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Abstract:

In this paper we elucidate and further develop the concept of the score function of distri-
bution, which could be a new mathematical tool for description of univariate continuous
probability distributions and for estimation of characteristics of data samples generated
from them. Moreover, the function appeared to be the basis for generation of other func-
tions characterizing distributions and of new numerical characteristics, finite even in cases
of heavy-tailed distributions. Given a model, the sample counterparts of these numerical
characteristics suitably describe the data samples.
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1 Introduction

Having observed data Xn = (x1, ..., xn), realizations of random variables X1, ..., Xn iid
according to some F , it is supposed in parametric approach that F is a member of
a parametric family FX ,θ = {Fθ : θ ∈ Θ ⊆ Rm}. The unknown θ is estimated by
’treating’ observed values in accordance with the model: the data are inserted into
a score function describing relative influence of observations with respect to θ. Thus,
there are not the data themselves entering into inference procedures, but ’latent’ values
of parametric score functions. However, if m > 1 the vector-valued Fisher (maximum
likelihood) score functions of classical statistics do not enable consistent use of this
point of view at more complicated problems, and scalar-valued score functions of robust
statistics are often in a loose relation to the assumed model.

The simplest parametric model is the location model. Let θ = µ ∈ R be a location
parameter and Fµ a distribution supported by X = R with density f(x − µ). The
identity

∂

∂µ
log f(x− µ) = − 1

f(x− µ)

d

dx
f(x− µ) ≡ SF (x− µ) (1.1)

shows that the classical Fisher (likelihood) score for location can be obtained by dif-
ferentiating − log f(x − µ) with respect to the variable. By setting µ = 0, Hampel et
al. (1986) have pointed out that, loosely speaking, the relative rate of the change of f ,
function

SF (x) = −f
′(x)

f(x)
, (1.2)

can be interpreted as describing relative influence of x ∈ R with respect to the ’most
probable’ value, the center point (= mode) of the distribution. Consistently with this
observation, Cover and Thomas (1991, pp.494) treated ES2

F as the Fisher information
of distribution F . Function (1.2), mentioned sometimes (Sen et al. 2009, pp.59)
as a generalized score function, is called by Jurečková (2012) the score function of
distribution. Such concept encompasses even parametric distributions with support R
without location parameter.

Taking SF (X) as ’treated X’, or, in other words, as the random variable associated
to X, it holds under mild regularity conditions that:

i) Moments ESkF (X) relevant to X exist, ESF (X) = 0.
ii) As a central value x∗ of F can be taken the solution of SF (x) = 0.
Having a model family FX ,θ, it may seem rational to study the data through the

associated random variable SF (X; θ) where

SF (x; θ) = − 1

f(x; θ)

d

dx
f(x; θ). (1.3)

However, this approach is used neither in the probability theory nor in statistics due
to the fact that the behavior of function (1.2) is often peculiar. For instance, SF (x) of
the uniform distribution is identically equal to zero.

Fabián (2001) proposed an idea, which can be outlined as follows. There are two
different types of continuous probability distributions. Under the ’prototypes’ he means
a basic set of distributions with supportR and with a ’simple’ form of density (the term
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will be clarified later). These are the distributions which are sufficiently characterized
by (1.2) or (1.3). Other distributions can be viewed as ’transformed distributions’: the
prototypes transformed by some η−1 : R → X ⊆ R. Particularly, any distribution
with support X 6= R can be viewed as a transformed distribution. During the time it
appeared that the mapping η is not an arbitrary one: it is the function, the derivative
of which is the inner part of the density formula (Fabián 2013). As a result, a uniquely
defined scalar score function of distribution with arbitrary support has been obtained
as a counterpart of the density. In parametric cases it is a parametric function, derived,
however, by means of differentiating according the variable.

The plan of the present paper is the following. The concept of the score function
of distribution (1.2) is extended to ’transformed distributions’ in the next section.
Section 3 introduces new numerical characteristics of distributions and new functions
describing distributions based on it. In the last section we try to demonstrate that the
new concepts are not purposeless and discuss their possible use in statistical tasks.

