these formulations demonstrate the viability of this approach.

1. Introduction. We use the terminology matrix-free to denote Krylov solver
environments where information about the matrix is available only through matrix-
vector computations which do not have access to a fully assembled matrix.

This type of solver environment frequently occurs within the application of popu-
lar Newton-Krylov methods to the solution of nonlinear partial differential equations
[32]. The inner loop computations consist of the application of Krylov methods to a
sequence of associated linear problems. The matrix vector computations required for
the Krylov method are accomplished by applying finite differencing techniques to the
nonlinear functions. The use of finite differencing introduces error into the matrix
vector computations, adding additional complexity to the computations.

The focus of this paper is on the solution of systems of linear algebraic equations

Ax = b(1.1)

by Krylov subspace iterative methods within matrix-free environments where an as-
sembled matrix is not available. We will not address any additional complications
which are induced by the use of finite differencing.

Typically, a preconditioner is needed to achieve acceptable convergence of a
Krylov method. Right preconditioners P transform system (1.1) into the equivalent
system,

AP−1y = b where y = Px.(1.2)

Recent work, see for example, [32], [18], [31], has demonstrated the level of dif-
ficulty in constructing good preconditioners in a Newton-Krylov solver environment.
Not having direct access to the fully assembled underlying matrices prevents the use of
many algebraic preconditioners. In matrix-free environments the emphasis has been
on the use of preconditioners derived from simplifications of the problem for which
explicit matrices can be readily constructed. These types of preconditioners have been
demonstrated to work well on a variety of test problems.

∗This work was supported by the U.S. Department of Energy under project No. W-7405-ENG-36,
the DOE Office of Science, MICS, AMS Program; KC-07-01-01, and by the Grant Agency of the
Academy of Sciences of the Czech Republic under No. A1030103. Part of this work was done during
the visit of the second author at the Los Alamos National Laboratory and its support is warmly
appreciated.

† Los Alamos National Laboratory, Los Alamos, 87545 NM, USA
‡ Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou

věž́ı 2, 18207 Praha 8, Libeň.

1



It is well-known, however, that the use of a good algebraic preconditioner, such as
approximate inverse preconditioning [4] or incomplete and truncated factorizations,
can often accelerate the convergence of a Krylov method. The construction of alge-
braic preconditioners requires direct access to entries in the matrix.

In this paper we explore the feasibility of constructing algebraic preconditioners
when working in a matrix-free solver environment. Specifically, we address the fol-
lowing question. Is it possible, using a few matrix vector computations, to extract
sufficient information about the matrix to construct good algebraic preconditioners
for the original problem?

We note that if the answer to this questions is yes, then there are obvious exten-
sions of these ideas to the use of such preconditioners within sequences of matrices
constructed during either the solution of nonlinear equations or during the solution
of linear time dependent equations. For example, it would be possible to extract de-
tailed information of the first matrix in any such sequence, construct a good algebraic
preconditioner based upon that detailed information and then to reuse some or even
all of the information about that matrix or about the corresponding preconditioner
to construct preconditioners for other matrices in the sequence.

Using the same preconditioner over two or more similar linear solves is accepted
practice [35], [36], [42]. For example, a Jacobian may be reused over several steps
in a modified Newton method [30]. The work in this paper extends that idea to
the possible reuse of simplified patterns for preconditioners in conjunction with the
estimation of partial numerical information about the matrix to construct algebraic
preconditioners for each linear solve.

Definition 1.1. The pattern (or pattern of nonzeros) of a matrix A ∈ Rn×n is

{(i, j)|aij 6= 0}.(1.3)

Algebraic preconditioners which are based on sparsified patterns of the original
system matrix or powers of the matrix have been constructed and used successfully
in a variety of applications, [5], [7], and [26]. The computations do not however need
to be restricted to these types of patterns.

Definition 1.2. A matrix pattern will be said to be a sparsified pattern for a
matrix A if it is obtained by neglecting one or more of the nonzero entries in A.

Typically, a sparsified pattern is obtained by neglecting the matrix entries which
are smaller in magnitude than a given threshold ε relative to the size of other matrix
entries. For example, for each row i, discard any off-diagonal entries in that row which
are smaller in magnitude than one-tenth of the element of maximum magnitude in
that row. Sparsifications arise naturally in some applications. If, for example, the
matrix entries decay rapidly as their distance from the matrix diagonal increases, then
a reasonable sparsification may consist of a few diagonals of the matrix.

Definition 1.3. A matrix pattern will be said to be a prescribed pattern for a
matrix A if the entries in A which correspond to that pattern are to be used.

Prescribed matrix patterns can be used to specify a submatrix or can include
some entries which are zero in the original matrix. For example, a zero entry may
become a nonzero entry in a corresponding factorization used to compute an associated
preconditioner.

In many applications the pattern of nonzero entries in the underlying matrix A
is available. If Equation(1.1) arises from a partial differential equation, this structure
can correspond to the mesh or to the dual mesh connectivity. Therefore, we make the
following assumption.

2



Assumption 1.1. The directed graph structure of the underlying matrix A is
available for use in the construction of the preconditioner.

In Section 2 we review briefly the history of sparse matrix estimation algorithms.
In Section 3 we pose three new partial matrix estimation problems and indicate mod-
ifications of existing graph coloring algorithms to address each problem. For example,
we show how the estimation of diagonally compensated matrices [2] can be accom-
plished without having to explicitly extract the original matrix in advance.

