
Causation Entropy Principle and Bayesian Inference to Causal Networks

Coufal, David
2015

Dostupný z http://www.nusl.cz/ntk/nusl-181053

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 09.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-181053
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Causation Entropy Principle and
Bayesian Inference to Causal
Networks

David Coufal and Jaroslav Hlinka

Technical report No. 1219

August 2016, February 2015

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Causation Entropy Principle and
Bayesian Inference to Causal
Networks

David Coufal and Jaroslav Hlinka1

Technical report No. 1219

August 2016, February 2015

Abstract:

The paper discusses the recent paper by Sun at al. [Sun 2014]. We review the causation entropy principle
for identification in causal networks and propose a Bayesian approach to inference in these networks. The
main purpose of the paper is to provide software implementation of both methodologies and discuss their
computational effectivity.

1Department of Nonlinear Dynamics and Complex Systems of the Institute of Computer Science AS CR, Pod
Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic. E-mail: david.coufal@cs.cas.cz.

1 Causation Entropy Principle

The causation entropy principle is a methodology for identification in causal networks. It draws on empirical
data and employs techniques from theory of information. Namely, it rests on the notion of mutual infor-
mation and on a decrease of mutual information due to conditioning. The decrease of mutual information
indicates an influence of the conditioning variable on the distribution of a target variable, i.e., the presence
of a causal link between the variables.

Mutual information between two multivariate random variables X and Y (conditioned on Z) is a
measure of the deviation from independence betweenX and Y (conditioned on Z). Formally, the definition
writes

I(X;Y |Z) = h(X|Z)− h(X|Y ,Z) = h(Y |Z)− h(Y |X,Z)

where h(·|·) are the conditional entropies specified as

h(X|Z) = −
∫

p(x, z) log p(x|z) dxdz

h(X|Y ,Z) = −
∫

p(x,y, z) log p(x|y, z) dxdydz

A causal network is represented by a multivariate stochastic process {Xt = (X
(1)
t , . . . , X

(d)
t)′, t ∈ N},

Xt ∈ Rd, d ∈ N. The components X
(i)
t , i = 1, . . . , d of Xt are called nodes of the network. The network

dynamics is considered in the form

X
(i)
t = fi(Ai1X

(1)
t−1, . . . , AijX

(j)
t−1, . . . , AidX

(d)
t−1), ξ

(i)
t), i = 1, . . . , d

where Aij ∈ R are the elements of the adjacency matrix A of the network, i.e., A = [Aij], ξ
(i)
t is a random

fluctuation of the i-th node at time t; and fi : Rd+1 → R models the functional dependence of the i-th
node at time t on past states of other nodes with Aij ̸= 0.

Based on the adjacency matrix A, the matrix of causal links is established as

Ac
ij =

{
1 if Aij ̸= 0
0 otherwise

.

The matrix determines the sets of the causal neighbors of each node i, Ni = {j ∈ {1, . . . , d}|Ac
ij = 1}.

Thus, Ac
ij = 1 iff j ∈ Ni.

The sets of causal neighbors Ni, i = 1, . . . , d can be identified on the basis of causation entropies. The
causation entropy Cj→i|K from the node j to the node i conditioned on the set of nodes K ⊆ {1, . . . , d}
is the non-negative number specified as

Cj→i|K = lim
t→∞

[h(X
(i)
t+1|X

(k∈K)
t)− h(X

(i)
t+1|X

(k∈K)
t , X

(j)
t)].

The causation entropy is a generalization of the transfer entropy Ti→j ,

Tj→i = Cj→i|i = lim
t→∞

[h(X
(i)
t+1|X

(i)
t)− h(X

(i)
t+1|X

(i)
t , X

(j)
t)].

Under the causation entropy principle, the non-zero values of Cj→i|K are used to identify the Ni sets.
Let the stochastic process {Xt, t ∈ N} be temporally and spatially Markov, i.e.,

p(Xt|Xt−1,Xt−2, . . .) = p(Xt|Xt−1),

p(X
(i)
t |Xt−1) = p(X

(i)
t |X

(Ni)
t−1),

then for each i the set K that contains Ni is identified by the algorithm presented in Table 1 ([Sun 2014],
Algorithm 2.1 adapted for I = {i}, V = {1, . . . , d}).

2

01. K ← ∅; x←∞; p← ∅;
02. while x > 0,

03. K ← K ∪ {p};
04. for j ∈ (V \K),

05. xj ← Cj→i|K ;

06. end;

07. x← maxj∈(V \K){xj};
08. p← argmaxj∈(V \K){xj};
09. end;

Table 1.1: Identification of causal neighbors.

The MATLAB implementation of the algorithm reads as follows:

1 function [K] = sun21q(I,X,F0,F1)

2 d=size(F0,1);

3 K=[];x=Inf;p=[];Cq=1;

4 V=[1:d];

5 c=0;

6 while x>Cq

7 c=c+1;

8 K=union(K,p);

9 sdVK=setdiff(V,K);

10 xj=zeros(1,d);

11 xq=zeros(1,d);

12 for j=sdVK,

13 [xjC]=sunC([j],I,K,F0,F1);

14 xj(j)=xjC;

15 xq(j)=permC([j],I,K,X,100);

16 end;

17 [xj; xq];

18 [x,p] = max(xj);

19 Cq=xq(p);

20 end

21 end

In the script, at line 13, there is called the function sunC.m. This function computes the causation
entropy Cj→i|K . On line 15, the function permC.m realizes the permutation test proposed by Sun on
pp. 19-20. The test is used to decide if the computed causation entropy devises significantly from zero.
The code of the function is presented in the next section.

