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THE MULTIDIMENSIONAL POINT PROCESSES

AND THE DISTRIBUTION MAPPING FUNCTION

MARCEL JIŘINA,∗ Institute of Computer Science AS CR

Abstract

The target of this study is to make clear the difference of the distribution

mapping function introduced in 2003 and the classical notion of point processes

theory, the counting function N , Ripley’s K-function, and other two distance

functions, F and G-functions.

We summarize here necessary starting points from the point process theory

using the famous work by Baddeley, a two-volume book of Daley and Vere-

Jones and short paper by Dixon. When dealing with the distribution mapping

function we use up-to-date formulations used in various papers since 2003.

Keywords: Multidimensional data, Correlation dimension, Distance, Metrics.

1. INTRODUCTION

The aim here is to formulate the problem of similarity and dissimilarity of the

distribution mapping function to the counting function, Ripley’s K-function and other

similar functions as F- and G-function. For this purpose this work summarizes some

important notions from the point processes theory.

2. DATA AND POINT PROCESS

2.1. Multivariate data in Rd

Let the data set U of total NU = N(U) < ∞ samples be given. Each sample

xt = {xt1, xt2, . . . xtd}; t = 1, 2, ...NU , xtk ∈ R; k = 1, 2, ..., d corresponds to a point

in d-dimensional metric space M d, where d is the sample space dimension. For each

xt ∈ U a mark, a class function T : Rd → 1, 2, ...C : T (xt) = c; c ∈ 1, 2, ..., C is

introduced. With the class function the set U is decomposed into disjoint classes

∗ Postal address: Pod Vodarenskou vezi 2, 182 07 Praha 8, Czech Republic
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Uc = {xt ∈ U | T (xt) = c};U = ∪Cc=1Uc, Uc ∩ Ub = Ø; c, b ∈ 1, 2, ..., C; c 6= b. Let the

cardinality of set Uc be Nc;
∑C
c=1Nc = NU .

2.2. Point Process

2.2.1. Point process N (Acording to Pawlas [17] and Baudin [3] modified so that d-

dimensional metric space M d instead of d-dimensional Euclidean space Rd is consid-

ered.) Let Bd be the Borel σ-algebra (generated by open sets) in M d and Bd0 ⊆ B d

be the system of all bounded Borel sets. We define the space of locally finite subsets

of M d as

Nlf = { x ⊆ Rd : N(xB) < ∞ ∀ B ∈ B d
0}

where xB = x ∩B and N(y) denotes the cardinality of the set y. Elements of Nlf are

called locally finite point configurations. We equip Nlf with σ-algebra

Nlf = σ { {x ∈ Nlf : N(xB0) = m }, m ∈ N0, B ∈ Bd0 },

where N0 = N ∪ 0 = 0, 1, 2, 3, .... A point process is defined as a random locally finite

point configuration.

Definition 1. A point process X is a measurable mapping X : (ω,F ,P)→ (Nlf ,N1f ),

where (ω,F ,P) is an abstract probability space. Distribution of the point process is a

measure Px on (Nlf ,N1f ) defined by the relation Px(F ) = P(X ∈ F ) = P( { ω ∈ Ω :

X(ω) ∈ F } ), F ∈ N1f .

Definition 2. We say that the point process is finite if n(X) <∞ almost surely.

Note 1. In these definitions only so-called simple point processes are considered, i.e.

point processes where the points of X are mutually distinct. A point process can

be defined more generally as a random locally finite integer-valued measure (allowing

multiple points). Also note that the term ”process” does not imply a dynamic evolution

over time. Spatio-temporal point processes, where both time evolution and spatial

dispersion of points are present, form the topic which is outside the scope of this study.

2.3. Multidimensional point process

Proposition 1. Multidimensional point processes are a special case of random closed

sets [3].
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In higher dimensions, there is no natural ordering of the points, so that there is no

natural analogue of the inter-arrival times nor of the counting process. Instead, the

most useful way to handle a spatial point process is to generalize the interval counts

N(a, b] to the region counts N(B) = number of points falling in B defined for each

bounded closed set B ∈M d [2].

2.4. Counting variables and vacancy indicators

For a point process X we will denote the number of points falling in the set B by

N(B) = n(XB) = n(X ∩B) and refer to the function N as a count function.

Proposition 2. X is a points process if and only if N(B) is a random variable for

any B ∈ Bd0 .

Figure 1: Counting variables N(B) for a spatial point process.

It is often sufficient to study a point process using only the vacancy indicators

V (B) = 1{N(B) = 0} = 1 (there are no points falling in B); 1 is the indicator function

(1 if its operand is true, 0 otherwise).

The counting variables N(B) are natural for exploring additive properties of a point

process. For example, suppose we have two point processes, of ’red’ and ’blue’ points

respectively, and we superimpose them (forming a single point process by discarding
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Figure 2: Vacancy indicators V (B) for a spatial point process.

the colors). If Nred(B) and Nblue(B) are the counting variables for red and blue

points respectively, then the counting variable for the superimposed process is N(B) =

Nred(B) +Nblue(B).

The vacancy indicators V (B) are also natural for exploring geometric and ’mul-

tiplicative’ properties of a point process. If Vred(B) and Vblue(B) are the vacancy

indicators for two point processes, then the vacancy indicator for the superimposed

process is V (B) = Vred(B).Vblue(B). The values of the counting variables N(B) for all

subsets B give us sufficient information to reconstruct completely the positions of all

the points in the process. Indeed, the points of the process are those locations x such

that N(x) > 0. Hence we may as well define a point process as a collection of random

variables N(B) indexed by subsets B.