In Section 4 we develop the ideas presented in Problem 3.1 in Section 3, demon-
strating that partial matrix estimation can be used to compute good algebraic pre-
conditioners for a range of problems. In Section 5 we indicate directions for future
research.

2. Matrix estimation using graph coloring. Popular algorithms for the op-
timization of scalar nonlinear differentiable functions employ approximations to the
second derivative matrix, the Hessian matrix. This matrix is the Jacobian matrix
of the corresponding gradient of the criteria function. Matrix estimation algorithms
which are based upon the selection and execution of a set of well-chosen matrix vector
computations were first proposed and used in the optimization literature to obtain
estimates of these typically nonsymmetric Jacobian matrices.

In that application, given a gradient vector function F (x), a specified vector x0,
a direction vector y and a perturbation parameter ε, finite differencing is employed to
estimate the Jacobian matrix-vector multiplications, F ′(x0)y. Specifically,

[F (x0 + εy)− F (x0)]/ε ≈ F ′(x0)y.

Curtis, Powell and Reid, [14] were the first to demonstrate that in many cases the
complete matrix can be estimated using very few functions evaluations. The Curtis,
Powell, Reid (CPR) algorithm uses structural orthogonality of matrix columns to split
the set of all columns into groups in such a way that all of the columns within any
particular group are structurally orthogonal. Two columns are structurally orthogonal
if and only if no row has a nonzero entry in both columns.

The columns within any given group j define a vector dj which is the sum of all
of the coordinate vectors corresponding to all of the rows in this group with nonzero
entries. The successive computation of approximations to F ′(x0)dj for j = 1, . . . , p
yields all of the nonzero entries in the matrix F ′(x0).

Problem 2.1. Given the sparsity pattern of a matrix A ∈ IRn×n find vectors,
Dp ≡ {d1, . . . , dp} dj ∈ IRn, such that for each nonzero entry aij ∈ A there exists a
vector dk ∈ Dp such that (Adk)i = aij(dk)j and the cardinality p of Dp is minimized.

This is an NP-hard problem. Practical algorithms contain heuristics.
Subsequently, Coleman and Moré demonstrated that Problem 2.1 is equivalent to

a graph coloring problem for the associated undirected graph of the matrix AT A. We
denote this graph by G(ATA). This is the column adjacency or column intersection
graph of A. The vertices of this graph correspond to the columns of A and an edge eij

exists whenever the two columns i and j are not structurally orthogonal. Therefore,
Problem 2.1 can be reformulated as Problem 2.2, the graph coloring problem (GCP).
Two vertices i, j are adjacent if there is an edge ei,j connecting them.

Problem 2.2. Graph Coloring Problem (GCP). For A ∈ IRn×n determine the
minimum number of colors sufficient to color all of the vertices of the graph G(ATA)
such that any two adjacent vertices have been assigned different colors.

The CPR algorithm in [14] provides direct estimation of the matrix entries. Later
algorithms relax this requirement. Matrix entries may be obtained by solving a tri-

3



angular system (substitution methods) or even by the solution of a general linear
algebraic system (elimination methods). For additional details see, for example, [37],
[13], [24], and [25]. Matrix estimation algorithms can be designed to exploit any
symmetry of the matrix efficiently, [11], [10].

The number of matrix vector computations required differs from coloring algo-
rithm to coloring algorithm. If matrix vector computations for the matrix A and
for its transpose AT are available, the overall number of matrix vector computations
required for the estimation of the matrix A can be decreased below that required if
only Ax operations are available. [12], [13]. Transpose operations can be achieved,
for example, using the reverse mode of automatic differentiation [20], [19]. Several
authors have proposed partitioning based upon rows of the matrix [23], [22].

For practical computations, it is important to observe that it is not necessary to
form the graph G(ATA) in order to work with it. It is sufficient to work with the
two directed graphs G(A) and G(AT ). Working with these two directed graphs is
equivalent to using the bipartite graph model for A, [8], [17].

The algorithms referenced in this section focus on estimating the entire matrix
A. In the remainder of this paper we concentrate on the partial matrix estimation
problem. The primary objective is to obtain enough information about the matrix to
enable the construction of good algebraic preconditioners for solving Equation(1.1).

In Section 3 we propose three new graph problems associated with partial matrix
estimation.

3. Partial estimation and graph coloring problems. Full estimation of
a given matrix may require a significant number of matrix vector operations. To
construct good algebraic preconditioners we may not need all of the underlying matrix.
Given a matrix A, it may, for example, be sufficient to compute a preconditioner based
upon a sparsification of A or upon some other prescribed pattern S which was obtained
using auxiliary knowledge about the properties of the given problem. We denote the
resulting matrix by Ã. We can then estimate Ã instead of estimating all of A and
compute a preconditioner P based upon Ã. The computed P would then be used in
Equation(1.1).

For some matrices there may be a significant reduction in the numbers of matrix
vector computations required for estimating all of Ã when compared with the number
required for estimating all of A. If for example, the underlying continuous problem is
time dependent, it is possible that portions of the matrix A do not change markedly
with time and thus do not need to be estimated at every time step. In some applica-
tions the diagonal entries of the matrix can be computed readily by other means and
do not have to be included in the matrix estimation problem.

Thus, the focus in this section is on coloring algorithms for partial estimation of a
given matrix A. Related questions can be found in [17] where the terminology partial
coloring problem is used.