2 Gaussian process

As a benchmark, the Gaussian process is investigated because it allows to establish analytical solutions.
The model writes

Xt = AXt−1 + ξt, t ∈ N,X0 = 0d. (2.1)

In the formula, A is a matrix and the task is to identify non-zero elements of A provided that ξt form an

i.i.d. normally distributed random variables, i.e., ξ
(i)
t ∼ N(0, σi), σi > 0 and therefore ξt ∼ N(0, S) where

S is the covariance matrix with entries Sij = δijσ
2
i .

3

Let ϕ(τ, t), τ ∈ N0, t ∈ N be the matrices of shifted covariances with entries

ϕ(τ, t)ij = cov(X
(i)
t+τ , X

(j)
t).

It follows from (2.1), that Xt ∼ N(0,Φ(0, t)) where

Φ(0, t) =
t∑

k=0

AkS(Ak)′.

A sufficient condition for existence of limt→∞ ϕ(0, t) = Φ(0) is stability of the matrix A. The matrix A is
stable if its spectral norm ρA is lower than 1. ρA is defined as the maximum from the absolute values of
the eigenvalues of A.

If Φ(0) =
∑∞

k=0 A
kS(Ak)′ exists, it satisfies the equation

AΦ(0)A′ − Φ(0) + S = 0

which is equivalent to
(Id2 −A⊗A)vec(S) = vec(S)

where ⊗ is the Kronecker product and vec(·) transforms a matrix to the column vector. In MATLAB the
above computes as

reshape((eye(d^2)-kron(A,A))\S(:),[d,d])

The matrix Φ(τ) = Φ(τ, t) for each t satisfies the relation

Φ(τ) = AΦ(τ − 1) = A2Φ(τ − 2) = · · · = AτΦ(0),

i.e., namely Φ(1) = AΦ(0).
Analytical computation of matrices Φ(0) and Φ(1) is implemented as follows:

1 function [F0,F1] = sunF(A,S)

2 d=size(A,1);

3 F0=reshape((eye(d^2)-kron(A,A))\S(:),[d d]);

4 F1=A*F0;

5 %---by series---

6 %F0s=zeros(n,n);

7 %for k=0:1000, F0s=F0s+A^k*S*(A^k)’; end;

8 %F0s;

9 end

For the Gaussian process (2.1), the following analytical expression for the causation entropy is available:

Cj→i|K =
1

2
log

[
ϕ(0)i,i − ϕ(1)i,Kϕ(0)−1

K,Kϕ(1)′i,K

ϕ(0)i,i − ϕ(1)i,{Kj}ϕ(0)
−1
{Kj},{Kj}ϕ(1)

′
i,{Kj}

]
.

In the formula, ϕ(0)ii denotes the i-th row and i-th column element of the ϕ(0)matrix. Similarly, ϕ(1)i,{Kj}
denotes the submatrix of the ϕ(1) matrix, that is determined by the i-th row and the k ∈ K-th and j-th
columns of ϕ(1), etc.

If K = {i}, then one gets the transfer entropy

Tj→i = Cj→i|i =
1

2
log

[
ϕ(0)ii − ϕ(1)iiϕ(0)

−1
ii ϕ(1)′ii

ϕ(0)ii − ϕ(1)i,{ij}ϕ(0)
−1
{ij},{ij}ϕ(1)

′
i,{ij}

]
.

4

The MATLAB implementation reads as

1 function [C] = sunC(J,I,K,F0,F1)

2 nom=F0(I,I)-F1(I,K)*inv(F0(K,K))*F1(I,K)’;

3 nom=det(nom);

4 den=F0(I,I)-F1(I,union(K,J))*inv(F0(union(K,J),union(K,J)))*F1(I,union(K,J))’;

5 den=det(den);

6 C=nom/den;

7 C=0.5*log(nom/den);

8 end

2.1 Directed Linear Chain Example

In this case the A matrix is specifed as Aij = δi,j+1, i.e., for n = 3 one has

A =

 0 0 0
1 0 0
0 1 0

 , S =

 1 0 0
0 2 0
0 0 3

 .

We are interested in the matrices Φ(0) and Φ(1). The analytic formulae write as

Φ(0)ij = δij

j∑
k=1

σ2
k, Φ(1)ij = δi,j+1

j∑
k=1

σ2
k.

The explicit expressions are

ϕ(0) =

 1 0 0
0 2 0
0 0 3

 , ϕ(1) =

 0 0 0
1 0 0
0 3 0

 .

Finally, the causation entropy formula has the form

Cj→i|i = Tj→i =
1

2
δi,j+1 log

(
1 +

∑j
k=1 σ

2
k

σ2
i

)
,

which gives the matrix (j is the column index and i is the row index)

Cj→i|i = Tj→i =

 0 0 0
3
2 0 0
0 6

3 0

 .

