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1 Introduction

The goal of supervised learning is to adjust parameters of a neural network so that it approximates
with a sufficient accuracy a functional relationship between inputs and outputs. Typically, such a
relationship is not known analytically. Instead, a training set is given consisting of a sample of
input/output pairs z = {(xi, yi) ∈ Rd × R, i = 1, . . . , m}. So the task of learning is to find a
function from a hypothesis set formed by functions computable by a given class of neural networks that
approximates the sample of empirical data. A similar task of finding a function fitting to astronomical
data was solved by Gauss and Legendre by the least square method, i.e., minimization of the sum of
squares of errors [4]. The least square method became popular in statistics and engineering and was
also used in many neural network learning algorithms such as backpropagation.

The problem of finding a function from a given parameterized family fitting to empirical data be-
longs to a wider class of inverse problems of determining unknown causes (such as shapes of functions,
forces, shapes of distributions) from known consequences (empirical data). Inverse problems are fun-
damental in various domains of applied science such as medical diagnostics (tomography), seismology
and meteorological forecasting. The dependence of consequences on causes is usually modelled by an
operator, the simplest type of which is linear. For finite dimensional case, the theory of linear inverse
problems is based on Moore-Penrose pseudoinverse of a matrix. Pseidoinverse method was gener-
alized to infinite dimensional Hilbert spaces [8], [3] and combined with regularization introduced by
Tikhonov and Arsenin [16] to develop a theory describing properties of least-squares pseudosolutions,
their stability and their relationship to regularized solutions [3]. Modelling of generalization based on
Tikhonov’s regularization was introduced by Poggio and Girosi [14]. Later Girosi [7] considered reg-
ularization in the domain of a special class of Hilbert spaces, called reproducing kernel Hilbert spaces
(RKHS), the norms on which can play a role of measures of various types of oscillations and thus
enable to model a variety of conceptual data, which has to be added to the empirical ones to guarantee
generalization capability. RKHS, defined by Aronszajn [1], were introduced into interpolation of data
by Parzen [13] and Wahba [17]. For a survey of applications of RKHS to learning see, e.g., [5], [15].

In this paper, we reformulate the problem of minimization of an empirical error functional as a
linear inverse problem by introducing a suitable operator. We describe properties of this operator
(compactness, representation of its adjoint) and apply theory of continuous linear inverse problems in
the domain of infinite dimensional Hilbert spaces. We describe relationship between a pseudosolution
and regularized solutions for variable regularization parameters and analyze improvements of stability
that can be obtained by regularization in terms of condition numbers of Gram matrices and size of
data samples.

2 Minimization of empirical error as an inverse problem

Let Ω be a nonempty set, m a positive integer and z = {(xi, yi) ∈ Ω × R, i = 1, . . . , m} be a
sample of pairs of data. A standard approach to learning from data used , e.g., in backpropagation
is based on minimization of the empirical error functional defined as Ez,V (f) = 1

m

∑m
i=1 V (f(xi), yi),

where V : R2 → [0,∞) satisfying V (y, y) = 0 for all y ∈ R is a loss function that measures how
much is lost when f(x) is computed instead of y. The most common loss function is the square loss
V (f(x), y) = (f(x) − y)2. To simplify notation, we denote by Ez the empirical error functional with
the square loss function, i.e.,

Ez(f) =
1
m

m∑

i=1

(f(xi)− yi)2.

Using a standard terminology from the theory of optimization we denote by (M, Φ) the problem
of minimization of a functional Φ over a set M , which is called a hypothesis set. Every fo ∈ M such
that Φ(fo) = minf∈M Φ(f) is called a solution of the problem (M, Φ). We denote by argmin(M, Φ) =
{fo ∈ M : Φ(fo) = minf∈M Φ(f)} the set of all solutions of (M, Φ).

The problem of minimization of the empirical error functional can be studied in the framework of
theory of inverse problems. Given an operator A : (X, ‖.‖X) → (Y, ‖.‖Y ) between Banach spaces, an
inverse problem defined by A is to find for g ∈ Y some f ∈ X such that A(f) = g [3]. An inverse
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problem is called linear when A is a linear operator. Elements of X are called solutions and elements
of Y data. When Y is finite dimensional, the inverse problem is called a problem with discrete data.