2 Sfd of transformed distributions

Let X = (a, b) be a finite or infinite interval of the real lineR. Random variable X with
support X and distribution F is described by distribution function F (x) = P (X ≤ x)
and density f(x) = dF (x)/dx, f(x) > 0 for x ∈ X , f(x) = 0 if x ∈ R\X . By ΠX
we denote the set of distributions with support X , regular in the usual sense with one
addition specified later.

2.1 Definition

Definition 1. Let X = (a, b) ⊂ R. We say that η : X → R is a Johnson mapping if

η(x) =

 log(x− a) when X = (a,∞)

log
(x− a)
(b− x)

when X = (a, b).
(2.1)

Johnson mappings (2.1) are Johnson’s (1949) transformations to change the sup-
port, reduced to be parameter-free.

Definition 2. Let X ⊆ R and f(x) be the density of distribution F ∈ ΠX . Let
η : X → R be a smooth strictly increasing mapping. Let g be the density of G ∈ ΠR
and let F = G ◦ η so that the density of F is

f(x) = g(η(x))η′(x), (2.2)

where η′(x) = dη(x)/dx. G is called the prototype of F .

In the following text we consistently denote prototypes by G, g and transformed
distributions by F, f . A transformed distribution can be a distribution from ΠR as
well. For instance, a distribution with the density

f(x) =
1

1 + x2

etanh−1 x

(1 + etanh−1 x)2
(2.3)
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is the transformed standard logistic prototype g(y) = ey/(1 + ey)2 with (easily identi-
fiable) mapping η : R → R in the form η(x) = tanh−1 x.

For distributions with half-line or finite interval support the retrieval of the ’true’
η(x), which we call the innate mapping, need not be apparent at first sight. The density
f(x) = e−x of the exponential distribution has certainly a ’hidden’ innate mapping
η(x) = log x, by means of which it can be written as f(x) = xe−x 1

x
. The reason why

to use Johnson mapping in cases in which the innate η(x) or η′(x) is not evident from
the density formula is mainly the principle of parsimony (mappings (2.1) are the often
considered simple mappings), but in concrete situations there can be other supporting
reasons, discussed at 2.3.

Definition 3. Let F ∈ ΠX has differentiable density f(x) and η : X → R be its innate
mapping. Function

TF (x) = − 1

f(x)

d

dx

[
1

η′(x)
f(x)

]
(2.4)

is the t-score of distribution F . Let the solution x∗ to the equation

TF (x) = 0 (2.5)

be unique. x∗ is called the score mean and function

SF (x) = η′(x∗)TF (x) (2.6)

is the score function of distribution (abbreviated by sfd of F ).

The concept of the t-score is explained as follows. If random variable Y has distri-
bution G ∈ ΠR, random variable X = η−1(Y ) has distribution F = G ◦ η with density
(2.2). The first term on the right hand side of (2.2) contains probabilistic informa-
tion about X, whereas the Jacobian term η′(x) is common for many members of ΠX ,
masking the statistical content of f(x). The trick is to remove the Jacobian from the
density formula before differentiation with respect to the variable.

By Definition 3, for computation of the sfd of any F ∈ ΠX one does not need to
know its prototype G. However, knowing the prototype, one can immediately write
the formula for the sfd of the transformed distribution.

Proposition 1. Let G ∈ ΠR and F = G ◦ η ∈ ΠX . Then,

TF (x) = SG(η(x)). (2.7)

Proof. By (2.2), 1
η′(x)

f(x) = g(η(x)). By (2.4)

TF (x) = − 1

g(η(x))η′(x)

d

dx
[g(η(x)] = SG(η(x)).

2

Actually, the behavior of sfds of prototypes has been known since Hampel et al.
(1986). In particular, SG(y) of light-tailed distributions are unbounded, whereas sfds
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of heavy-tailed distributions are bounded. Sfds of some distributions (as the extreme
value one) are semi-bounded (in this case bounded on the right, unbounded on the left).
By Proposition 1, the t-scores of transformed distributions preserve at the boundaries of
the support the behavior of sfds of their prototypes (in contrast to the tail properties).

2.2 Sfd of transformed parametric distributions

We distinguished two kinds of transformed distributions: with and without a central
parameter.

Definition 4. Let Gµ ∈ ΠR be a location distribution. Let Fτ = Gµ ◦ η ∈ ΠX be the
transformed distribution with parameter

τ = η−1(µ). (2.8)

τ is called a transformed location parameter or t-location.