This example is implemented as follows:

1 n=3;clc;

2 T=1000;

3 A=[0 0 0;1 0 0;0 1 0]

4 S=[1 0 0;0 2 0;0 0 3];

5 X=zeros(3,T);

6 Y=randn(3,T);

7 Y(2,:)=Y(2,:)*sqrt(2);

8 Y(3,:)=Y(3,:)*sqrt(3);

9 for i=2:T, X(:,i)=A*X(:,i-1)+Y(:,i); end;

10 %---

11 [F0,F1] = sunF(A,S);

12 sF0=cov(X’);

13 sF1=zeros(n,n);

14 for i=1:3, for j=1:3,

5

15 C=cov(X(i,2:T),X(j,1:T-1));

16 sF1(i,j)=C(1,2);

17 end; end;

18 [F0 sF0]

19 [F1 sF1]

20 F0=sF0;F1=sF1;

21 Ac=zeros(n,n);

22 for i=1:n,

23 i

24 K=sun21q(i,X,F0,F1);

25 Ac(i,K)=ones(1,length(K));

26 end;

27 Ac

In the above script, we have two possibilities how to compute matrices F0=Φ(0) and F0=Φ(1). Either
analytically due to the Gaussian character of (1) by function sunF.m; or or we may use sample counterparts
of Φ(0) and Φ(1) matrices computed at lines 12-17. The lines 18-19 provide a comparison of the results
from both approaches.

To conclude the section it remains to provide the code of the permutation test. It reads

1 function [Cq] = permC(j,I,K,X,r)

2 th=0.95;

3 [d,T]=size(X);X0=X;

4 Cr=zeros(1,r);

5 for k=1:r,

6 X=X0;

7 X(j,:)=X(j,randperm(T));

8 rF0=cov(X’);

9 rF1=zeros(d,d);

10 for ii=1:d, for jj=1:d,

11 A=X(ii,2:T);

12 B=X(jj,1:T-1);

13 rF1(ii,jj)=1/(T-2)*(A-mean(A))*(B-mean(B))’;

14 end; end;

15 Cr(k)=sunC([j],I,K,rF0,rF1);

16 end;

17 Cq=quantile(Cr,th);

18 end

The number of permutation is stored in the r parameter and the quantile θ in the th parameter. In
loops at lines 10-16, we compute the sample matrices Φ(0) and Φ(1) for each permutation created at
line 7.

3 Bayesian inference

Here we review an approach to causal inference that stems from the statistical analysis of time series. We
follow [Anděl 1976].

Let A0, A1, . . . , An, n ∈ N be square matrices of order d ∈ N such that A0 is regular. Set Uk =
−A−1

0 Ak, k = 1, . . . , n and consider the model

Xt =
n∑

k=1

UkXt−k +A−1
0 Y t, t = n+ 1, . . . T (3.1)

where Y t are i.i.d. d-variate normal. Clearly, setting n = 1 and A0 = −Id we get the model (1).

6

Let X1 = x1, . . .Xn = xn be fixed. Because Y n+1, . . . ,Y T are multivariate normal and (3.1) is
linear, the densities of Xn+1, . . . ,XT given x1, . . . ,xn are also multivariate normal.

Let G = A′
0A0 and U = [U1, . . . , Un]. Using the improper apriori density |G|−1 for G > 0 (i.e., where

G is positive definite) and 0 otherwise, one gets the aposteriori density of G and U given x = (x′
1, . . . ,x

′
T)

′

in the form

g(G,U |x) = const · |G|(T−n−1)/2 ×

exp

−1

2

T∑
t=n+1

(xt −
n∑

j=1

Ujxt−j)
′ ·G · (xt −

T∑
j=1

Ujxt−j)

 .

Establishing the vectors

x0
t =

 xt−1

...
xt−n

 t = n+ 1, . . . , T

and the matrices (recall that xt is a d-variate column vector)

C =

T∑
t=n+1

xtx
0
t′ , C0 =

T∑
t=n+1

xtxt′ ,

S =

T∑
t=n+1

x0
tx

0
t′ , S∗ =

[
C0 C
C ′ S

]
we have the following theorem:

Theorem 1. Let S∗ > 0, i.e., be positive definite. Then the aposteriory density g(G,U |x) has modus
at Û , Ĝ where Û = CS−1 and Ĝ = (T − n− 1)(C0 − CS−1C ′)−1.

The obtained estimates Û and Ĝ are then used to obtain the estimates Â0, Â1, . . . Ân of theA0, A1, . . . An

matrices.

3.1 Tests on autoregressive matrices

Theorem 2. Let S∗ > 0. If T ≥ (n+1)d, then the aposteriori distribution with the density g(G,U |x)
is the Wishart distribution Wp(T − n− nd+ d,C0 − CS−1C ′). Let

V0 = (T − n+ p)1/2(C0 − CS−1C ′)−1/2(U0 − Û)S1/2

where U0 is a matrix of the same type as matrix Û = [Û1, . . . , Ûn]. If T −n+d ≤ 2, then the statistics
Tr(V0V

′
0) (trace of V0V

′
0) has asymptotically χ2 distribution with the nd2 degrees of freedom.

Setting U0 = 0(d,nd) is used to test the null hypothesis that Xt, t ∈ N are independent against the
alternative that they form an autoregressive sequence at most of order n. Frequently, we need to test if
Un = U0

n where U0
n is a given matrix. Typically, U0

n is the zero matrix and the test concerns if the maximal
lag is n. The next theorem provides the basis for the test.