If for every g ∈ Y there exists a unique solution f ∈ X, then the inverse problem is called well-
posed. So for a well-posed inverse problem, there exists a unique inverse operator A−1 : Y → X.
When A is continuous, then by the Banach open map theorem [6, p.141] A−1 is continuous, too. Even
a continuous dependence of solutions on data does not always guarantee robustness against a noise.
As a measure of stability of solutions of an inverse problem is used the condition number defined for
a well-posed problem given by an operator A as cond(A) = ‖A‖ ‖A−1‖.

Often, inverse problems are ill-posed or ill-conditioned. When a solution does not exist, one
can search for best approximate solution fo, called a pseudosolution, defined by ‖A(fo) − g‖Y =
minf∈X ‖A(f) − g‖Y and a normal pseudosolution f+, which is a pseudosolution of the minimal
norm, i.e., ‖f+‖X = min{‖fo‖X : fo ∈ S(g)}, where S(g) is the set of all psedosolutions of the inverse
problem given by an operator A and data g. When for every g ∈ Y there exists a normal pseudosolution
f+, then a pseudoinverse operator A+ : Y → X can be defined as A+(g) = f+. Similarly as in the
case of well-posed problems, the condition number of an operator A with a pseudoinverse A+ is defined
as cond(A) = ‖A‖ ‖A+‖.

For X and Y finite dimensional, the pseudosolution can be described in terms of Moore-Penrose
pseudoinverse of the matrix corresponding to the operator A. The concept of Moore-Penrose pseu-
doinversion has been extended to the case of linear continuous operators between Hilbert spaces [8].
To take advantage of the theory of generalized inversion in Hilbert spaces, we express as an inverse
problem the problem (X, Ez) of minimization of the empirical error Ez over a Hilbert space X of
functions on some set Ω. Let z = (x, y), where x = (x1, . . . , xm) ∈ Ωm and y = (y1, . . . , ym) ∈ Rm, be
a sample defining the empirical error functional Ez. Consider an operator Lx : X →Rm defined as

Lx(f) =
(

f(x1)√
m

, . . . ,
f(xm)√

m

)
.

Then Ez can be represented as
Ez =

∥∥∥∥Lx − y√
m

∥∥∥∥
2

2

, (2.1)

where ‖.‖2 denotes the l2-norm on Rm. Similarly, 〈.〉2 denotes the inner product on Rm, while ‖.‖X

and 〈.〉X denote the norm and the inner product, resp., on X.
Thus the problem of minimization of Ez over X is equivalent to the problem of finding a pseu-

dosolution of the inverse problem given by the operator Lx for the data y√
m

. As the range of the
operator Lx is finite dimensional, this problem belongs to the class of problems with discrete data.
When (X, ‖.‖X) is chosen in such a way that Lx is continuous, we can apply the following theorem
summarizing properties of the pseudosolution of a continuous linear operator stated in [3, pp. 56-60]
and in [8, pp.37-46].

For any operator A : X → Y , we denote by N(A) = {f ∈ X : A(f) = 0} its null space, by
R(A) = {g ∈ Y : (∃f ∈ X)(A(f) = g)} its range, by πR : Y → R(A) the projection of Y onto R(A)
and if A has an adjoint A∗, by πN : Y → N(A∗) the projection of Y onto the null space of A∗. For
any g ∈ Y , we denote S(g) = {fo ∈ X : ‖A(fo)− g‖Y = minf∈X ‖A(f)− g‖Y }.

Theorem 2.1 Let X, Y be Hilbert spaces, A : X → Y be a continuous linear operator with a closed
range, then:
(i) A has an adjoint A∗;
(ii) R(A) is closed and N(A∗)⊕R(A) = Y ;
(iii) there exists a unique continuous linear operator A+ : Y → X such that for every g ∈ Y ,
A+(g) ∈ S(g), ‖A+(g)‖X = minfo∈S(g) ‖fo‖X and S(g) = {A+(g) + f : f ∈ N(A)};
(iv) for every g ∈ Y , AA+(g) = πR(g);
(v) A+ = (A∗A)+A∗ = A∗(AA∗)+.
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3 Minimization of empirical errors over reproducing kernel
Hilbert spaces