Under transformed distributions of the first kind we understand the distributions
with t-location parameter. A subclass of distributions with support R+ = (0,∞) and
t-location parameter are the log-location distributions studied by Lawless (2003).

The next theorem, proven by Fabián (2001), shows that the sfd of distributions
with t-location parameter is identical with the Fisher (maximum likelihood) score for
the t-location. The proof is reproduced in the Appendix.

Theorem 1. Let Fτ be a transformed distribution with t-location parameter. Then

SF (x; τ) =
∂

∂τ
log f(x; τ). (2.9)

A general form of the density of location prototypes is g(y;µ, θ2, ..., θm). Consider a
particular case of the location and scale prototype Gµ,σ with density σ−1g((y − µ)/σ).
By (2.2), the density of the transformed distribution F = Gµ,σ ◦ log ∈ ΠR+ is

f(x) =
1

σ
g

(
log x− µ

σ

)
1

x
= cg

(
log
(x
τ

)c) 1

x

where τ = eµ and c = 1/σ. Examples are given in the upper part of Table 1. The
t-location parameter τ , usually taken as the scale, for distributions from ΠR+ appears
to be the central parameter. Furthermore, the parameter c, generally taken as shape
parameter, can be better explained in cases of distributions from ΠR+ as a reciprocal
scale.

Transformed distributions of the second kind are those without a central (t-location)
parameter. Their sfds, created in accordance with sfds of distributions of the first
kind by means of Definition 3, were yet unknown functions. They can be understood
as Fisher scores for the score mean, which is not a value of any parameter of the
distribution. Examples are given in the lower part of Table 1.
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Table 1. Characteristics of some distributions.

F f(x) SF (x) x∗ ω2 x̄S
lognormal c√

2πx
e−

1
2

log2(x
τ

)c c
τ

log(x
τ
)c τ τ2

c2
x̄G

Weibull c
x
(x
τ
)ce−(x

τ
)c c

τ
[(x
τ
)c − 1] τ τ2

c2
( 1
n

∑
xci)

1/c

Fréchet c
x
(x
τ
)−ce−(x

τ
)−c c

τ
[1− (x

τ
)−c] τ τ2

c2
( 1
n

∑
1
xci

)−1/c

GIG 1
Kx
e−

1
2τ

[(x
τ

)+( τ
x

)] 1
2τ

[x
τ
− τ

x
] τ τ2

1.43
(x̄x̄H)1/2

loglogistic c
x

(x/τ)c

(1+(x/τ)c)2
c
τ

(x/τ)c−1
(x/τ)c+1

τ τ2

c2
−

gamma γα

xΓ(α)
xαe−γx γ2

α
(x− x∗) α

γ
α
γ2

x̄

inv. gamma γα

xΓ(α)
x−αe−γ/x α2

γ
(1− x∗

x
) γ

α
γ
α2 x̄H

beta-prime 1
B(p,q)

xp−1

(x+1)p+q
q2

p
x−x∗
x+1

p
q

p(p+q+1)
q3

∑n
i=1

xi
xi+1∑n

i=1
1

xi+1

log-gamma cα

Γ(α)
(log x)α−1

xc+1 ρ log x
x∗

eα/c 1
α
e2α/c x̄G

Pareto c/xc+1 c2(1− x∗

x
) c+1

c
c+2
c3

x̄H
beta xp−1(1−x)q−1

B(p,q)
(p+q)2

pq
(x− x∗) p

p+q
pq(p+q+1)

(p+q)3
x̄

Except the Pareto and log-gama distributions from Π(1,∞) and beta from Π(0,1), distributions

in the table are members of ΠR+ with TF (x) = x∗SF (x). Γ(·) is the gamma function, B(·, ·)
the beta function, ρ = c2

α e
−α/c, K = K0(1) is the Bessel function of the third kind. x̄ is the

arithmetic, x̄G geometric and x̄H harmonic mean.

2.3 Uniqueness of the t-score

In this paragraph we present some examples of ’detection’ of the innate mapping of
transformed distributions.