Theorem 3. Let S∗ > 0. Denote

S−1 = R =

[
R11 R12

R21 R22

]
where R22 is the square submatrix of order d. Let

V 0
2 = (T − n− nd+ 2d)1/2(C0 − CS−1C ′)−1/2(U0

n − Ûn)S
1/2.

Then Tr(V 0
2 V

0
2) has asymptotically χ2 distribution with the d2 degrees of freedom.

7

The theorem gives us the tool for performing tests on submatrices of U = [U1, . . . , Un]. The first type
of these tests is testing for if lag=n, i.e., if Un = 0d. The other typical situation is for lag=1 when we are
given by some mask U0

1 for U1 matrix and we test if the mask is consistent with the observed data.
The MATLAB function performing the above computations writes as follow:

1 function [U] = volD(X,n)

2 [T,d]=size(X);

3 C=zeros(d,n*d);

4 S=zeros(n*d,n*d);

5 C0=zeros(d,d);

6 x0np1=

7 for t=n+1:T,

8 xt=X(t,:)’;

9 xot=[]; for i=1:n, xot=[xot; X(t-i,:)’]; end;

10 %xot1=flip(X(t-1:t-n,:));

11 C=C+xt*xot’;

12 S=S+xot*xot’;

13 C0=C0+xt*xt’;

14 end;

15 invS=inv(S);

16 U=C*invS;

17

18 %S1=[C0 C;C’ S];

19 %V2o=(T-n-n*d+2*d)^(0.5)*(C0-C*invS*C’)^(-0.5);

20 %nS=size(iS);

21 %R22=iS([nS-d+1:nS],[nS-d+1:nS]);

22 %V2=(T-n-n*d+2*d)^(0.5)*(C0-C*iS*C’)^(-0.5);

23 end

3.2 Application to causal networks

The previous sections provides the concise review of the Bayesian inference in multivariate autoregressive
time series. How it may be applied in the context of causal inference?

We consider model (1), therefore d = 1 and A0 = −Id. Given data Xt = xt, t ∈ N, Xt ∈ Rd we
estimate the matrix Û = Â (Indeed, U1 = −A−1

0 A1 = A). Following the Sun’s idea of the permutation
test we repeat this r times in each particular dimension j = 1, . . . , d. That is, in each permutation we
permute the j-th row of [Xt,Xt−1, . . . ,X1].

Let j be fixed, performing r permutation and estimating A, we get r matrices that differ in the j-th
row and the j-th column. We find empirical (1 − θ) · 100% quantiles over the r j-th rows and columns
and store them as the j-th row of matrix Vqr and the j-th column of matrix Vqc. Averaging provides us
with the final quantile matrix V q, i.e., V q = (Vgr + Vqc)/2.

Let Â be an estimation of the matrix A of (1). We compare each element of Â with Vq. If Âij ≥ V qij ,

then we let Âij as it is, otherwise we set the corresponding element to zero. We obtained the adjusted
matrix AM that we call the mask matrix. Clearly, if we set U0

1 = AM in Theorem 2, we may test the
significance of AM . If A = ÂM hypothesis is not rejected, then we put forward Âc = sign(abs(AM)) as
the matrix of causal links identified by the Bayesian approach.

Let j be fixed, performing r permutation and estimating A, we get r matrices that differ in the j-th
row and the j-th column. We keep the j-th columns of these r matrices in U(:,j,k) variable, where
k = 1, . . . , r. Let i = 1, . . . , d be the row index in the j-th columns. For each i we identify the th quantile
of the absolute values of stored j the columns. We keep the result in V qij element of the quantile matrix
V q, i.e., Vq(i,j)=quantile(abs(Ur(i,j,:)),th). The quantile matrix is the square matrix of order d,
i.e., i, j = 1, . . . , d. The relevant MATLAB function reads as follows

1 function [Vq,Ur] = permD(X,r,th)

2 [d,T]=size(X);X0=X;

8

3 Ur=zeros(d,d,r);

4 %for i=1:d, i, for j=1:d,

5 % for k=1:r,

6 % X(j,:)=X0(j,randperm(T));

7 % U=volB(X’,1);

8 % Ur(i,j,k)=U(i,j);

9 % end;

10 %end; end;

11 for j=1:d, j

12 for k=1:r,

13 X(j,:)=X0(j,randperm(T));

14 U=volB(X’,1);

15 Ur(:,j,k)=U(:,j);

16 end;

17 end;

18 Vq=zeros(d,d);

19 for i=1:d, for j=1:d,

20 Vq(i,j)=quantile(abs(Ur(i,j,:)),th);

21 end; end;

22 end

Let Â be an estimate of matrix A of (1). We compare each element of Â with Vq. If abs(Âij) ≥ V qij ,

then we let Âij as it is, otherwise we set the corresponding element to zero. By this operation we obtain
the adjusted matrix AM that we call the mask matrix. Corresponding matrix of causal links is set as
Âc = sign(abs(AM)). That is, non zero elements of AM are put to ones and zero elements are retained.

Clearly, if we set U0
1 = AM in Theorem 2, we may test the significance of AM . If A = ÂM hypothesis

is not rejected, then we might put forward Âc = sign(abs(AM)) as the matrix of causal links identified by
the Bayesian approach and supported by the result of the corresponding χ2 test.

The MATLAB scripts that perform the relevant computations are presented in Appendix.