To apply Theorem 2.1 to learning from data we need to find proper hypothesis spaces (formed by
functions defined on some sets Ω), on which the operators Lx are continuous for all x = (x1, . . . , xm) ∈
Ωm. (L2(Ω), ‖.‖L2) cannot be used as such a hypothesis space as its elements are not pointwise defined
functions. But even the subspace of the space of continuous functions C(Ω) containing functions with
finite L2-norms is not suitable as some Lx might not be continuous on this space. For example, for
Ω = Rd, L0 defined as L0(f) = f(0) is not bounded and hence it cannot be continuous (L0 maps
the sequence

{
nde−(

‖x‖
n )2

}
of functions with L2-norms equal to 1 to an unbounded sequence of real

numbers). But there exits a large class of Hilbert spaces, on which operators Lx are continuous.
Moreover, norms on spaces from this class can play roles of measures of various types of oscillations
of input/output mappings.

A reproducing kernel Hilbert space RKHS is a Hilbert space formed by functions defined on a
nonempty set Ω such that for every x ∈ Ω the evaluation functional Fx, defined for any f in the
Hilbert space as Fx(f) = f(x), is bounded [1], [2], [5]. RKHS can be elegantly characterized in
terms of kernels, which are symmetric positive semidefinite functions K : Ω × Ω → R, i.e., functions
satisfying for all m, all (w1, . . . , wm) ∈ Rm, and all (x1, . . . , xm) ∈ Ωm,

∑m
i,j=1 wi wj K(xi, xj) ≥ 0. A

kernel is positive definite if
∑m

i,j=1 wiwjK(xi, xj) = 0 for any distinct x1, . . . , xm implies that for all
i = 1, . . . , m, wi = 0 (the terminology is not unified, some authors use the terms positive definite and
strictly positive definite instead of positive semidefinite and positive definite, resp.).

To every RKSH one can associate a unique kernel K : Ω × Ω → R such that for every f in the
RKHS and x ∈ Ω

f(x) = 〈f, Kx〉K , (3.1)

where Kx : Ω →R is defined as Kx(y) = K(x, y) for all y ∈ Ω ( (3.1) is called the reproducing prop-
erty). On the other hand, every kernel K : Ω×Ω →R generates a RKHS denoted by (HK(Ω), ‖.‖K),
which is defined as the completion of the linear span of the set of functions {Kx : x ∈ Ω} with the
inner product defined by 〈Kx, Ky〉K = K(x, y) (see, e.g., [1], [2, p. 81]).

By the Cauchy-Schwartz inequality, for every f ∈ HK(Ω) and x ∈ Ω we have |f(x)| = |〈f,Kx〉K | ≤
‖f‖K

√
K(x, x) ≤ ‖f‖KsK , where sK = supx∈Ω

√
K(x, x). Thus for every kernel K, we have

sup
x∈Ω

|f(x)| ≤ sK‖f‖K . (3.2)

For a kernel K : Ω×Ω → R, a positive integer m and a vector x = (x1, . . . , xm), by K[x] is denoted
the m × m matrix defined as K[x]i,j = K(xi, xj), which is called the Gram matrix of the kernel K
with respect to the vector x.

A paradigmatic example of a kernel is the Gaussian kernel Gρ(u, v) = e−ρ‖u−v‖2 on Rd ×Rd. For
this kernel, the space HGρ(Rd) contains all functions computable by radial-basis function networks
with a fixed width equal to ρ.

The following theorem describes properties of inverse problems defined by operators Lx on RKHSs.

Proposition 3.1 Let K : Ω × Ω → R be a kernel, m be a positive integer, and z = (x, y), where
x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈ Rm, then:
(i) Lx : HK(Ω) →Rm is a Lipschitz continuous compact linear operator with a closed range;
(ii) the adjoint operator Lx

∗ : Rm → HK(Ω) is compact and satisfies for every u ∈ Rm, Lx
∗(u) =

1√
m

∑m
i=1 uiKxi ;

(iii) R(Lx) is closed and N(L∗x)⊕ R(Lx) = Rm and when K is positive definite, then N(Lx
∗) = {0}

and R(Lx) = Rm;
(iv) LxL∗x : Rm → Rm can be represented by the matrix 1

mK[x];
(v) there exists a continuous linear pseudoinverse operator L+

x : Rm → HK(Ω) such that for every
u ∈ Rm, LxL+

x (u) = πR(u) and when K is positive definite, then LxL+
x (u) = u;

(vi) L+
x = (L∗xLx)+L∗x = L∗x(LxL∗x)+.
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Proof. (i) Linearity follows directly from the definition of Lx. By the reproducing property (3.1)
and the relashionship (3.2) between the supremum norm and the norm ‖.‖K , for every f ∈ HK(Ω),
‖Lx(f)‖22 = 1

m

∑m
i=1 f(xi)2 ≤ ‖f‖2Ks2

K . Thus ‖Lx(f)‖2 ≤ sK‖f‖K and so Lx is Lipschitz continuous.
As Rm is finite-dimensional, Lx has closed range and is compact [6, p.188].