Distributions from ΠR are often prototypes, as normal N (µ, σ) with sfd SF (x) =
x−µ
σ2 , logistic with sfd SG(y) = (ey−1)/(ey+1) or the skew normal (Azzalini 1985) with

density g(y;λ) = 2φ(y)Φ(λy), where φ and Φ are the density and distribution function
of the normal distribution. Its sfd (1.2) is clearly

SG(y) = y − λφ(λy)

Φ(λy)
. (2.10)

Transformed distributions from ΠR have easily identifiable innate mapping η : R → R,
see e.g. (2.3) or, for instance, the sinh-arcsinh distribution (Jones and Pewsey, 2009)
with density

f(x) =
1

2π

δ cosh(ε+ δ sinh−1 x)√
1 + x2

e−
1
2

sinh2(ε+δ sinh−1 x), (2.11)

which is clearly the standard normal distribution transformed by η(x) = sinh(ε +
δ sinh−1 x). Densities (2.11) and sfds SF (x) = η(x) (much simpler than would be
functions (1.2)) are for δ = 1 and some values of ε given in Fig. 1.
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Fig. 1. Densities and sfds of the sinh-arcsinh distribution (2.11).

The innate mapping of distributions from ΠR+ is mostly the logarithmic mapping,
and t-scores have a form

TF (x) = − 1

f(x; θ)

d

dx
[xf(x; θ)] = −1− xf

′(x; θ)

f(x; θ)
.

Hence, sfd of the exponential distribution is SF (x) = x − 1, a reasonable result since
a function describing the ’distribution without memory’ should be linear. By using
Proposition 1, the sfd of the skew-lognormal distribution is, using (2.10), SF (x) =
log x− λφ(λ log x)/Φ(λ log x).

Other possible more complex transformations, as for instance η(x) = sinh(log x),
recommended by Jones (2014), are from the forms of the density easily detectable.

Let us consider distributions with semi-infinite support X = (1,∞). The density
of the log-gamma distribution

f(x) =
cα

Γ(α)
(log x)α−1 1

xc+1
=

cα

Γ(α)
(log x)α

1

xc
· 1

x log x

has an obvious innate mapping η(x) = log log x. By Definition 3

TF (x) = − xc+1

logα−1 x

d

dx
[(log x)α

1

xc
] = c log x− α

with x∗ = eα/c and SF (x) = 1
x∗ log x∗

TF (x). However, the Pareto distribution with
density

f(x) =
c

xc+1
(2.12)

does not contain any ’visible’ Jacobian of any transformation. Trying to use the trans-
form η(x) = log log x one obtains

TF (x) = − 1

f(x)

d

dx
[x log xf(x)] = c log x− 1,

which is the Fisher score for c. Using the Johnson mapping one obtains

TF (x) = − 1

f(x)

d

dx
[(x− 1)f(x)] = c− (c+ 1)/x = c(1− x∗/x) (2.13)

with score mean
x∗ = (c+ 1)/c. (2.14)
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Since the ’shifted Pareto’ from ΠR+ with density f(x) = c
(x+1)c+1 is a particular case

of the beta-prime distribution (Table 1) with bounded sfd, the t-score of the Pareto
distribution should be the latter one. Then, SF (x) = 1

x∗−1
TF (x) = c2(1− x∗/x).

The Johnson mapping for distributions from Π(0,1) is η(x) = log x
1−x with η′(x) =

1
x(1−x)

, so that the corresponding t-score is

TF (x) = − 1

f(x)

d

dx
[x(1− x)f(x)] = −1 + 2x− x(1− x)

f ′(x)

f(x)
.

In current use are Johnson’s UB distribution with normal prototype and the beta dis-
tribution with density

f(x) =
1

B(p, q)
xp−1(1− x)q−1 =

1

B(p, q)
xp(1− x)q

1

x(1− x)

and linear t-score TF (x) = (p + q)x − p. The uniform distribution, a member of the
beta distribution with p = q = 1, has a linear sfd SF (x) = 8(x − 1/2). Any other
intended choice of η(x) would lead to an unacceptable nonlinear sfd.

Johnson mapping is the innate mapping of distributions recently discussed by Kotz
and Dorp (2006). The generalized two-sided power distribution, for instance, has den-
sity

f(x) =

{
n(x

θ
)n−1 when 0 < x ≤ θ

n−1
θ

(x
θ
)n−2 when θ < x < 1

and t-score Tf (x) = − 1
f(x)

d
dx

[x(1− x)f(x)], that is,

TF (x) =

{
(n+ 1)x− n when 0 < x ≤ θ

(n+ 2)x− (n+ 1) when θ < x < 1.