4 Experiments

In this section we present results of experiments with the Bayesian inference introduced in the previous
section. We have followed the experiments reported by [Sun 2014].

The matrix A of (1) corresponds to a signed Erdös-Rényi network of size d, d ∈ N. That is, A is a
d × d matrix with approximately pd2 directed links (non-zero elements). The links are selected randomly
with the probability of selection p = dp/d where dp is the control parameter used in the scripts below.
Each link is either positive or negative with the absolute value w. It means that each non-zero element of
Aij , i = 1, . . . , d, j = 1, . . . d writes Aij = w or Aij = −w. The weight w of the link is selected in such
a way that the spectral norm of A has prescribed value that is below 1, i.e., ρA < 1.

Data for experiments are then generated from (1), where the matrix A corresponds to the signed
Erdös-Rényi network and the noise terms are independent standard normal, i.e., ξt ∼ N (0, 1).

1 function [X,A] = ernet(d,T,w,dp)

2 p=dp/d;q=(1-p);

3 A=rand(d);

4 A=sign(sign(A-q)+1);

5 W=rand(d);

6 W=sign(W-0.5);

7 A=w*A.*W;

8 rho=max(abs(eig(A)))

9 if rho>1, disp(’rho>1’); end;

10 %---

11 X=zeros(d,T);

9

12 for t=2:T,

13 X(:,t)=A*X(:,t-1)+sqrt(1)*randn(d,1);

14 end;

15 end

Measures that are used to assess the quality of estimation of causal links are the standard false negative
and false positive rates ϵ− and ϵ+ that are specified as

ϵ− =
number of (i, j) pairs with χ0(A

c)ij = 1 and χ0(Â
c)ij = 0

number of (i, j) pairs with χ0(Âc)ij = 1

ϵ+ =
number of (i, j) pairs with χ0(A

c)ij = 0 and χ0(Â
c)ij = 1

number of (i, j) pairs with χ0(Âc)ij = 0

1 function [fnr,fpr] = fp(A,Ahat)

2 d=size(A,1);

3 em=0;ep=0;t1=0;t0=0;

4 Ac=sign(abs(A));

5 Achat=sign(abs(Ahat));

6 for i=1:d, for j=1:d,

7 if ((Ac(i,j)==1)&(Achat(i,j)==0)), em=em+1; end;

8 if ((Ac(i,j)==0)&(Achat(i,j)==1)), ep=ep+1; end;

9 if (Ac(i,j)==1), t1=t1+1; end;

10 if (Ac(i,j)==0), t0=t0+1; end;

11 end; end;

12 [em ep]

13 [t1 t0]

14 fnr=em/t1;

15 fpr=ep/t0;

16 end

In the first set of experiments, we were interested in the influence of the quantile θ on stabilization of
both rates. As it was pointed out in the Sun’s article, the false negative rate ϵ− does not depend on θ and
goes to zero as T →∞. The false positive rate ϵ+ saturates at the level ϵ+ = 1− θ. In the experiments
the number of permutations was set r = 100 and further we set ρA = 0.8 (w = 0.25), dp = 10. The
obtained results are presented in Fig. 1.

In the second set of experiments, we have investigated the influence of the density of links in the
network that is controlled by the dp parameter; and spectral norm ρA. The results are provided in Fig. 2.
The fixed parameters were r = 100, d = 100, and θ = 0.95.

In accordance with the Sun’s results, we have found that the critical sample size where ϵ− stabilizes
near 0 does not depend on the network size, but rather depends on the density of links (dp parameter) or
on the spectral radius ρA of the adjacency matrix A.

4.1 Time consumption analysis

This section is devoted to time consumption analysis of Bayesian inference in Erdös-Rényi networks. We
investigated how computation time depends on the sample size T with respect to the size of the network d,
the number of permutations r, the spectral density ρA and the density of causal links driven by the
parameter dp. In all experiments we used θ = 0.95.

In the first experiment, the size of the network was gradually set to d = 50, d = 100 and d = 150. The
other parameters were set to r = 100, ρA = 0.8 and dp = 10. From Table 2, we see that with increasing
sample size T the computation time grows approximately linearly; and as would be expected it grows also
with increasing d. However, we have observed that for d = 150 and T > 1000 the variance of computation
time increases. In Table 2, there are presented computation times in minutes for each particular sample
size T .

10

sample size T
100 200 300 400 500

fa
ls

e
ne

ga
tiv

e
ep

s-

0

0.2

0.4

0.6

0.8

1
d=100, dp=10, r=100

th=0.95
th=0.99
th=0.999

sample size T
100 200 300 400 500

fa
ls

e
po

si
tiv

e
ep

s+

0

0.02

0.04

0.06

0.08

0.1
d=100, dp=10, r=100

th=0.95
th=0.99
th=0.999

sample size T
100 200 300 400 500

fa
ls

e
ne

ga
tiv

e
ep

s-

0

0.2

0.4

0.6

0.8

1
dp=10, th=0.95, r=100

d=50
d=100
d=150

sample size T
100 200 300 400 500

fa
ls

e
po

si
tiv

e
ep

s+

0

0.02

0.04

0.06

0.08

0.1
dp=10, th=0.95, r=100

d=50
d=100
d=150

Figure 4.1: ϵ−, ϵ+ rates for different θs ans ds; r = 100, ρA = 0.8, dp = 10.