(ii) By (i) Lx is compact and as the adjoint of a compact operator is compact [6, p.187], also L∗x
is compact. The representation of L∗x follows from the reproducing property (3.1), which implies that
〈Lx(f), u〉2 = 1√

m

∑m
i=1 uif(xi) = 1√

m
〈f,

∑m
i=1 uiKxi

〉K = 〈f, Lx
∗(u)〉K .

(iii) The first statement follows from Theorem 2.1 (ii). When K is positive definite, then {Kx1 , . . . ,Kxm}
are linearly independent and thus by (ii) N(L∗x) = {0}. Hence R(Lx) = Rm.

(iv) For every u ∈ Rm, LxL∗x(u) = 1
m

∑m
i=1 uiK(xi, xj). So LxL∗x(u) = 1

mK[x]u.
(v) By Theorem 2.1 (iii) and (iv), there exists a pseudoinverse operator L+

x satisfying for all u ∈
Rm, LxL+

x (u) = πR(u). When K is positive definite, then by (iii) R(Lx) = Rm and so LxL∗x(u) = u.
(vi) follows from Theorem 2.1 (v).

The next theorem states properties of the solutions of the problem (HK(Ω), Ez).

Theorem 3.2 Let K : Ω × Ω → R be a kernel, m be a positive integer and z = (x, y), where
x = (x1, . . . , xm) ∈ Ωm, x1, . . . , xm are distinct and y = (y1, . . . , ym) ∈ Rm, then:
(i) L+

x ( y√
m

) ∈ argmin(HK(Ω), Ez), for every fo ∈ argmin(HK(Ω), Ez), ‖L+
x ( y√

m
)‖K ≤ ‖fo‖K and

argmin(HK(Ω), Ez) = L+
x ( y√

m
) + N(Lx);

(ii) for every fo ∈ argmin(HK(Ω), Ez), Lx(fo) = πR( y√
m

) and when K is positive definite, Lx(fo) =
y√
m

;
(iv) minf∈HK(Ω) = 1

m‖πR(y)− y‖22 and when K is positive definite, then minf∈HK(Ω) Ez(f) = 0;
(v) L+

x ( y√
m

) =
∑m

i=1 ciKxi , where c = (c1, . . . , cm) = K[x]+y;
(vi) for every fo ∈ argmin(HK(Ω), Ez),

∑m
i=1 fo(xi)Kxi =

∑m
i=1 yiKxi and when K is positive

definite, then fo interpolates the data z, i.e., fo(xi) = yi for all i = 1, . . . , m.

Proof. (i) and (ii) follows from Theorem 2.1 (iii) and Proposition 3.1 (iii) and (v).
(iii) By the representation (2.1) and by (ii), minf∈HK(Ω) Ez(f) = minf∈HK(Ω) ‖Lx(f) − y√

m
‖22 =

‖LxL+
x ( y√

m
)− y√

m
‖22 = 1

m‖πR(y)−y‖22. As by Proposition 3.1 (iii) for K positive definite, R(Lx) = Rm,
we have minf∈HK(Ω) Ez(f) = 0.

(iv) By Proposition 3.1 (vi) and (iv), L+
x = L∗x(LxL∗x)+, where (LxL∗x)+ can be represented by

the matrix mK[x]+. Thus for every u ∈ Rm, L+
x (u) = 1√

m

∑m
i=1 aiKxi , where a = mK[x]+u. In

particular, L+
x ( y√

m
) =

∑m
i=1 ciKxi , where c = K[x]+y.

(v) By Proposition 3.1 (ii), 1
m

∑m
i=1 fo(xi)Kxi = L∗xLx(fo). On the other hand, by (ii) and Propo-

sition 3.1 (ii), L∗xLx(fo) = L∗xLxL+
x ( y√

m
) = L∗x( y√

m
) = 1

m

∑m
i=1 yiKxi . Hence

∑m
i=1 fo(xi)Kxi =∑m

i=1 yiKxi . When K is positive definite, then {Kx1 , . . . , Kxm} are linearly independent and thus for
all i = 1, . . . ,m, fo(xi) = yi.