The counting variables N(B) for different sets B satisfy certain relationships, in-

cluding additivity N(A ∪ B) = N(A) + N(B) whenever A and B are disjoint sets

(A ∩ B = φ) and of course N(φ) = 0. Furthermore, they are continuous in the

sense that, if An is a decreasing sequence of closed, bounded sets (An ⊆ An+1) with

limit
⋂
nAn = A, then we must have N(An) → N(A). These properties must hold

for each realization (see Sect. 2.8) of the point process, or at least, with probability

1. They amount to the requirement that N is a measure (or at least, that with
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probability 1, the values N(B) can be extended to a measure). Formally, then, a point

process may be defined as a random measure in which the values N(B) are nonnegative

integers. Usually it is assumed that the point process is locally finite: N(B) <∞ with

probability 1 for all bounded B ⊂ Rd. That is, any bounded region contains only a

finite number of points, with probability 1.

Definition 3. The point process is simple if

N({x}) ≤ 1 ∀ x ∈ Rd

with probability 1. That is, with probability 1, no two points of the process are

coincident.

A simple point process can be regarded as a random set of points.

The vacancy indicators must satisfy

V (A ∪B) = min { V (A), V (B) }

for any sets A,B, and have other properties analogous to those of the count variables

N(B). Thus, we could alternatively define a simple point process as a random function

V satisfying these properties almost surely.

We use notation X (for a point process when it is considered as a random set) or

Nx (for the counting variables associated with the same point process).

2.5. Finite dimensional distributions

Definition 4. The finite-dimensional distributions or fidis of a point process are

the joint probability distributions of

(N(B1), ..., N(Bm))

for all finite integers m > 0 and all compact B1, B2, ....

Equivalently, the fidis specify the probabilities of all events of the form

N(B1) = k1, ..., N(Bm) = km

involving finitely many regions [2].

Definition 5. The capacity functional of a simple point process X is the functional

T (K) = P(N(K) > 0), K compact.
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2.5.1. Stationarity The concept of a stationary point process plays an important role.

Definition 6. A point process X in Rd is called stationary if, for any fixed vector

v ∈ Rd, the distribution of the shifted point process X + v (obtained by shifting each

point x ∈ X to x + v) is identical to the distribution of X.

Lemma 1. A point process is stationary if and only if its capacity functional is in-

variant under translations, T (K) = T (K + v) for all compact sets K ⊂ Rd and all

v ∈ Rd.

2.5.2. Randomness According to [4] verbatim: ”In a random distribution of a set of

points on a given area, it is assumed that any point has had the same chance of

occurring on any sub-area as any other point, that any sub-area of specified size has

had the same chance of receiving a point as any other sub-area of that size, and that

the placement of each point has not been influenced by that of any other point. Thus,

randomness as here employed is a spatial concept, intimately dependent upon the

boundaries of the space chosen by the investigator. A set of points may be random

with respect to a specified area but decidedly non-random with respect to a larger

space which includes the specified area. For meaningful results, therefore, the areas

selected for investigation should be chosen with care.”

The Poisson point process serves as a canonical model for no interaction between

points (complete spatial randomness) [17].

Proposition 3. A homogeneous Poisson point process is both stationary and isotropic.

2.5.3. The General Finite Point Process Here we suppose only that the following

conditions hold concerning a finite point process.

Conditions ”5.3.1” [5]. (a) The points are located in a complete separable metric

space (c.s.m.s.) χ, as, for example, χ = Rd.

(b) A distribution {pn} (n = 0, 1, ...) is given determining the total number of

points in the population, with
∑∞
n=0 pn = 1.

(c) For each integer n ≥ 1, a probability distribution
∏
n(.) is given on the Borel

sets of χn ≡ χ× ...× χ, and it determines the joint distribution of the positions of the

points of the process, given that their total number is n.

Such a formulation provides a constructive definition that could be used to simulate
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the process: first, generate a random number NU according to the distribution pn (and

note that Pr{0 ≤ NU <∞} = 1), and then, supposing NU = n and excepting the case

n = 0 in which case there is nothing else to do, generate a random vector (x1, ..., xn)

according to the distribution Πn(.).

2.6. Marked Point Processes

There is the idea that the points of a point process might be labeled with extra

information called marks. For example, in a map of the locations of emergency calls,

each point might carry a label stating the time of the call and the nature of the

emergency. A marked point can be formalized as a pair (x,m) where x is the point

location and m is the mark attached to it [1].

Definition 7. A marked point process on a space S with marks in a space M is a

point process Y on S ×M such that Ny(K ×M) < ∞ a.s. for all compact K ⊂ S.

That is, the corresponding projected process (of points without marks) is locally finite.

Note 2. The space of marksM can be very general. It may be a finite set, a continuous

interval of real numbers, or a more complicated space.

2.7. Transforming a Point Process

One pragmatic way to construct a new point process is by transforming or changing

an existing point process. Convenient transformations include mapping, thinning,

superposition, and clustering.

2.8. Repeated realizations of the point process

For point processX let in a regionW there be a finite set of pointsXk = {x1, x2, ...xn},

where xi ∈ M d, i = 1, 2, ..., i.e. Xk ∈ W,k = 1, 2, ... and call it a realization of point

process X in W .

There can appear many realizations Xk, k = 1, 2, ... of process X mutually with

different points and also with a different number of points lying in region W . We call

processes Wk repeated realizations of point process X. As the Xk has arisen from the

same data generating process X, we suppose that this process is statistically stable,

stationary. What we are interested in are some (mostly statistical) chararacteristics

of point process X. Some characteristics can be estimated from a single realization,
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some not. For example, the distance to the nearest point of point x, the G function,

the nearest neighbor function, can be estimated if X is a homogenous process.