T d = 50 d = 100 d = 150

200 0.6 3.5 9.5
400 1.0 6.7 18.8
600 1.5 9.8 31.3
800 2.0 13.7 37.3
1000 2.5 16.8 50.3
1200 3.0 22.0 56.3
1400 3.4 24.5 67.0
1600 3.9 29.0 81.0
1800 4.4 32.5 89.0
2000 5.8 34.3 111.5

Table 4.1: Computation times [mins] for different network sizes d.

In the second experiment, we were interested in the influence of the number of permutation. We had
the similar setup with respect to the sample size i.e., ranging from T = 200 to T = 2000 with the step
∆T = 200. The size of the network and other parameters were fixed at d = 50; ρA = 0.8 and dp = 10.
The number of permutations varied as r = 100; r = 500 and r = 1000.

The third experiment investigated the influence of the spectral norm. We analyzed networks of size
d = 50 with the norms set up as ρA = 0.9 (w = 0.27), ρA = 0.6 (w = 0.18) and ρA = 0.3 (w = 0.1). The
other parameters were set to r = 100 and dp = 10. From Table 4.3, we see that the value of ρA does not
have any substantial influence on computational times.

The last experiment concerned with the influence of the density of links in A that is governed by the
value of the dp parameter. We had d = 50 and other parameters was set as above, i.e., ρA = 0.8 and

11

sample size T

0 200 400 600 800 1000

fa
ls

e
ne

ga
tiv

e
ep

s-

0

0.2

0.4

0.6

0.8

1
d=100, th=0.95, r=100

dp=5

dp=10

dp=20

sample size T

0 200 400 600 800 1000

fa
ls

e
po

si
tiv

e
ep

s+

0

0.02

0.04

0.06

0.08

0.1
d=100, th=0.95, r=100

dp=5

dp=10

dp=20

sample size T

0 200 400 600 800 1000

fa
ls

e
ne

ga
tiv

e
ep

s-

0

0.2

0.4

0.6

0.8

1
d=100, th=0.95, r=100

rA=0.3

rA=0.6

rA=0.9

sample size T

0 200 400 600 800 1000

fa
ls

e
po

si
tiv

e
ep

s+

0

0.02

0.04

0.06

0.08

0.1
d=100, th=0.95, r=100

rA=0.3

rA=0.6

rA=0.9

Figure 4.2: ϵ−, ϵ+ rates for different nd and ρA; r = 100, d = 100, θ = 0.95.

T, d = 50 r = 100 r = 500 r = 1000

200 0.6 5.3 13.0
400 1.0 10.3 23.5
600 1.5 15.2 35.3
800 2.0 21.3 46.2
1000 2.5 25.3 58.7
1200 3.0 31.5 60.3
1400 3.4 33.5 75.3
1600 3.9 42.7 102.5
1800 4.4 44.5 105.2
2000 5.0 51.3 119.7

Table 4.2: Computation times [mins] for different numbers of permutations r.

r = 100. Because we kept ρA constant, the values of weights w varied with dp. We used dp = 5 (w = 0.33),
dp = 10 (w = 0.25) and dp = 20 (w = 0.18). Results are presented in Table 4.4.

We see that the results are more or less the same as in the third experiment.

5 Parallel computing in Python

In the previous section, we presented results of causal links detection using the Bayesian approach. The
computations were performed in the MATLAB computational environment on a dual-core machine. The
causation entropy algorithm by Sun cannot be effectively tested on this hardware because of its compu-
tational intensity. In fact, in MATLAB we were able to run the Sun algorithm for networks having the
number of nodes not exceeding d = 10.

12

T, d = 50 ρA = 0.9 ρA = 0.6 ρA = 0.3

200 0.7 1.2 1.1
400 1.2 2.0 2.2
600 2.0 3.0 3.2
800 2.2 4.0 4.2
1000 2.7 5.3 5.2
1200 3.2 6.0 6.2
1400 3.8 7.7 7.0
1600 4.4 7.8 8.7
1800 5.2 10.0 8.8
2000 5.3 10.7 9.8

Table 4.3: Computation times [mins] for different spectral norms ρA.

T, d = 50 dp = 5 dp = 10 dp = 20

200 0.7 1.1 1.1
400 1.2 2.0 2.2
600 1.8 3.0 3.3
800 2.1 4.0 4.5
1000 2.7 5.0 5.8
1200 3.5 6.0 6.5
1400 3.6 6.8 7.5
1600 4.2 7.8 9.0
1800 4.4 8.8 9.8
2000 5.2 10.0 11.0

Table 4.4: Computation times [mins] for different dp products.

To overcome the obstacle, we switched to a 24-core machine to enjoy the possibility of parallel com-
puting. In fact, the Sun’s Algorithm 2.1 reported here in Table 1, is very suitable for parallelization. The
loop which cycles through the lines of the matrix A establishes the core of the algorithm; and the par-
ticular results for the individual lines of A do not interfere. Hence parallelization can be done by simply
parallelizing the loop.

In MATLAB, Parallel Computing Toolbox and its parfor command enables parallelizing a loop
straightforwardly. Unfortunately, our license of MATLAB does not support more than 6 cores. That
is why we have switched to use the Python programming language. Namely, we used 2.7 version and
the parallel computation interface was provided by the multiprocessing package. The code of the related
Python script is provided in Appendix B.