We specify a particular starting pattern, P , which for example, could be obtained
by sparsification of the pattern for A. The mask represented by P determines only
which entries of A are involved in the preconditioner construction. The actual precon-
ditioner P is computed from the matrix Ã resulting from the application of this mask
to A. The final pattern of the computed preconditioner will differ typically from that
of Ã. For example an incomplete LU may introduce fill-in. Other preconditioners, for
example, incomplete factorization with dual thresholds (ILUT) [40] and approximate
inverse preconditioners (AINV) [4] may significantly alter the sparsity pattern from
that of Ã.

4



We want to estimate Ã, those entries of A which correspond to the pattern P.
The use of Ã is analogous to the gangster operator which was introduced by Toint [41]
for sparse quasi-Newton methods in numerical optimization (cf. also techniques used
in [3] and [33]). Toint’s operator punched holes in the matrix in locations specified
by a pattern. In contrast we punch holes in the matrix on the complement of the
specified pattern.

We apply a coloring algorithm to Ã to identify a set of vectors D̃p ≡ {d1, . . . , dp}
which would enable the full estimation of Ã, if matrix vector computations for Ã were
available. We cannot, however, work directly with Ã. We only have matrix vector
computations for A. Thus, the estimation of Ã is accomplished using matrix vector
computations for A on the set of vectors D̃p. The influence of the matrix entries in
A\P cannot be eliminated, so we incur an approximation error. For any estimated
entry ãi,j in Ã ,

∑

k∈{(i,k)∈A\P}
|aik|.(3.1)

is an upper bound on the approximation error. Clearly, this error depends strongly
on the sizes of the entries in A which are not in the starting pattern.

This suggests that a sparsification of A may yield a good starting pattern P.
This choice leads to the following estimate of the resulting approximation error.
Equation(3.2) incorporates the effect of the sparsification relative drop tolerance ε
and its application by rows, and the effect of the choice of coloring used in the esti-
mation of Ã.

The approximation error incurred in the estimation of any particular entry, ãij , in
Ã is a function of the number of entries in A\P and of the Ã coloring used. Only those
entries aik in A\P with k ∈ C(j) induce approximation error where C(j) denotes the
coloring group containing the jth column of Ã. Therefore, the actual approximation
error in any estimated ãij satisfies the following coloring dependent upper bound. We
use |Si| to denote the cardinality of the following set

Si ≡ {k|(i, k) ∈ [A\P ∩ C(j)]}

ε max
k
|aik||Si|.(3.2)

3.1. Balanced partial coloring problem(BPCP). In the experiments in Sec-
tion 4 we will attempt to mollify these approximation errors by utilizing a new coloring
algorithm which tries to maintain a small number of groups while attempting to mini-
mize the variation in cardinality between the individual groups (colors). This leads to
Problem 3.1 which we will call the Balanced partial graph coloring problem (BPCP).
Its solution might lead to a better distribution of the errors among the entries in a
partial reconstruction of A. Problem 3.1 is, of course, NP-hard.

Problem 3.1. Balanced partial coloring problem (PBCP). Find a coloring of
the graph G(ÃT Ã) which maximizes the cardinality of the smallest group of columns.
using the minimum number of colors χ.

Standard sequential graph coloring routines can be modified in order to obtain
approximations to a solution of the PBCP problem. For example, if a given column is

5



to be colored and there exists more than one possible choice of color, from the existing
set of candidate colors, we can choose a color which maximizes the cardinality of the
smallest of the existing sets of columns corresponding to the current acceptable choices
of colors for that column. Ties can be broken arbitrarily. More complicated heuristics
could be introduced. For example, in the color selection process, we could take into
account the number of nonzeros of A in A\P which would be picked up by the use of
each of the acceptable existing groups of columns. The experiments in Section 4 used
the first simple heuristic.

3.2. Diagonal partial coloring problem (DPCP). A class of precondition-
ers, suitable for certain symmetric and positive definite matrices, which originated
in [16] (see also [34]) is based on modifying matrix diagonal entries during incom-
plete factorizations to compensate for the dropped entries. In special cases, there is
strong theoretical justification for such modifications [21]. The more general case is
developed in [1] where several practical strategies are presented.

In practical cases, attempting to average the approximation error across the ex-
tracted matrix, as in the solution to the BPCP problem, may yield approximation
errors which are fairly evenly distributed. However, better solutions may be obtained
if the errors can be moved to well-chosen places in the matrix. Therefore, we ask the
following question. Is it possible, in our partial matrix estimation process, to move
all of the approximation error to the matrix diagonal or to positions A\P ? Consider
the following equivalent problem.

Problem 3.2. Diagonal partial coloring problem (DPCP). Find a coloring of the
graph of G(ÃT Ã) which allows the estimation, without any approximation error, of
all of the off-diagonal entries in Ã, using the minimum number of colors χ.

The off-diagonal entries in Ã are the off-diagonal entries in A with locations which
match the pattern P. A solution to Problem 3.2 can be obtained by generating a graph
coloring solution to a particular graph G̃ which is a subgraph of the graph G(AT A).

Definition 3.1. Given a matrix A and a pattern P. For each row i in A, let Gi

denote the clique graph corresponding to the nonzero edges in row i. For each i define
the graph G̃ which is obtained from Gi using the following rules. Let (k, l) denote any
edge in G̃i. If the edge (i, k) 6∈ P and the edge (i, l) 6∈ P then remove edge (k, l) from
G̃i. Similarly, remove edge (i, k) if (i, k) 6∈ P. Let Ĝi denote the modified G̃i. Define
Ĝ as the union of the Ĝi.