3. DISTANCES IN POINT PROCESS

3.1. Empty Space Function F (The Contact Distribution)

One simple way to analyze a point process is in terms of the distances between

points. If X is a point process, let dist(u,X) for u ∈M d denote the shortest distance

from the given location u to the nearest point of X. This is sometimes called the

contact distance. Note the key fact that

dist(u,X) ≤ r if and only if N(b(u, r)) > 0,

where b(u, r) is the ball of radius r centred at x. Since N(b(u, r)) is a random variable

for fixed u and r, the event N(b(u, r)) > 0 is measurable, so the event dist(u,X) ≤ r is

measurable for all r, which implies that the contact distance dist(u,X) is a well-defined

random variable.

Definition 8. Let X be a stationary point process in M d. The contact distribution

function or empty space function F is the cumulative distribution function of the

distance

R = dist(u,X)

from a fixed point u to the nearest point of X. That is

F (r) = P (dist(u,X) ≤ r) (1)

= P (N(b(u, r)) > 0). (2)

Note 3. By stationarity this does not depend on u.

More generally:

Definition 9. Take a convex compact set B 3 0. The contact distribution function

FB is given by

FB(r) = P { N(rB) > 0 } ,

irrespective of P being stationary or not.
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Note 4. a) the ”ball” can be ball in the sense of different distance measures, eventually

metrics; b) the last says the ”local” nature of the F-function dependent on the ”spatial

origin”. Here it is explicitly said that this case is a nonstationarity. Simply, the F-

function is the distribution function of the distance of the (first) nearest neighbor (of

the origin).

3.1.1. Estimation of F-function from data In applications, spatial point pattern data

usually take the form of a finite configuration of points x = x1, ..., xn in a region

(window) W , where Xi ∈ W and where n = n(x) ≥ 0 is not fixed. The data would

often be treated as a realization of a stationary point process X inside W . It is then

important to estimate properties of the process X.

An estimator of F is

F̂ (r) =
1

λd(W )

∫
W

1{dist(u,X) ≤ r}du. (3)

[It means that for given r the integral goes over all points u in W , and for nearest

neighbor, say p, of u, the case when dist(u, p) ≤ r is counted. The largest value found

can be used as estimate of λd(W ). To keep estimate of F truly ”local”, the window W

should be ”small”.]

A practical problem is that, if we only observe X ∩W , the integrand in (3) is not

observable. When u is a point close to the boundary of the window W , the point of

X nearest to u may lie outside W . More precisely, we have dist(u,X) ≤ r if and only

if n(X ∩ b(u, r)) > 0. But data are a realization of X ∩W , so we can only evaluate

n(X ∩W ∩ b(u, r)).

It was once a common mistake to ignore this, and simply to replace X by X ∩W in

(3). But this results in a negatively biased estimator of F . Call the estimator F̂W (r).

Since n(X ∩W ∩ b(u, r)) ≤ n(X ∩ b(u, r)), we have

1 { n(X ∩W ∩ b(u, r)) > 0 } ≤ 1 {n(X ∩ b(u, r)) > 0 } (4)

so that EF̂W (r) ≤ F (r). This is called a bias due to edge effects.

One simple strategy for eliminating the edge effect bias is the border method.

When estimating F (r), we replace W in equation (3) by the erosion

W−r = W
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so that

b(0, r) = x ∈W : dist(X, ∂W ) ≥ r

consisting of all points of W that are at least r units away from the boundary ∂W .

Clearly, u ∈ W−r if and only if b(u, r) ⊂ W . Thus, n(x ∩ b(u, r)) is observable when

u ∈W−r. Thus, we estimate F (r) by

F̂b(r) =
1

λ2(W−r)

∫
W−r1{dist(u, x) ≤ r}du.

This is observable, and by the previous argument, it is an unbiased estimator of F (r).

For a survey of corrections for edge effects, see [1].

Note 5. If W is large enough to contain all points of a realization of X and all nearest

neighbors of points of X then no corrections are needed.

In short - the function F can be estimated from data, and provides a simple summary

of the process. It can be useful in statistical analysis of point patterns. It is the

distribution function of the distance from an arbitrary point of the process, selected

as origin, to the nearest other point, of the process, i.e. the probability of existing

nonzero points in the ball of radius r.

3.2. Nearest Neighbor Function; the G-function

A related concept to the F function is the nearest neighbor distance distribution G.

Definition 10. Let X be a stationary point process in Rd. The nearest neighbor

function G is the cumulative distribution function of the distance

R′ = dist(x,X)

from a typical point (it means a chosen fixed point) x ∈ X to the nearest other point

of X. That is

G(r) = Px(dist(x,X\x) ≤ r) (5)

= Px(N(b(x, r)\x) > 0). (6)

Note 6. This function depends heavily on typical point x. By stationarity, this does

not depend on x.
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3.2.1. G-function estimation for stationary Poisson process. For a stationary Poisson

process in Rd, since Xx ≡ X ∪ {x}, we have

G(r) = Px(dist(x,X\x) ≤ r) (7)

= P(dist(x,X) ≤ r) (8)

In this case G(r) ≡ F (r). If we write for each xi ∈ x

di = dist(xi,x\xi) (9)

bi = dist(xi, ∂W ) (10)

so that di is the observed nearest-neighbor distance and bi is the distance to the

boundary of the observation window, then the estimator can be rewritten

Ĝb(r) =

∑
i 1 {di ≤ r, bi ≥ r }∑

i 1 {bi ≥ r }

G-function estimation. To find the G-function, suppose a given point of the process

at the origin, and consider separately the distance to the nearest point from the

same cluster, and to the nearest point from a different cluster. For any given cluster

structure, there will be a well-defined distribution function tail, Qc1(r) say, for the

probability that within a distance r of some given point of a cluster there is no other

point of the same cluster. The distance to the nearest point in a different cluster,

however, has the same distribution F (r) as in (1). This implies [6] that

1−G(r) = Qc1(r)[1− F (r)],

and hence that J(r) = Qcl(r). Thus, for a stationary Poisson cluster process, J(r) is

equal to the probability that no two points from the same cluster lie within a distance

r of each other, and therefore satisfies 1 ≥ J(r) ↓ (0 ≤ r ↑).