The Topp-Leone distribution with density

f(x) = β(2− 2x)(2x− x2)β−1 =
2β

x(1− x)
(1− x)2xβ(2− x2)β−1

has t-score

TF (x) = (β + 2)x− 2x2 − β + 2(β − 1)
x2(1− x)

2− x2
,

Fig. 2. Densities and t-scores of the Topp-Leone distribution.
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without explicitly expressed sfd. Densities and t-scores of the distribution for some
values β are shown in Fig 2.

The density of the Kumaraswamy distribution with resiliance parameter ϕ (de Pas-
coa et al., 2014) is f(x) = λϕxλ−1(1− xλ)ϕ−1. The attempt to set η′(x) = 1/x(1− xλ)
was not successful; it leads to a simple ’t-score’ TF (x) = λ((ϕ − 1)xλ − 1), which,
however, does not reduce if ϕ = 1 to the t-score of the power distribution. The t-score
utilizing the Johnson mapping as the innate mapping is more complicated,

TF (x) = − 1

f(x)

d

dx
[x(1− x)f(x)] = (1 + λ)x− λ+ λ(ϕ− 1)

(1− x)xλ

1− xλ
,

but without the drawback of the previous attempt (and, unfortunately, without an
explicit formula for the sfd as well).

Distributions with densities described by goniometric functions, such as Burr V or
Burr XI (Johnson et al., 1994) have innate mapping η(x) = tanx. They are shortly
discussed in Fabián (2013). We must note, however, that a quantitative comparison
of sfds of different distributions from any ΠX is of interest only within the class of
distributions with the same innate mapping.

We arrived to the basic theorem.

Theorem 2. For any X 6= R, the decomposition of the density f(x) of any F ∈ ΠX
into the form g(η(x))η′(x) is unique.

Proof. Either η(x) and/or η′(x) in the density formula (2.2) is clearly identifiable, or
f(x) is to be written in the form

f(x) =
1

η′(x)
f(x)η′(x) (2.15)

where η(x) is the Johnson mapping corresponding to the given support. 2

3 Distribution characteristics

Based on the concept of the sfd, we introduce new numerical characteristics and func-
tions describing continuous distributions.

Let Fθ ∈ ΠX with density f(x), t-score TF (x) and sfd SF (x) have a prototype
G ∈ ΠR with density g(y) and sfd SG(y). By (1.2), SG(y) = 0. Let F , either a parent
distribution without parameters, or a member of parametric family FX ,θ satisfy the
following regularity assumptions:

Both G and F are supposed to be absolutely continuous with respect to the
Lebesgue measure, g and f are continuously differentiable a.e. according to the vari-
able, g is unimodal and ES2

G <∞. The last condition is in accordance with the usual
regularity requirements.
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3.1 Central point

We presume that any distribution could have its central point (typical value). Such
a value is certainly not the mean, although usually considered to be, as the mean of
some heavy-tailed distributions is infinite.

Suggestion 1. The central point of F is its score mean, the solution x∗ to the equation
(2.5).

The score mean y∗ of a prototype distribution G is the mode. By Proposition 2,
TF (x∗) = SG(η(x∗)) so that x∗ = η−1(y∗). The score mean of a transformed distribution
with unimodal prototype thus exists and can be explained as the image of the mode of
the prototype. The score mean of t-location distributions is the value of the t-location
parameter, the score mean of distributions of the second kind (e.g. distributions in
the lower part of Table 1) is expressed by functions of parameters. Notice that, for for
example, the mean m = p/(q− 1) of the heavy-tailed beta-prime distribution does not
exist if q < 1, but the score mean, given by to the certain extent analogous expression
x∗ = p/q, is finite.

3.2 Score moments

Definition 5. The k-th moment of the sfd,

ESkF (X) =

∫
X
SkF (x)f(x) dx, k = 1, 2, ... (3.1)

is called the k-th score moment of distribution F .

Proposition 2. Let F = G ◦ η ∈ ΠX and x∗ be the score mean. Then ES2
F =

[η′(x∗)]2ES2
G, ESF = 0 and 0 < ES2

F <∞.