We note that edges (k, l) with (i, k) 6∈ P and edge (i, l) 6∈ P correspond to edges
linking entries in row i of A which are in locations which are not part of the pattern
P. The edges (i, k) which are removed correspond to edges linking a diagonal entry
with some entry whose location is not in the pattern P.

Theorem 3.2. The solution of Problem 3.2 is the solution of the general coloring
problem (GCP) for the subgraph Ĝ of G(ATA).

Proof. The proof is an immediate consequence of Definition 3.1.
Removal of the indicated edges enables the possibility of the transfer of all of the

approximation error to the diagonal entries. Moving these entries may also result in
reducing the number of groups required by the coloring. Whether two columns can
actually be merged depends on all the graphs G̃i.

Obtaining a heuristic algorithm for solving DPCP from the standard graph col-
oring implementation is straightforward. Since coloring algorithms for G(ATA) are
naturally based on the implicit representation by the graphs of A and of AT , it is
enough to mark each entry in A according to whether it is in the pattern P or outside
of the pattern P. For example, if the graphs are expressed in compressed sparse row

6



(CSR) storage format [40], then locations can be distinguished by the sign of the col-
umn indices. The coloring algorithm can use these marks during the coloring process
to identify the entries in the graph Ĝ.

Approximate solutions to the DPCP problem can be used to construct special
and useful types of preconditioners. For example the preconditioner can be based
on diagonally compensated reduction [2]. This technique (or, more precisely, a spe-
cial case of this technique) developed for symmetric positive definite (SPD) matrices
consists of moving positive off-diagonal matrix entries to the diagonal to generate an
associated M -matrix. The pattern of nonzeros P from which the preconditioner is
determined consists of the diagonal and the negative entries in A.

If the structure of A and the positions of the positive entries are known, then the
solution to the DPCP problem gives the minimum number of matrix vector compu-
tations required to construct the starting pattern for a preconditioner which is based
upon diagonally compensated sparsification. Given for example a sequence of linear
solves inside of a nonlinear solve where the positive negative pattern in the matrix
does not change during the sequence of solves, a full matrix estimation for the first
matrix in the sequence could provide a suitable pattern for the computation of the
preconditioners for the other solves in the sequence.

In some applications the diagonal entries of A can be computed directly and do
not need to be included in the partial matrix estimation. In this situation a solution
to Problem 3.2, when combined with the known diagonal entries, provides the partial
matrix without any approximation error. If some part of the matrix is known a priori
and does not need to be included in the subsequent partial matrix estimation problem,
the authors in [17] labeled this type of problem a partial coloring problem.

3.3. Equivalent preconditioner by partial matrix estimation. To formu-
late the question raised in this section, assume for the moment that all of the entries
in the matrix A are explicitly available. In the computation of a preconditioner with
a particular sparsity pattern P, it may be the case that not every nonzero in A is
used in corresponding preconditioner computations directly on A.

A =




∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




Fig. 1. An example for Problem 3.3.

Consider the matrix in Fig. 1. If we have a tridiagonal starting pattern P for
this A, and therefore, also a final tridiagonal pattern, the matrix entries a14, a15 and
a25 are not used in the computation of the ILU(0) preconditioner for A.

To be specific consider the following problem statement for computing an incom-
plete LU(0) preconditioner.

Problem 3.3. Given a matrix A and a pattern P find a submatrix Â of A such
that those entries in the ILU(0) factorization of Â which are inside of the pattern P
are identical to the corresponding entries in the factors generated by applying ILU(0)
directly to A.

For Problem 3.3 there are two patterns. The starting pattern P specifies the
pattern for the preconditioner. The second pattern, Â, specifies the pattern to be

7



used in the partial matrix estimation of A. The second pattern identifies the set
of elements in A which are needed to compute the ILU(0) preconditioner with the
sparsity pattern P. A coloring algorithm would be applied to the second pattern.
Entries in A which have no influence on the computation of the ILU(0) preconditioner
are not estimated.

The sparsity pattern of Â can be characterized as follows.
Observation 3.1. The pattern Â which is specified in Problem 3.3 is the mini-

mum pattern satisfying the following conditions. For each (i, j) in this pattern.

For i < j, ∃k > i, (k, j) ∈ P and (k, i) ∈ A
For i > j, ∃k > i, (i, k) ∈ P and (i, k) ∈ A(3.3)

Therefore, given the patterns P and A we can easily generate the required pattern
Â. As before, if A is only available through matrix vector computations, approxima-
tion error will be incurred during the partial estimation of Â.

Since during the factorization, any two structurally symmetric off-diagonals en-
tries will result in modifications to the corresponding diagonal entry, the proposed
pattern corresponding to Â may be useful primarily when A is strongly nonsymmet-
ric or made nonsymmetric by a sparsification, or when some of the entries in the
symmetric part of A, for example, the diagonal entries, are available by other means.

The formation of Â may be considered a pattern extension of P. It would be
possible to continue recursively applying this idea to the pattern for Â.

In Section 4 we present the results of numerical experiments which confirm that
the concept of partial estimation for the purposes of obtaining good algebraic pre-
conditioners is viable.