Estimation of G(r) and edge effect corrections. Practical estimation of the F - and

G-functions raises the usual problems of allowing for edge effects and possible biases

arising from nonhomogeneity.

Here we mention only the edge correction for estimates of the nearest-neighbor

distribution proposed by Hanisch in 1984 [5]. This has the advantage of preserving the

monotonicity of the estimate as a function of r. It replaces the naive estimate

Ĝ(r) =
1

N(W )

N(W )∑
k=1

1 { N [(Srxk) = 0] }
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with the form

Ĝ+ h(r) =
`(W )

N(W )

N(W )∑
k=1

1 { N [(Srxk) ∩W = 0] }
`(W−d(xk,∂W ))

(11)

where d(x, ∂W ) is the distance from the point x to the boundary of the observation

region W .

The interpretation is that when a point x is too close to the boundary of W for the

ball Sr(x) to be wholly contained in W , the count from Sr(x) ∩W is inflated by the

weight factor `(W )/`W−d(xk,∂W ).

See also Note 5.

3.3. J-function

An interesting combination of the empty space function F and the nearest neighbor

function G is the following.

Definition 11. Let X be a stationary point process in Rd. The J-function of X is

J(r) =
1−G(r)

1− F (r)

for all r ≥ 0 such that F (r) < 1.

For a uniform Poisson process, we know that F (r) ≡ G(r) and hence J(r) ≡ 1. The

J-function of a stationary process can be written explicitly in terms of the conditional

intensity:

J(r) =
P0(dist(0, X\0) > r)

P0(dist(0, X) > r)
(12)

=
P!0(dist(0, X) > r)

P(dist(0, X) > r)
(13)

=

E
[
β∗(0,X)
β(0) 1{dist(0, X) > r}

]
P(dist(0, X) > r)

(14)

= E
[
β∗(0, X)

β(0)
| dist(0, X) > r

]
. (15)

This representation can often be evaluated, while F and G often cannot be evaluated

explicitly.
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3.3.1. Nearest neighbor distances in marked point processes For nearest-neighbor dis-

tances there are in principle four different options to consider: the distance from a

point of the process with arbitrary mark to the nearest point with arbitrary mark

(giving the nearest-neighbor distribution function Cg(x) for the ground process); the

distance from a point with arbitrary mark at the origin to the nearest neighbor with

mark in a specified set B [giving the distribution G(g,B)(x)]; the distance from a point

at the origin with specified mark κ to the nearest point of the process regardless of its

mark, [giving G(κ,g)(x)]; and the distance from a point with mark κ at the origin to

the nearest point with mark in the subset B ∈ Bκ [giving Gκ,B(x)].

3.4. Ripley’s K-function

3.4.1. Introduction. Ripley’s K and L functions [7] are closely related descriptive statis-

tics for detecting deviations from spatial homogeneity. The K-function is informally

defined as

λK(r) = E(number of points within r of the origin | point at the origin)

The K-function sample-based estimate is defined as

K̂(t) = λ−1
∑
i 6=j

1{dij < t}/n,

where dij is the distance between the ith and jth points in a data set of n points, t

is the search radius, λ is the average density of points (generally estimated as n/A,

where A is the area (volume) of the region containing all points).

For data analysis, the variance stabilized Ripley K function called the L function is

generally used. The sample version of the L function is defined as

L̂(t) =
(
K̂(t)/π

)1/2
.

For approximately homogeneous data, the L function has expected value t and its

variance is approximately constant in t. A common plot is a graph of t− L̂(t) against

t, which will approximately follow the horizontal zero-axis with constant dispersion if

the data follow a homogeneous Poisson process.

The function K(t) does not uniquely define the point processes in the sense that

two different processes can have the same K(t)-function. Also, while K(t) is related

to the nearest-neighbor distribution function G(.), the two functions describe different
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aspects of a point process. In particular, processes with the same K(t)-function may

have different nearest-neighbor distribution functions, G(t), and vice versa. K(t) is

also closely related to the pair correlation function, g(t) [18]. Although it is usual to

assume stationarity, K(t) is interpretable for nonstationary processes because K(t) is

defined in terms of a randomly chosen event. It is also customary to assume isotropy,

i.e. that one unit of distance in the y direction has the same effect as one unit of

distance in the x direction.

3.4.2. The second order measures

Definition 12. For a point process X we define n-th order moment measure by

µ(n)(A) = E
∑

ξ1,...,ξn,∈X

1{(ξ1, ..., ξn) ∈ A}, A ∈ (B d)n.

Definition 13. Let X be a point process with intensity measure µ. We define the

Campbell measure as

C(A) = E
∑
ξ∈X

1{(ξ,X) ∈ A}, A ∈ B d ×N1f .

The reduced Campbell measure is given by

C!(A) = E
∑
ξ∈X

1{(ξ,X ξ) ∈ A}, A ∈ B d ×N1f .

Note 7. Campbell measure is also determined by the relation

C(B × F ) = E1 { X ∈ F } N(B), B ∈ Bd, F ∈ N1f .

We will assume that intensity measure µ is σ-finite (it holds, for example, when it is

locally finite). Then there exists (µ-a.s unique) Radon-Nikodym density ξ 7→ Pξ(F ),

i.e.

C(B × F ) =

∫
B

Pξ(F )µ(dξ).

It can be shown that there exists a regular version Pξ(F ), i.e. a Markov kernel:

(i) for any F ∈ N1fξ 7→ Pξ(F ) is a nonnegative measurable function on Rd,

(ii) for any ξ ∈ Rd, Pξ(·) is a probability measure.
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Definition 14. The distribution Pξ is called Palm distribution of a point process X

at a point ξ. Analogously we can define the distribution P !
ξ called reduced Palm

distribution. It satisfies the relation

C!(B × F ) =

∫
B

P !
ξ(F )µ(dξ).