5.1 Climate data

In our experiments, we used NCEP/NCAR Reanalysis 1 surface air temperature data. For our purposes,
the original data were remapped to a sparser grid consisting of 42 places regularly spread over surface of
the Earth; and we were interested in the 500hPa surface level which roughly corresponds to the altitude
10 km above sea level. More details about the remapping procedure can be found in [Hlinka et al. 2014],
see Section 2.1 and the references therein.

The remapped data were used to identify a multivariate AR(1) model which is fully characterized by
the matrix of its coefficients A. Clearly, A is the square matrix of order 42. Specification of the matrix
was done using the standard AR process identification procedure. This gave the matrix with 88 non-zero
elements of total 1764. The matrix is presented in Fig. 5.1 and its spectral norm is ρA = 0.9124.

The identified matrix was used for generating artificial data according to formula Xt = AXt−1, t ∈ N,
X0 = 0d. We generated data of increasing length with the step ∆T = 100, i.e., we used data samples with

13

Figure 5.1: Matrix of coeficients of AR(1) model describing temperature changes.

T = 100, 200, . . . , 1900, 2000. For each data sample we performed causal links detection using the Sun and
Bayesian algorithm, respectively. The causation entropy algorithm was run in the Python multiprocessing
setting while Bayesian one was run in MATLAB on single processor dual-core machine.

5.2 Results

The purpose of causal links identification is to detect location of the non-zero elements of AR(1) matrix
presented in Fig. 5.1. This is what the Sun algorithm does. Baysian algorithm is also able to identify
a strength of the link in terms of a real coefficient. However, in the presented experiment we restrict
only on question if at a given position in the matrix there is or not a non-zero element. The accuracy of
estimation is measured using the false negative (FN) and false positive (FP) rates introduced above. The
identification was performed gradually for data of increasing length with T = 100, 200, . . . , 1900, 2000.

False negative rates

In Table 5.1 below, there are presented the false negative (FN) rates for causal links identification in the
generated data. The first column of the table delivers the lengths of processed data series, the second
columns contains the FN rates for the Sun algorithm and the third one for the Bayesian approach. The
Sun algorithm works better on shorter data series in comparison with the Bayesian algorithm. The better
results, however, are obtained for price of much longer computations. The difference in error vanishes as
the length of data increases. The computational burden is driven rather by the size of the network, here
we have d = 42, than by the length of the data. Graphically, the development of the false negative rate is
presented in Fig. 5.2.

False positive rates

In Table 5.2, we see the development of the false positive (FP) rates with the length of the data for both
the Sun algorithm and the Bayesian approach. We can see that in both cases the rate approach zero,
but at faster pace in the first case. In fact, in the Sun’s case, the algorithm reaches the zero rate for
lengths T = 500 and longer. Again, the price for better performance for short series is computational
complexity. The computation for T = 500 took 10 hours on the multiprocessor machine when 20 cores
were simultaneously used. In the case of Bayesian approach, the computation took minutes on a single
processor dual core machine in MATLAB. Graphically, the development of false positive rates is presented
in Fig. 5.3.

14

d = 42, T Sun - false negative Bayes - false negative

100 34/88 = 0.3864 46/88 = 0.5227
200 21/88 = 0.2386 19/88 = 0.2159
300 16/88 = 0.1818 17/88 = 0.1932
400 11/88 = 0.1250 14/88 = 0.1591
500 6/88 = 0.0682 11/88 = 0.1250
600 5/88 = 0.0568 9/88 = 0.1023
700 1/88 = 0.0114 10/88 = 0.1136
800 0/88 = 0.0000 8/88 = 0.0909
900 0/88 = 0.0000 6/88 = 0.0682

1000 0/88 = 0.0000 4/88 = 0.0455
1100 0/88 = 0.0000 5/88 = 0.0568
1200 0/88 = 0.0000 4/88 = 0.0455
1300 0/88 = 0.0000 4/88 = 0.0455
1400 0/88 = 0.0000 4/88 = 0.0455
1500 0/88 = 0.0000 3/88 = 0.0341
1600 0/88 = 0.0000 2/88 = 0.0227
1700 0/88 = 0.0000 2/88 = 0.0227
1800 0/88 = 0.0000 1/88 = 0.0114
1900 0/88 = 0.0000 1/88 = 0.0114
2000 0/88 = 0.0000 2/88 = 0.0227

Table 5.1: False negative rates for the Sun and Bayesian algorithms.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6
false NEGATIVE

sample size T

F
N

 r
at

e

Bayes
Sun

Figure 5.2: The development of the FN rates.

15

d = 42, T Sun - false positive Bayes - false positive

100 119/1676 = 0.0710 332/1676 = 0.1981
200 134/1676 = 0.0800 303/1676 = 0.1808
300 115/1676 = 0.0686 245/1676 = 0.1462
400 113/1676 = 0.0674 184/1676 = 0.1098
500 89/1676 = 0.0531 172/1676 = 0.1026
600 101/1676 = 0.0603 147/1676 = 0.0877
700 103/1676 = 0.0615 151/1676 = 0.0901
800 99/1676 = 0.0591 131/1676 = 0.0782
900 89/1676 = 0.0531 110/1676 = 0.0656
1000 102/1676 = 0.0609 98/1676 = 0.0585
1100 100/1676 = 0.0597 94/1676 = 0.0561
1200 87/1676 = 0.0519 103/1676 = 0.0615
1300 77/1676 = 0.0459 95/1676 = 0.0567
1400 79/1676 = 0.0471 82/1676 = 0.0489
1500 96/1676 = 0.0573 87/1676 = 0.0519
1600 82/1676 = 0.0489 94/1676 = 0.0561
1700 81/1676 = 0.0483 95/1676 = 0.0567
1800 93/1676 = 0.0555 103/1676 = 0.0615
1900 86/1676 = 0.0513 98/1676 = 0.0585
2000 88/1676 = 0.0525 94/1676 = 0.0561

Table 5.2: False positive rates for the Sun and Bayesian algorithms.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
false POSITIVE

sample size T

F
P

 r
at

e

Bayes
Sun

Figure 5.3: The development of the FP rates.