4. Numerical experiments. In this Section we summarize the results of nu-
merical experiments which are focused on Problem 3.1. The test matrices reside in
two sources. Most of the matrices are from the Tim Davis Collection [15] or its
subcollections. e.g. the Harwell-Boeing package.

Several matrices were generated using the Los Alamos Truchas code [42] which is
a parallel 3D finite volume code with unstructured grids used to simulate solidification
manufacturing processes, most notably metal casting and welding operations. Some
of the Truchas test matrices correspond to approximate Jacobian matrices obtained
by systematic finite differencing of various nonlinear functions. Inside of Truchas,
matrices are accessible only by matrix vector computations and the matrix vector
computations do not work with assembled matrices.

For the purposes of these tests to demonstrate the viability of partial matrix
estimation to generate good algebraic preconditioners, we work with fully assembled
test matrices.

4.1. Test procedure. We first worked directly with each original matrix A. We
used the coloring algorithms to determine the cost of full matrix estimation of A, as
measured by the number of matrix vector computations which are required to fully
estimate the matrix. We then computed either a ILUT, ILU(1), or AINV precondi-
tioner for A, combined that preconditioner with the Krylov iterative method, restarted
Flexible Generalized Minimal Residual, FGMRES(10) [38], and solved Equation(1.1).

Then for each test matrix, we obtained a starting pattern P for a preconditioner
by a sparsification of the original matrix. We labeled the sparsified matrix as Ã. This
corresponds to having applied the starting pattern P of the sparsified matrix to A.

8



We then applied a coloring algorithm to the pattern Ã to determine the cost in
terms of the number of matrix vectors computations required and the corresponding
set of vectors, D̃p required to fully estimate Ã. We then used the vectors D̃p gener-
ated for Ã in matrix vector computations for A as a partial matrix estimation of A
corresponding to the pattern P.

The resulting matrix C = Ã + ∆ where ∆ represents the approximation error
incurred by the use of A and not Ã in the matrix vector computations. The col-
oring algorithm from Section 3.1 was used. We then computed the same type of
preconditioner using C as we did with A, ILUT, ILU(1), or AINV. The computed
preconditioner was then combined with FGMRES(10) to solve Equation(1.1). The
results of these computations are summarized in Table 3.

4.2. Test matrices. The test matrices are listed in Table 1. In Table 1, n is
the size of the matrix, nnz is the number of nonzero entries in the matrix, and Type
indicates the type of application from which the matrix was drawn.

cube1 is a very simple example of a heat conduction problem. gravflow represent
a 2D flow problem driven by gravity. palloy are simple matrices from a discretized
nonlinear simulation of a phase change in a metallic alloy. circuit 1, add20, add32
and memplus are from digital circuit simulations. wang1 is from a semiconductor
simulation. saylr3 and sherman5 are from petroleum reservoir simulations. venkat1
and venkat25 correspond to different time steps in a 2D Euler solver on an unstruc-
tured grid. The raefsky matrices represent various flow problems. lung1 corresponds
to water transport in the lungs and stomach is from a 3D electro-physical model of
the duodenum. For interest we added the nonphysical appu matrix from a NASA
application benchmark.

4.3. Results of tests. Table 3 contains representative results from a series of
experiments as described in Section 4.1. For each test matrix listed, we present the
results of two experiments.

The first set of experiments determined the cost of the full estimation of the
original matrix without any approximation error. The coloring algorithms which
were used had the same functionality as the algorithms and codes in [9] [8].

In the second set of experiments, a starting pattern P was obtained by sparsifi-
cation of A. For each row in A, the position of any nonzero entry in that row of A
which was larger than a fixed fraction of the entry of maximum magnitude in that
row was included in the the pattern P. This fixed fraction was specified by a drop
tolerance. The larger the drop tolerance the sparser the pattern P. The number of
nonzero entries in this pattern is recorded in Table 2 and Table 3 under the heading
Size S. There are, of course, other possibilities for choosing the starting pattern [5]
[26], including specific ones which are application dependent.

The partial estimation of the entries of A, those in Ã, was achieved by applying
the coloring algorithm described in Section 3.1 which approximates a solution to
Problem 3.1. In order to be able to compare total amount of work and numbers of
matrix vector computations required across the two sets of experiments, only results
of those experiments which resulted in approximately the same size preconditioners
are included in Table 3.

For most of the matrices the ILUT preconditioner [39] was computed. For the
four circuit matrices we used the AINV preconditioner [4] which provides superior
performance for these matrices. For some matrices, represented here by venkat25
and raefsky3, standard sparse preconditioning such as ILUT, even allowing many

9



additional entries in each of L and U, did not work. In these cases we used an ILU(1)
preconditioner.

In each case FGMRES(10) was used. The linear systems were preconditioned
from the right, as indicated in Equation(1.2). In each test convergence was declared
on the first iteration where the relative residual norm had decreased to 10−8. Each
right-hand side was computed by multiplying the vector of all ones by the matrix A.
All experiments were performed on an Intel uniprocessor running Linux and compiled
by a Lahey Fortran 95 compiler.