Note 8. Palm distribution Pξ can be interpreted as the conditional distribution of a

point process given that ξ is a point of the process. For ε > 0 small we have:

P(X ∈ F |N(b(ξ, ε)) > 0) =
P(X ∈ F,N(b(ξ, ε)) > 0)

P(N(b(ξ, ε)) > 0)
≈ E 1{X ∈ F} N(b(ξ, ε))

E N(b(ξ, ε))

=
C(b(ξ, ε)× F )

µ(b(ξ, ε))
≈ Pξ(F ).

(I would write ≈ Pξ (X) here.)

Probability that in point process X [that belongs to F (that is a part of point

configurations algebra)] there is N(b(ξ, ε)) > 0 [the number of points in distance ε

from point ξ] is approximately equal to Palm distribution of process X at point ξ.

Palm distribution of process X at point ξ is approximately equal to the probability

that in point process X [that belongs to F (that is a part of the algebra of point

configurations)] there is N(b(ξ, ε)) > 0 [the number of points in distance ε from

point ξ is positive].

3.4.3. Ripley’s K-function

Definition 15. Let X be a point process with intensity function ρ. Suppose that the

measure

K(B) =
1

| A |
E

∑
ξ,η∈X,ξ 6=η

1 { ξ ∈ A, η − ξ ∈ B }
ρ(ξ)ρ(η)

, B ∈ Bd,

where ξ is a point, and ρ(.) is intensity at (.), does not depend on the choice of A ∈ Bd

with positive and finite Lebesgue measure (0 < |A| < ∞). Then, X is said to be the

second order intensity re-weighted stationary and K is called the second order reduced

moment measure.

Proposition 4. Every stationary point processX is the second order intensity reweighted

stationary.

The reduced second moment measure K carries important information about the

dependence or interaction between different points of the process. For practical data
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analysis, we need some simplification of the measure K. Ripley [39] suggested the

function

K(t) =
1

β
K(b(o, t)), t ≥ 0.

where b(o, t) is a ball with center at o (origin) and radius t, and β is an intensity. Here

it is supposed that any point x ∈ X can be set (moved) to be the origin.

Definition 16. Let X be a second order intensity reweighted stationary point process.

We define the second order reduced moment function or shortly K-function as

K(r) = K(b(o, r)), r ≥ 0,

and L-function as

L(r) = (K(r)/ωd)
1/d, r ≥ 0,

where ωd = |b(o, 1)| is the volume of the d-dimensional unit ball.

Proposition 5. For stationary Poisson point process, K(r) = ωdr
d and L(r) = r.

It was shown [7] that βK(t) is the expected number of points y of the process that

satisfy 0 < ||yx|| ≤ t for a given point x of the process. In other words, βK(t) is the

expected number of points close to a given point of the process, where close means

within a distance t.

Example 1. For a uniform Poisson process in Rd,

K(t) = ωdt
d, t ≥ 0,

where ωd is the volume of the unit ball in Rd.

Lemma 2. (Invariance of K under thinning). Suppose X is a stationary point process,

and Y is obtained from X by random thinning (each point of X is deleted or retained,

independently of other points, with retention probability p). Then, the K-functions of

X and Y are identical.

3.4.4. Relation to near neighbors distribution. There is an important interpretation

when X is a point process rather than a general random measure. We assume that the

process is orderly. Then, the second order measure

M2(A) = E(number point− pairs(xi, xj) : xi ∈ Ud and xj ∈ x1 +A) (16)
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E(rate of occurrence of point− pairs(xi, xj) : xj − xi ∈ A) (17)

Dividing by the mean density m (= intensity = average rate of occurrence) yields an

interpretation of M2 in terms of the expectation measure of the Palm process obtained

by conditioning on the presence of a point at the origin:

E[number of poits xi ∈ A | point at x = 0] = M2(A)/m (18)

In considering the reduced measures M2(A) and related functions, spheres Sr(0) con-

stitute a natural class of sets to use for A in dimension d ≥ 2; define

K2(r) = M2(Sr(0)\0) = M[2](Sr(0)) (19)

the equivalent formulation here being a consequence of orderliness. Ripley [6] intro-

duced this function, though what is now commonly called Ripleys K-function (includ-

ing Ripley, 1981 [19]) is the density-free version

K(r) =
M2(Sr(0)\ 0)

m2
=
K2(r)

m2
(20)

so, since λ = m because of orderliness.

λK(r) = E(number of points within r of the origin|point at the origin) (21)

where on the right-hand side the origin itself is excluded from the count. The function

K(r) is monotonically nondecreasing on its range of definition r > 0 and converges to

0 as r → 0. This function is particularly useful in studying stationary isotropic point

processes because it then provides a succinct summary of the second-order properties

of the process. For a Poisson process, K(r) = `(Sr(0)).

Recall the definition of K(r) in terms of the sphere Sr(o). Noting the interpretation

in (21), we see that the derivative (d/dr)K2(r) = K ′(r) gives the conditional proba-

bility of a point on the surface of a spherical shell of radius r, conditional on a point

at the center of the shell. Consequently, for an isotropic process in R2, the probability

density that a point is located at distance r from a given point of the process and in

the direction 0 equals K ′(r)/(2πr), independent of 0 because of isotropy. In dimension

d ≥ 3, the same quality holds on replacing the denominator 2πr by the surface area of

Sr(0).
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3.4.5. Estimating K-function

K-function estimation from data – eliminating the edge effect. One simple

strategy for eliminating the edge effect bias is the border method, When estimating

K(t), we replace W by the erosion

W−t = W 	 b(0, t) = x ∈W : dist(x, ∂W ) ≥ t

consisting of all points of W that are at least t units away from the boundary ∂W .