16

6 Discussion

The main goal of the presented work was the implementation of the methodology provided by [Sun 2014]
and reproduction of its results. The main problem we have found with the Sun’s approach is its compu-
tational complexity. We were able to recalculate his results on networks with 20 nodes and T = 1000
samples. However, computation for a network with d = 50 and T = 2000 took 10 hours on a single-
processor computer. Hence, we were not able to undergo Sun’s experiments in the whole extent (d = 200,
T = 2000 and 20 runs for each experiment).

On the other hand, the Bayesian approach that we have introduced in this context is substantially
faster (2 hours for d = 150, T = 2000). Using this approach we were able to discover the same patterns as
reported by Sun, i.e., decrease of the fallse negative error to zero with the increasing number of samples.
The speed of decrease does not depend on the size of the network; and the false positive error saturates
at the selected quantile θ of the permutation test.

To overcome the problem of computational burden in the case of the Sun’s approach we switch to a
parallel computation in Python environment. In this setting we were able to perform effectively computation
and compare results from both approaches.

The main finding is that for short lengths i.e., for T ≤ 1000, the Sun’s approach works substantially
better than the Bayesian one. For T > 1000 both approaches are comparable in the false positive rates. In
terms of the false negative rates the approaches start to be comparable for T ≥ 1800. General observation
is that the Sun’s approach is superior, but much more computationally intensive, for shorter data. The
difference is vanishing with increasing length of data with the benefit of much less computational intensity
in the Bayesian case.

Finally, a promising idea is the introduction of the statistical test that allows testing significance of
whole causal matrices (networks), instead of only individual causal links.

Acknowledgment

This study was supported by the grant COST LD13002 of the Ministry of Education, Youth and Sports of
the Czech Republic and by the Czech Science Foundation project No. GA13-23940S.

17

Bibliography

[Sun 2014] J. Sun, D. Taylor, E. M. Bollt. Causal Network Inference by Optimal Causation Entropy,
arXiv:1401.7574v1

[Anděl 1976] J. Anděl. Statistická analýza časových řad, SNTL 1976 In Czech

[Hlinka et. al. 2014] Hlinka, J., Hartman, D., Jajcay, N., Vejmelka, M., Donner, R., Marwan, N., Kurths,
J., Paluš, M. Regional and inter-regional effects in evolving climate networks, Nonlinear Processes in
Geophysics, 2(21), 2014, pp. 451–462

18

Appendix A

1 fbayes.m

1 function [fnr,fpr] = fbayes(X,A,r,th)

2 d=size(A,1);

3 [U,R22,V2]=volB(X’,1);

4 AM=zeros(d,d);

5 Vqc=zeros(d,d);

6 Vqr=zeros(d,d);

7 for j=1:d, j,

8 %tic,

9 [Vqc(:,j),Vqr(j,:)]=permB(j,X,r,th);

10 %toc,

11 end;

12 Vq=(Vqc+Vqr)/2;

13 for i=1:d, for j=1:d;

14 if abs(U(i,j))>Vq(i,j), AM(i,j)=U(i,j); end;

15 end; end;

16 [A AM];

17 [fnr,fpr]=fp(A,AM);

18 end

19

2 volB.m

1 function [U,R22,V2] = volB(X,n)

2 [T,d]=size(X);

3 C=zeros(d,n*d);

4 S=zeros(n*d,n*d);

5 C0=zeros(d,d);

6 for t=n+1:T,

7 xt=X(t,:)’;

8 xot=[]; for i=1:n, xot=[xot; X(t-i,:)’]; end;

9 C=C+xt*xot’;

10 S=S+xot*xot’;

11 C0=C0+xt*xt’;

12 end;

13 S1=[C0 C;C’ S];

14

15 iS=inv(S);

16 nS=size(iS);

17 R22=iS([nS-d+1:nS],[nS-d+1:nS]);

18

19 V2=(T-n-n*d+2*d)^(0.5)*(C0-C*iS*C’)^(-0.5);

20

21 U=C*inv(S);

22 end

19

3 permB.m

1 function [Vqcj,Vqrj] = permB(j,X,r,th)

2 [d,T]=size(X);X0=X;

3 Urc=zeros(d,r);

4 Urr=zeros(r,d);

5 for k=1:r,

6 X=X0;

7 X(j,:)=X(j,randperm(T));

8 [U]=volB(X’,1);

9 Urc(:,k)=U(:,j);

10 Urr(k,:)=U(j,:);

11 end;

12 Vqcj=quantile(abs(Urc’),th)’;

13 Vqrj=quantile(abs(Urr),th);

14 end

20