So for every kernel K and every sample of empirical data z, there exists a solution of the problem
of minimization of the empirical error functional Ez over the space HK(Ω). The set of such solutions
argmin(HK(Ω), Ez) is a closed convex set of the form

∑m
i=1 ciKxi + N(Lx), where c = K[x]+y and

N(Lx) is the null space of the operator Lx. Minimum of Ez over HK(Ω) is equal to 1
m‖πR(y)− y‖22,

where πR is the projection of Rm onto R(Lx). For K positive definite, the solution interpolates the
data and minimum of Ez over HK(Ω) is equal to zero.

Stability of the solution
∑m

i=1 ciKxi with respect to a small perturbation of the vector of output
data y depends on the condition number of the matrix K[x]. The solution is robust against noise only
when the condition number is close to 1. For Gaussian kernels Gρ, upper bounds on such condition
numbers growing with the dimension d of the input data and the product ρq2, where q is the separation
radius of the input data x (which is defined as q = 1

2 min{‖xi − xj‖2 : i, j = 1, . . . , m, i 6= j}), but
independent on the size m of the data sample, were derived in [12].
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4 Learning with generalization as a regularized inverse prob-
lem

The function
∑m

i=1 ciKxi
with c = K[x]+y guarantees the best fit to the sample of data z that can

be achieved using functions from the space HK(Ω). By choosing as a hypothesis space a RKHS,
we impose a condition on oscillations of potential solutions. The type of such a condition can be
illustrated on convolution kernels K : Rd×Rd →R satisfying K(u, v) = k(u−v) for some k : R → R
with positive Fourier transform k̃. For such kernels ‖f‖2K = 1

(2π)d/2

∫
Rd

f̃(ω)2

k̃(ω)
dω [7].

The restriction on potential solutions can be further strengthened by penalizing the size of the
norm ‖.‖K of the solution. This approach to constraining solutions of ill-posed inverse problems has
been developed in 1960th by several authors. It is called Tikhonov’s regularization due to Tikhonov’s
unifying formulation [16]. Tikhonov’s regularization replaces the problem of minimization of the
functional ‖A(.) − g‖2Y over X with minimization of ‖A(.) − g‖2Y + γ‖.‖2X , where the regularization
parameter γ plays the role of a trade-off between fitting to empirical and conceptual data. The following
theorem summarizes properties of solutions of regularized inverse problems stated in [3, pp.68-70] and
[8, pp.74-76]. By I is denoted the identity operator I : Rd → Rd and by I the corresponding m×m
matrix.

Theorem 4.1 Let X, Y be Hilbert spaces, A : X → Y be a continuous linear operator with a closed
range, then:
(i) for every γ > 0, there exists a unique operator Aγ : Y → X such that for every g ∈ Y , {Aγ(g)} =
argmin(X, ‖A(.)− g‖2Y + γ‖.‖2X);
(ii) for every γ > 0, Aγ = (A∗A + γI)−1A∗ = A∗(AA∗ + γI)−1;
(iii) for every g ∈ Y , eg : (0,∞) → (0,∞) defined as eg(γ) = ‖AAγ(g) − g‖Y is strictly increasing,
limγ→0 eg(γ) = ‖πN (g)‖Y and limγ→∞ eg(γ) = ‖g‖Y ;
(iv) for every g ∈ Y , Eg : (0,∞) → (0,∞) defined as Eg(γ) = ‖Aγ(g)‖X is strictly decreasing,
limγ→0 Eg(γ) = ‖A+(g)‖X and limγ→∞Eg(γ) = 0.

So even if the original inverse problem is ill-posed (it does not have a unique solution), for every
γ > 0, the regularized problem has a unique solution. This is due to uniform convexity of the
functional ‖.‖2Y (see, e.g., [11]). With γ going to zero, the solutions of regularized problem converge
to the pseudosolution with the minimal norm A+(g). The next theorem describes properties of
regularized solutions, their relationship to the pseudosolution and improvement of stability achievable
using regularization for the problem of minimization of Ez over a RKHS.