Clearly, u ∈W−t if and only if b(u, t) ⊂W . Thus, n(x∩ b(xi, t)\xi) is observable when

xi ∈W−t. Thus, we estimate K(t) by

K̂(t) =

∑
x∈W−t

n(x ∩ (b(x, t)\x)

β̂n(x ∩W−t)
(22)

=

∑n
i=1

∑
j 6=i 1{‖ xi ‖≤ t }

β̂n(x ∩W−t)
(23)

where β̂ is usually n(x)/λ2(W ). This is called the border method of edge correction.

There are more sophisticated edge corrections with better performance.

Estimation of K-Functions for Multivariate Spatial Patterns The general-

ization of K(t) to more than one type of point (a multivariate spatial point process)

is

Kij(t) = λ−1j E [number of type j events within distance t of a randomly chosen

type i event].

When there are g types of events, there are g2 K functions, K11(t), K12(t), ...,K1g(t),

K21(t), ..., K2g(t), ..., Kgg(t). It is helpful to distinguish the cross-K functions Kij(t),

where i 6= j from the self-K functions, Kii(t). Analytical expressions for Kij(t) are

known for various multivariate points. Various edge corrections have been suggested;

one common example is the extension of Ripley’s estimator:

K̂ij(t) = (λ̂iλ̂jA)−1
∑
k

∑
l

w(ik, jl)I(dik,jl < t)

where w(ik, jl) is the fraction of the circumference of a circle centered at the kth

location of process i with radius dik,jl that lies inside the study region, and A is the

area of the study region.
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If the spatial process is stationary, then corresponding pairs of cross-K functions

are equal, i.e. K12(t) = K21(t) and Kij(t) = Kji(t). When edge corrections are used,

then K̂ij(t) and K̂ji(t) are positively correlated but not equal. This suggests the use of

a more efficient estimator, K ∗ij (t) = [λ̂jK̂ij(t) + λ̂iK̂ji(t)]/(λ̂i + λ̂j), although other

linear combinations of K̂ij(t) and K̂ji(t) may have even smaller variance.

4. RESUME

4.1. Implicit assumptions

1. Where not given explicitly, the center is at point 0 = (0, 0, ..., 0) and this point

is not a point of the point process X. More generally, any fixed point outside

the point process X (eventually inside the point process but not counted) is

considered.

2. We consider also a finite point process of points ξ = {ξ1, ξ2, . . . , ξn} ∈ Xξ ⊂M d.

3. Distance does not necessarily mean the Euclidean distance, but some assertions

above follow from implicit Euclidian metric assumption.

4.2. Summary of main properties

4.2.1. Counting function The counting variable N(B) is the number of points in set

B. N(Sr) is the number of points in the ball of radius r (implicitly with the center at

the origin, or at an arbitrary fixed point).

The vacancy indicator V (B) = 1{N(B) = 0} = 1, there are no points falling in B

[else it is zero].

4.2.2. F-function The Empty Space Function, The Contact Distribution is the cumu-

lative distribution function of the distance from a randomly selected point u /∈ X to

the first nearest point of X.

1− F (r) = PN { (Sr) = 0 }.

4.2.3. G-function The Nearest Neighbor Function, the probability of existing nonzero

points in the ball of radius r and with the center in an arbitrary fixed point, the
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distribution function of the distance from an arbitrary fixed point x (selected as origin)

to the nearest other point of X.

G(r) = P { N(Sr\0) > 0 }

G(r) = P x(dist(x,X) ≤ r)

G(r) = P x(N(b(x, r)\x) > 0)

G(r)→ 1 for r →∞ .

In Xξ get for many (m) points the distances to nearest neighbors of Xξ, ri, i = 1, 2, ...m.

Then

Ĝ(r) =
1

m

∑
1 { r > ri }.

Empirically one cannot get G from points of X only because for one sample of process

X and one fixed point xi we have one nearest point with one distance that cannot yield

any statistics.

4.2.4. J-function It is the ratio of the two survivor functions

J(r) =
1−G(r)

1− F (r)
if F (r) < 1,

J(r) = 1 if F (r) = 1.

Alternatively

J(r) =
P0 { N(sr, 0) = 0 }
P { N(Sr) = 0 }

.

For Poisson process J(r) = 1.

4.2.5. K-function This function can be defined as

λK(r) = E(number of points within r of the origin | point at the origin).

Note that any randomly selected point can become the origin. In Xξ get for many (m)

points the distances to nearest neighbors of Xξ, ri, i = 1, 2,. . . m. Then

λK̂(r) = ˆλK(r) = Empoints

∑
all neighbors

1 { r > ri }.

More concretely

λK̂(r) = ˆλK(r) =
1

m

m∑
i=1

n∑
j=1

1 { r > ri }. (24)
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4.2.6. Correlation integral, pair correlation function In Xξ get the distances of all pairs

of points Xξ, rk, k = 1, 2, ..., n(n− 1)/2. Then [9]

ĈI (r) =
2

n(n− 1)

n∑
i=1

n∑
j>i

1 { r > |ri − rj | }.

The correlation integral is also called the ”pair correlation function” and it is shown

[18] that it is the conditional probability density of finding a particle at r, given that

there is a particle at the origin. Thus, CI(r) provides a measure of local spatial ordering.

5. DISTRIBUTION MAPPING FUNCTION

In this part we consider point process Xξ.

5.1. Density

Let W ⊂ Rd and

a(r,W ) =
∑

1{ri < r}. (25)

An average of this quantity represents the relative frequency, or probability density of

some particle being situated near r [18]. In other words, Ea(r) = ρ(r) is simply the

mean density at position r:

p (r) = E
∑
i

1{ri < r}.