Table 1
Subset of Matrices Used in Tests

Matrix Type n nnz
cube1 Heat Conduction 216 4096

gravflow1 2D Gravitational Flow 750 3580
gravflow2 2D Gravitational Flow 3750 23900

palloy2 Phase Change 29952 203312
palloy3 Phase Change 103200 707272
circuit 1 Digital Circuit 2624 35823
add20 Digital Circuit 2395 17319
add32 Digital Circuit 4960 23884

memplus Digital Circuit 17758 126150
saylr3 Reservoir Simulation 1000 3750

sherman5 Reservoir Simulation 3312 20793
venkat01 2D Euler 62424 1717792
venkat25 2D Euler 62424 1717792
raefsky1 Flow 3242 294276
raefsky3 Flow 21200 1488768
raefsky5 Flow 6316 168658

lung1 Biomedical 1650 7419
stomach Biomedical 213360 3021648
wang1 Semiconductors 2903 19093
appu NASA Benchmark 14000 1853104

Table 2 provides a detailed and instructive examination of the results obtained
across a range of different sparsification drop tolerances and preconditioner parameters
and sizes. This matrix was chosen because of its interesting behavior and also because
the study can be carried out using the one parameter preconditioning AINV algorithm.
The presentation of results, e.g., for the popular ILUT preconditioner, when one
parameter can replace another one, but only partially, seems to be more demanding.

Prior to working with the matrix memplus we removed all of the zero entries.
In Tables 2 and 3 we use MV to denote the number of matrix-vector multiplica-
tions required for the estimation, and ITS to denote the number of preconditioned
Krylov iterations to achieve convergence. Size P denotes the number of nonzeros in
the computed preconditioner. Combining Size P with the number of iterations pro-
vides a reasonable idea about the efficiency of the preconditioner. For the tests which
used partial matrix estimation, we also provide Size S, the size of the starting pat-
tern for the preconditioner, which may play a significant role in the overall observed
convergence.

First, it is clear from the Table 2 that for this matrix and using a starting pattern

10



Table 2
Partial Matrix Estimation for Computing AINV Preconditioners Used in FGMRES(10)

No Sparsification
MV = 353

Size P ITS
221349 16
159570 20
151681 36
147823 43
112129 202
76502 181
76044 220
75359 236
68991 264
63093 272
59547 240
54228 880
53780 1611

Size S = 59984
MV = 19

Size P ITS
131266 43
92270 58
81379 32
69656 84
67042 83
66185 73
63910 170
63722 157
63679 179
63669 178
62147 1121
62108 1257
60986 2019

Size S = 62281
MV = 35

Size P ITS
249209 17
154208 29
146159 48
85443 63
69762 466
68945 536
64261 449
62460 368
62254 285
62247 385
62246 398
61811 967
61797 1155

P obtained by sparsification of A, can yield a large decrease in the number of matrix
vector computations required for the partial matrix estimations.

For matrices generated by discretizing partial differential equations using regular
stencils, it is expected that the decrease in the number of matrix vector computations
will be limited.

Second, we observe that sparsification can provide matrices which are very sparse
but which still produce good preconditioners. In particular, using partial matrix
estimation with approximation errors, we obtain preconditioners which require the
same number of Krylov iterations as the preconditioner computed from the original
matrix A, even though these preconditioners are sparser.

In these tests, the dependence of the number of iterations on the size of the
sparsified pattern, Size S, and on the size of the preconditioner, Size P , is only
roughly monotonic. The number of iterations can decrease even when these sizes
increase. Which of the choices is the best depends on a number of considerations. In
some cases the number of matrix vector computations required is very important. In
other cases, both Size S and and Size P can play a crucial role. This is strongly
application dependent.

Table 3 presents results of experiments with the matrices listed in Table 1. As
indicated earlier, we used three different preconditioners. For each test which used
ILUT or AINV preconditioners we present two results obtained using different precon-
ditioner parameters. On tests which used the ILU(1) preconditioner we present only
one result that represents the behavior for the original and for the partially estimated
matrix. We did not do exhaustive searches for optimal parameter choices but the
results presented in Table 3 seem to be representative. Additional tests were carried
out on other matrices with similar results and are not included here. For example,
the experiments on the matrix venkat50 were very similar to those on venkat25.

Because the partially estimated matrices are sparser than the original matrices,
typically there is less fill-in in the corresponding preconditioners. Therefore, in order
to compare the efficiency of the partial matrix estimation with the full matrix esti-

11



mation, the preconditioner parameters for the partial matrix estimation tests were
selected to generate preconditioners of similar size as those generated in the corre-
sponding cases with full matrix estimation.

Table 3
Partial Matrix Estimation for Preconditioners Used in FGMRES(10)

Full Matrix Estimation Partial Matrix Estimation
Matrix MV Size P ITS MV Size S Size P ITS
cube1 27 3166 20 24 2168 3166 24
cube1 27 3636 17 25 2395 4084 18

gravflow1 7 2849 55 5 2302 2950 44
gravflow1 7 5144 33 5 2302 3010 43
gravflow2 11 14544 72 7 11830 14962 71
gravflow2 11 14244 75 7 11830 15334 53

palloy2 12 156321 5 9 150000 150788 6
palloy2 12 145144 6 9 150000 167887 6
palloy3 12 576185 6 8 509808 539460 7
palloy3 12 731472 6 8 509808 730851 7

sherman5 27 22159 54 19 11298 21187 55
sherman5 27 24848 43 19 12395 23949 43

add20 84 8611 15 5 8239 8031 16
add20 84 10972 14 5 8239 10112 15
add32 15 20092 10 5 16646 20764 11
add32 15 25992 9 5 16646 23071 10
saylr3 9 3337 41 7 3015 3339 41
saylr3 9 4002 24 7 3015 3993 26