Theorem 4.2 Let K : Ω×Ω be a kernel, m be a positive integer, z = (x, y), where x = (x1, . . . , xm) ∈
Ωm, x1, . . . , xm are distinct, y = (y1, . . . , ym) ∈ Rm and γ > 0, then:
(i) there exists a unique solution fγ of the problem (HK(Ω), Ez + γ‖.‖2K);
(ii) fγ =

∑m
i=1 ciKxi , where c = (K[x] + γmI)−1y;

(iii) e : (0,∞) → [0,∞) defined as e(γ) = Ez(fγ) is strictly increasing, limγ→∞ e(γ) = 1√
m
‖y‖2 and

limγ→0 e(γ) = ‖πR(y)− y‖2, which is equal to 0 for K positive definite;
(iv) E : (0,∞) → [0,∞) defined as E(γ) = ‖fγ‖K is strictly decreasing, limγ→0 E(γ) = ‖∑m

i=1 aiKxi‖K ,
where a = K[x]+y, and limγ→∞E(γ) = 0;
(v) when K is positive definite, then cond(K[x] + γmI) = 1 + (cond(K[x])−1)λmin

λmin+γm , where λmin is the
minimal eigenvalue of K[x].

Proof. (i) follows from Theorem 4.1(i).
(ii) By Theorem 4.1(ii), fγ = Lγ

x( y√
m

) = L∗x(LxL∗x + γI)−1( y√
m

). So by Proposition 3.1(iv), fγ =∑m
i=1 ciKxi , where c

√
m = ( 1

m (K[x]+γmI)−1 y√
m

= m(K[x]+γmI)−1 y√
m

. Thus c = (K[x]+γmI)−1y.
(iii) and (iv) follow from Theorem 4.1(iii) and (iv).
(v) For every nonsingular m × m matrix A, the condition number cond(A) with respect to the

l2-norm on Rm is equal to |λmax(A)|
|λmin(A)| , where λmax(A), λmin(A) denote the maximal and minimal eigen-

values, resp. of A, and for every positive definite matrix all eigenvalues are positive. So denoting

5



λmax, λmin the maximal and minimal eigenvalues of K[x], we get cond(K[x] + γmI) = λmax+γm
λmin+γm =

1 + λmax−λmin
λmin+γm = 1 + (cond(K[x])−1)λmin

λmin+γm .

Theorem 4.2 (ii) shows that the Representer Theorem [15], [5], [17] on learning from data in RKHS
is a special case of a more general result from theory of regularization of inverse problems in Hilbert
spaces. Note that some direct proofs of the Representer Theorem such as the one in [15] use the
same argument based on annihilation of all directional derivatives as the proof of Theorem 4.1(ii) [8,
pp.74-75], [3, pp.68-69].

Moreover, Theorem 4.2(v) shows how much ill-conditioning of the problem of minimization of Ez

over a RKHS can be improved by regularization. As limγm→∞(1+ cond(K[x]−1)λmin
λmin+γm ) = 1, for sufficiently

large γm, the condition number of the matrix K[x] + γmI is close to 1. The size of γ is limited by
requirements of fitting to the sample of empirical data z, while the size m of the sample can be
enlarged. Thus for a sufficiently large m, regularization improves stability of the solution.

5 Discussion

Using theory of generalized inversion in Hilbert spaces, we have described solutions of the learning task
modelled as the least square problem in the domain of reproducing kernel Hilbert spaces. Such spaces
can be used to model radial-basis networks with various types of radial function with fixed width.
Practical applications of formulas for computing pseudosolution and regularized solutions given in
Theorems 3.2(v) and 4.2(ii) are limited by computational efficiency of iterative methods for solving
systems of linear equations c = K[x]+y and c = (K[x]+γmI)−1y and by the condition numbers of the
matrices K[x] and K[x]+ γmI. We have shown how regularization improves properties of solutions of
the learning task: it guarantees uniqueness and might improve stability when the size of the sample
of data, their separation radius and the kernel defining the hypothesis space are properly chosen.

The requirement of continuity of the operator Lx do not allow to extend our results to the space
of continuous functions on Rd with finite L2-norms. Another limiting factor is strong dependence of
theory of pseudoinversion on Hilbert space setting. Thus most of our results apply only to empirical
error with the square loss function, while, e.g., in the case of absolute value loss, only much weaker
results holding for inverse problems with range in Rm with l1-norm can be used.
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