5.2. Definitions

5.2.1. Mapping the distribution Let us have an example of a ball in an n-dimensional

space containing uniformly distributed points over its volume. Let us divide the ball

on concentric “peels” of the same volume. Using the formula ri = d
√
Vi/Sd, which

is, in fact, inverted formula for volume Vi of d-dimensional ball of radius ri, we

obtain a quite interesting succession of radii corresponding to the individual volumes

- peels. The symbol Sd denotes the volume of a ball with unit radius in Ed; note

S3 = 4/3π. A mapping between the mean density ρi in an i-th peel and its radius ri

is ρi = p(ri); p(ri) is the mean probability density in the i-th ball peel with radius ri.

The probability distribution of points in the neighborhood of a given point x is thus
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simplified to a function p(ri) of a scalar variable ri. We call this function a probability

distribution mapping function D(x, r) and its partial differentiation with respect to r

the distribution density mapping function d(x, r). Functions D(x, r) and d(x, r) for

x fixed are, in fact, the probability distribution function and the probability density

function of variable r, i.e. of distances of all points from the given point x. More exact

definitions follow [15].

Definition 17. The probability distribution mapping function D(x, r) of the given

point x is the function D(x, r) =
∫

B(x,r)

p(z)dz, where r is the distance from the given

point and B(x, r) is ball with center x and radius r.

Definition 18. Let there be a finite point processX with total n points. The empirical

probability distribution mapping function of the given point x is function

D̂(x, r) = N(B(x, r))/n, (26)

where r is the distance from the given point and B(x, r) is ball with center x and

radius r.

Note 9. This definition transforms the counting variable N over the ball B(x, r) to a

distribution function of its radius r.

Definition 19. The distribution density mapping function d(x, r) of the given point

x is function d(x, r) = ∂
∂rD(x, r), where D(x, r) is a probability distribution mapping

function of the given point x and radius r.

Note 10. When it is necessary (in the marked point processes) to differentiate class

of point in distance r from point x, we write D(x, r, c) or d(x, r, c).

In Xξ get the distances from a fixed point to all other points of Xξ, ri, i = 1, 2, ...n−1.

Then

D̂ (r) =
1

n− 1

∑
1 { r > ri} .

Theorem 1. The correlation integral is the mean of distribution mapping functions,

ĈI (r) =
1

n

n∑
i=1

1

n− 1

n∑
j=1;j 6=i

1 { r > ri } =
1

n

n∑
i=1

D(ri, r).

Proof. For proof see [14].
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Corollary. In point process Xξ the λK is the mean of m distribution mapping

functions D(ri, r)

λK̂ (r) = ˆλK (r) =
1

m

m∑
i=1

nD(ri, r) .

Proof. Compare this relation with (24).

5.3. Comparisons of the D-function with F,G, and K-functions in Xξ

1. The D(x, r) is closely related to the counting function N(B) over balls with

center at x, see (26).

2. The D(x, r) is reminiscent of the F -function (the contact distribution) in that

both (D and F ) go farther than to the first nearest neighbor. The F -function

does not proceed from a fixed point but from an arbitrary point, i.e. probability

is given by probabilities from ALL points of Xξ.

3. The D(x, r) is also suggestive of the G-function (The Nearest Neighbor Function,

F(r) = Px(dist(x,X) ≤ r)) in the sense that it goes from a fixed point; but goes

farther than to the first nearest neighbor only as the G-function does.

4. Both (D and K) go farther than to the first nearest neighbor but the K-function

is constructed from all points (so that each point can be moved to the origin);

the D(x, r) relates to a single fixed point x. This comparison is analogous to

comparison functions F and G.

5. Moreover, D(x, r) is a component of the K-function according to the corollary

above.

It follows from this that D(., .) differs from the N,F,G, and K-functions common

in theory of multidimensional point processes.

Using notation above, one can write

D (x, r) = P (dist(x,Xξ \ x) ≤ r).

Note 11. The dist means any distance measure or metrics that can be used for

measuring distances in Rd. There is no distance measure or metrics assumed in advance

or implicitly, and thus generally when building the D/function we can use distance
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measures as we like. This ”as we like” is limited by the necessity not to get bizzare

results. If the distance measure was semimetrics and continuous, the ”embedding

space” is a topological space [8] with all its advantages but also with disdvatages and

limitations not being the Euclidean metric space as commonly assumed in the point

processes theory.
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[14] Jiřina, M. and Jiřina Jr., M. (2013). ”Utilization of singularity exponent in nearest neighbor

based classifier”, Journal of Classification, Vol. 30, No. 1, pp. 3–29.
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6. APPENDIX – MOMENT MEASURES, CAMPBELL MEASURE,

AND PALM DISTRIBUTION

(According to [17])

6.1. Moment measures

Definition 20. For a point process X we define n-th order moment measure by

µ(n)(A) = E
∑

ξ1,...,ξn∈X

1[(ξ1, ..., ξn) ∈ A]A ∈ (Bd)n

and n-th order factorial moment measure by

α(n)(A) = E
∑

6=ξ1,...,ξn∈X

1[(ξ1, ..., ξn) ∈ A]A ∈ (Bd)n,

where
∑6=
ξ1,...,ξn∈X means that the summation goes over the n-tuples of mutually

distinct points ξ1, ..., ξn.

Remark 1. First order moment measures coincide with intensity measure: µ(1)(A) =

α(1)(A) = µ(A) for any A ∈ Bd. For n = 2 and A = B1 ×B2 ∈ Bd × Bd we have

µ(2)(B1 ×B2) = E
∑
ξ,η∈X

1[ξ∈B1η∈B2] (27)

= EN(B1)N(B2) (28)

= E

6=∑
ξ,η∈X

1[ξ∈B1η∈B2] + E
∑
ξ,∈X

1[ξ∈B1∩B2] (29)

= α(2)(B1 ×B2) + µ(B1 ∩B2). (30)

Hence,

α(2)(B1 ×B2) = EN(Bi)N(B2)− EN(B1 ∩B2).