circuit 1 2571 27749 9 4 7539 15118 11
circuit 1 2571 32943 8 5 9723 17347 10
wang1 12 5525 213 11 15195 12355 207
wang1 12 12637 127 11 16868 12656 121
lung1 8 5884 28 4 4996 5884 5
lung1 8 5061 126 4 4945 5061 21

stomach 31 320678 38 13 1004437 354390 38
stomach 31 366566 29 25 1479804 368496 29
venkat01 44 72393 160 36 1076995 72106 157
venkat01 44 80249 149 37 1362721 80035 147
raefsky1 140 99344 252 121 157585 92445 233
raefsky1 140 132646 286 89 113726 132646 286
raefsky5 65 22903 4 55 71573 26316 5
raefsky5 65 28785 4 58 88134 28325 5
raefsky3 93 2148096 53 82 960589 1663634 48
venkat25 44 2267958 116 43 1621131 2238075 118

appu 1679 327688 57 706 1718426 327721 57
appu 1679 1075605 57 1476 1718426 1075747 57

The results summarized in Table 3 confirm what we observed in Table 2. In
most cases the preconditioners constructed from a partial matrix estimation require
similar, and sometimes even smaller numbers of Krylov iterations and fewer matrix

12



vector computations.
We note that although ILUT is a popular choice for preconditioners, it does not

keep track of the original matrix pattern when deciding which entries to drop. In some
cases, on difficult problems, a prespecified pattern based preconditioner like ILU(1)
can be better. In other cases, preconditioners like ILUT and AINV provide better
convergence when using partial matrix estimation.

If a matrix is too regular in the size of the matrix entries, there may not be
good parameters for sparsification of the matrix. Selecting a parameter either re-
sulted in dropping a lot of entries (resulting in a weak preconditioner no matter what
parameters were then used) or in not dropping enough entries to decrease the required
number of matrix vector computations.

The actual gain achieved by using preconditioning which is based on partially
estimated matrices depends strongly on the ratio of the time required for the matrix
vector computations as compared to the time required to precondition the system.
There are, however, other considerations. In parallel computations, we may require
or use partial estimation in order to decrease the amount of communication required.
In other cases it may happen that we do not gain much over full estimation when
we compare the sum of the number of matrix vector computations required for the
estimation with the number required by the Krylov method.

Partial matrix estimation provides a mechanism for constructing algebraic pre-
conditioners for systems where an assembled matrix is not available and information
about the matrix can only be gained through matrix vector computations.

5. Conclusions. We have presented three practically motivated graph coloring
problems and tested the viability of one of them. The resulting numerical experiments
confirm that matrix sparsification combined with partial matrix estimation provides a
viable mechanism for constructing algebraic preconditioners for many different types
of systems where an assembled matrix is not available and information about the
matrix can only be gained through matrix vector computations.

This approach will be of importance in the application of Newton-Krylov methods
for solving large systems of nonlinear equations, e.g. from nonlinear partial differential
equations. It will also be of importance in generating practical preconditioners within
time dependent problems where the matrices are slowly changing over intervals of
time.

The idea of partial matrix estimation has potential applications in many other
areas, for example, in optimization problems. The solution of related symmetric graph
coloring problems would contribute to methods for solving sequences of problems in
numerical optimization which estimate Hessian matrices.

It can be shown that the DPCP problem, Problem 3.2, often requires a number of
colors somewhere between those required for the BPCP, Problem 3.1 and the standard
coloring problems. The potential for its use may appear in preconditioning based on
diagonally compensated matrices, and we will explore this possibility.

6. Acknowledgements. The authors would like to thank Doug Kothe for in-
troducing us to the functionality of the Los Alamos Truchas code, Bryan Lally for
teaching the first author how to work with the Truchas code, and both Lally and John
Turner for help with extracting sample test matrices from the code.

13



REFERENCES

[1] M.A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm. Inter-
nat. J. Num. Methods Engng. 20 (1984), pp. 949–966.

[2] O. Axelsson and L. Kolotilina. Diagonally compensated reduction and related preconditioning
methods. Numerical Lin. Algebra Appl. 1 (1994), pp. 155–177.

[3] M.W. Benson. Iterative solution of large-scale linear systems. Master’s Thesis, Lakehead Uni-
versity, Thunder Bay, 1973.

[4] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear
systems. SIAM J. Sci. Comput. 19 (1998), pp. 968–994.

[5] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners.
SIAM J. Sci. Comput. 21 (2000), 1804–1822.

[6] E. Chow, ParaSails User’s Guide, Tech. Report UCRL-MA-137863, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, 2000.

[7] E. Chow, Parallel implementation and practical use of sparse approximate inverses with a priori
sparsity patterns, Int. J. High Perf. Comput. Appl., 15, 56-74, 2001.

[8] T.F. Coleman, B.S. Garbow and J.J. Moré. Software for estimation sparse Jacobian matrices.
ACM Trans. Math. Software 10(1984), 329–345.

[9] T.F. Coleman and J.J. Moré. Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal. 20(1983), 187–209.

[10] T.F. Coleman and J. Cai. The cyclic coloring problem and estimation of sparse Hessian matri-
ces. SIAM J. Discrete Alg. Methods, 7(1986), pp. 221–235.

[11] T.F. Coleman and J.J. Moré. Estimation of sparse Hessian matrices and graph coloring prob-
lems, Math. Programming 28(1984), 243–270.