Similarly, factorial moment measure is related to the factorial moment of the number

of points in a given region,

α(n)(B × ...B) = E[N(B)(N(B)− 1)...(N(B)− n+ 1)]. (31)
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6.2. Campbell measure

Theorem 2. (Campbell theorem) For a point process X and arbitrary nonnegative

measurable function h we have

E
∑

ξ1,...,ξn∈X

h(ξ1, ..., ξn) =

∫
...

∫
h(ξ1, ..., ξn)µ(n)(dξ1, ..., dξn)

and

E
∑

ξ1,...,ξn∈X,ξk 6=ξj ,k 6=j

h(ξ1, ..., ξn) =

∫
...

∫
h(ξ1, ..., ξn)α(n)(dξ1, ..., dξn)

Remark 2. If intensity function ρ and second order product density ρ(2) exist, we get

from Theorem 7 the following useful formulas

E
∑
ξ∈X

h(ξ) =

∫
h(ξ)ρ(ξ)dξ

for any measurable function h : Rd → R+ and

E
∑

ξ,η∈X,ξ 6=η

h(ξ, η) =

∫ ∫
h(ξ, η)ρ(2)(ξ, η)dξdη

for any measurable function h : Rd × Rd + R+.

Definition 21. Let X be a point process with intensity measure µ. We define the

Campbell measure as

C(A) = E
∑
ξ∈X

1 { (ξ,X) ∈ A }, A ∈ Bd ×N1f .

The reduced Campbell measure is given by

Cd(A) = E
∑
ξ

∈ 1 { (ξ,X ξ) ∈ A } , A ∈ Bd ×N1f .

Remark 3. Campbell measure is also determined by the relation

C(B × F ) = E 1 {X ∈ F } N(B), B ∈ Bd, F ∈ N1f .
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Note 12. µ(·) = C(· × N1f ). For every B ∈ Bd and F ∈ N1f , µ(B) = 0 implies

C(B×F ) = 0. It means that the measure C(·×F ) is absolutely continuous with respect

to µ. We will assume that intensity measure µ is σ-finite (it holds, for example, when it

is locally finite). Then there exists (µ-a.s. unique) Radon-Nikodym density ξ 7→ Pξ(F ),

i.e.

C(B × F ) =

∫
B

Pξ(F )µ(dξ).

It can be shown that there exists a regular version Pξ(F ), i.e. a Markov kernel:

(i) for any F ∈ N1f , ξ ∈7→ Pξ(F ) is a nonnegative measurable function on Rd,

(ii) for any ξ ∈ Rd, Pξ(·) is a probability measure.

6.3. Palm distribution

In the study of stochastic processes, Palm calculus, named after Swedish teletrafficist

Conny Palm, is the study of the relationship between probabilities conditioned on a

specified event and time average probabilities. A Palm probability, or Palm expecta-

tion, is a probability or expectation conditioned on a specified event occurring at time

0.

Definition 22. The distribution Pξ is called Palm distribution of a point process X

at a point ξ. Analogously, we can define the distribution P !
ξ called reduced Palm

distribution. It satisfies the relation

C!(B × F ) =

∫
B

P !
ξ(F )µ(dξ).

Remark 4. Palm distribution Pξ can be interpreted as the conditional distribution of

a point process given that ξ is a point of the process. For ε0 small we have:

P(X ∈ F | N(b(ξ, ε)) > 0) =
P(X ∈ F,N(b(ξ, ε)) > 0)

P(N(b(ξ, ε)) > 0)
≈ E1{X ∈ F}N(b(ξ, ε))

EN(b(ξ, ε))
=(32)

=
C(b(ξ, ε))

µ(b(ξ, ε)) ≈ Pξ(F )
, (33)

where b(ξε) denotes a ball with centre ξ and radius ε. Similarly P !
ξ can be interpreted

as the conditional distribution of a point process given that ξ is a point of the process

that is not itself counted.
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Theorem 3. (Slivnyak/Mecke) Let X be a Poisson point process with intensity mea-

sure µ. Then

E
∑
ξ∈X

h(ξ,X { ξ } ) =

∫
Rd

Eh(ξ,X)µ(dξ)

for any nonnegative measurable function h on Rd ×N1f .

Theorem 4. For a stationary point process X with intensity ρ and for any nonnegative

measurable function h,

E
∑
ξ∈X

h(ξ,X) = ρ

∫
Rd

∫
N1r

h(ξ, x)Pξ(dx)dξ = ρ

∫
Rd

∫
N1f

h(ξ, x+ ξ)P0(dx)dξ

and

E
∑
ξ∈X

h(ξ,X( xi)) = ρ

∫
Rd

∫
N1r

h(ξ, x)Pξ(dx)dξ = ρ

∫
Rd

∫
N1f

h(ξ, x+ ξ)P !
0(dx)dξ

where x+ ξ = η + ξ : η ∈ x.

Definition 23. If both intensity function ρ and second order product density ρ(2) exist,

we define the pair correlation function by

g(ξ, η) =
ρ(2)

(ξ, η)ρ(ξ)ρ(η)
, ξ, η ∈ Rd : ρ(ξ) > 0.

If a point process is stationary, then ξ(2)(ξ, η) = ρ(2)(ξη, o) = ρ(2)(ξη) and g(ξ, η) =

ρ(2)(ξ−η)
ρ2 = g(ξ − η) are functions of difference ξ − η. If X is moreover inotropic, then

ρ(2)(ξ, η) = (||ξ − η||) and g(ξ, η) = g(‖ ξ − η ‖) are functions of distance between ξ

and η. Note that we abuse notation and denote by ρ(2) and g also the corresponding

functions of ξ − η or ‖ ξ − η ‖.

Remark 5. Pair correlation function can take values in [0,∞). Hence, the name

”correlation function” is slightly misleading.
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