[12] T.F. Coleman and A. Verma. Structure and efficient Jacobian calculation. in: Computational
Differentiation: Techniques, Applications and Tools, Berz et al. eds., SIAM, Philadelphia,
1996, pp. 149–159.

[13] T.F. Coleman and A. Verma. The efficient computation of sparse Jacobian matrices using
automatic differentiation, SIAM J. Sci. Comput. 19(1998), 1210–1233.

[14] A.R. Curtis, M.J.D. Powell and J.K. Reid. On the estimation of sparse Jacobian matrices, J.
Inst. Math. Appl. 13(1974), 117–119.

[15] T. Davis. Sparse matrix collection. NA Digest 42 (1994), http://www.cise.ufl.edu/
∼davis/sparse/.

[16] T.F. Dupont, R.P. Kendall and H.H. Rachford. An approximate factorization procedure for
solving self-adjoint elliptic difference equations. SIAM J. Numer. Anal. 5 (1968), pp. 559–
573.

[17] A.H. Gebremedhin, F. Manne and A. Pothen. Graph coloring in optimization revisited.
preprint, Department of Informatics, University of Bergen, 2003.

[18] K. Georg. Matrix-free numerical continuation and bifurcation. Numerical Functional Analysis
and Optimization, 22 (2001), pp. 303–320.

[19] A. Griewank. Direct calculation of Newton steps without accumulating Jacobians. in: Large-
Scale Numerical Optimization, T.F. Coleman and Y. Li, eds., SIAM, Philadelphia, 1990,
pp. 115–137.

[20] A. Griewank. Some bounds on complexity of gradients, Jacobians and Hessians. in: Complexity
in Numerical Optimization, P.M. Pardalos, ed., World Scientific Publishing Company,
River Edge, NJ, 1993.

[21] I. Gustafsson. A class of first order factorization methods. BIT, 18 (1978), pp. 142–156.
[22] S. Hossain. On the computation of sparse Jacobian matrices and Newton steps. Technical

report No. 146, Department of Informatics, University of Bergen, 1998.
[23] S. Hossain and T. Steihaug. Graph coloring and the estimation of sparse Jacobian matrices

with segmented columns, Technical report No. 72, Department of Informatics, University
of Bergen, 1997.

[24] S. Hossain and T. Steihaug. Sparsity issues in the computation of Jacobian matrices, Technical
report No. 233, Department of Informatics, University of Bergen, 2002.

[25] S. Hossain and T. Steihaug. Reducing the number of AD passes for computing of a sparse Jaco-
bian matrix. in: Automatic Differentiation: From Simulation to Optimization. G. Corliss,
C. Faure, A. Griewank, L. Hascoët and U. Naumann, eds., Computer and Information
Science, Springer, New York, 2002.

[26] T. Huckle. Approximate sparsity patterns for the inverse of a matrix and preconditioning. in:
Proc.IMACS World Congress 1977, R. Weiss and W. Schönauer, eds., Berlin, 1997.

[27] D. Hysom, A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning.
SIAM J. Sci. Comput. 22 (2001), 2194–2215.

14



[28] D. Hysom, A. Pothen. Efficient parallel computation of ILU(k) preconditioners. Proceedings
Supercomputing ’99, IEEE Computer Society Press, 1999.

[29] G. Karypis, V. Kumar. Parallel threshold-based ILU factorization. Technical Report TR-96-061,
University of Minnesota, 1996.

[30] C.T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, Philadelphia, 2003.
[31] D.E. Keyes. Terascale implicit methods for partial differential equations. Contemporary Math-

ematics 306 (2001), AMS, Providence, pp. 29–84.
[32] D.A.Knoll and D.E. Keyes. Jacobian-free Newton-Krylov methods: A survey of approaches and

applications. J. Computational Physics, to appear, 2003.
[33] L.Yu. Kolotilina, A.A. Nikishin and A. Yu. Yeremin. Factorized sparse approximate inverse

preconditionings. IV: Simple approaches to rising efficiency. Numerical Lin. Algebra Appl.
6 (1999), pp. 515–531.

[34] G. Meurant. Computer Solution of Large Linear Systems. Studies in Mathematics and Its
Applications, North-Holland, 1999.

[35] J.L. Morales and J. Nocedal. Automatic preconditioning by limited memory quasi-Newton
updates. SIAM J. on Optimization, 10 (2000), pp. 1079–1096

[36] J.L. Morales and J. Nocedal. Algorithm 809: PREQN: Fortran 77 preconditioning of the con-
jugate gradient method. ACM Trans. Math. Software 27 (2001), pp. 83–91.

[37] P.E. Plassman. Sparse Jacobian estimation and factorization on a multiprocessor, in: T.F.
Coleman and Y. Li, eds., Large-Scale Optimization, pp. 152–179, SIAM, Philadelphia,
1990.

[38] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Com-
puting, 14 (1993, pp. 461–469.

[39] ILUT: a dual threshold incomplete LU factorization. Numerical Lin. Algebra Appl. 1 (1994),
pp. 387–402.

[40] Y. Saad. Iterative Methods for Sparse Linear Systems PWS Publishing Company, 1996.
[41] P.L. Toint. On sparse and symmetric matrix updating subject to a linear equation. Mathematics

of Computation, 31 (1977), pp. 954–961.
[42] Truchas User’s Guide, Los Alamos National Laboratory, 2003, to appear.

15