Proof follows from (2.6) and Proposition 1 since x∗ exists as g(y) is unimodal and η′(x∗)
is a constant. 2

ES2
F is the Fisher information for score mean. It has been shown by Fabián (2013)

that ES3
F expresses a certain form of skewness (if ES3

F = 0 distributions with X = R+

are ’log-symmetric’), and ES4
F expresses the flatness (as opposite to kurtosis).

3.3 Information function

The continuous equivalent of Shannon’s entropy, the differential entropy

h(f) =

∫
X
− log f(x)f(x)dx = E(− log f(x)), (3.2)

is often considered to be the mean uncertainty contained in distribution F . However,
(3.2) can be negative (the differential entropy h(f) = 1 + log τ of the exponential
distribution f(x) = 1

τ
e−x/τ is negative if τ < e−1). On the other hand, Fisher infor-

mation (without such a defect) is defined with respect to parameters of parametric
distributions only.
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Function S2
F (x) increases from the least informative point x∗ : S2

F (x∗) = 0 to both
ends of the support, being unbounded in cases of thin-tailed distributions and bounded
in cases of heavy-tailed distributions.

Suggestion 2. Function S2
F (x) is an information function of distribution F , describing

relative information about the score mean contained at x ∈ X .

For prototypes and t-location transformed distributions, ES2
F is Fisher information

with respect to the central parameter (location or t-location). In general, ES2
F is the

(extended) Fisher information with respect to the score mean. We judge that it can
be taken as the mean information of the distribution.

3.4 Measure of variability

Similarly to the mean, the classical variance is not a proper measure of variability of a
distribution since it can be infinite for some heavy-tailed distributions. A measure of
variability without this defect was suggested by Fabián (2007).

Definition 6. The reciprocal mean information of F , the score variance

ω2
F =

1

ES2
F

, (3.3)

is a measure of variability of distribution F .

Fisher information of location and scale prototypes Gµ,σ is proportional to 1/σ2.
The score variance ES2

Gµ,σ
of the normal and Gumbel distribution with density

g(u) = σ−1eue−e
u

, (3.4)

where u = (y − µ)/σ, is ω2 = σ2, Cauchy distribution with g(u) = 1/π(1 + u2) has
score variance ω2 = 2σ2 and logistic ω2 = 3σ2. A score variance of a transformed
F = G ◦ η ∈ ΠR+ is, by (3.3) and (2.6),

ω2
F = (x∗)2ω2

G

where ω2
G is the score variance of the prototype. As an observation supporting Defini-

tion 6, ω2
F of light-tailed distributions is proportional to their variance.

3.5 Influence and uncertainty functions

Suggestion 3. The normalized sfd,

IF (x) =
SF (x)

ES2
F

, (3.5)

is an influence function of distribution F .

Indeed, in the class of location (t-location) distributions, IF (x) is the influence
function of the ML estimator of the location (t-location) parameter.
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Suggestion 4. Function UF (x) = I2
F (x) is an uncertainty function of F .

Proposition 3. The mean uncertainty associated with a random variable is its score
variance.

Proof: By (3.5) and (3.3), EUF = ω2
F .

It has been shown by Fabián (2009) that for many distributions the square root of
mean uncertainty ωF ∼ eh(f), where h(f) is the differential entropy (3.2) of F .

Fig. 3 shows densities, influence and uncertainty functions of the light-tailed
Weibull and heavy-tailed beta-prime distributions with x∗ = 3 and some values of
ω (for Weibull distribution ω = 3/c, see Table 1). Influence and uncertainty function
of heavy-tailed distributions are bounded on the side of the heavy tail.

Fig. 3. Influence and uncertainty functions of Weibull and beta-prime distributions.

3.6 Weight function

As a weight of observations Xn iid according to some F ∈ ΠX are often taken values
wF (xi) = 1/f(xi). We suggest a weights based on the sfd.

Suggestion 5. Function

wF (x) =
dSF (x)

dx

is the weight function of F , describing the relative weight of a data item x ∈ X .

In contrast with the sfd, the normalizing constant is not interesting from the point
of view of a possible use of the weight function, so that in Suggestion 5 might be

11



used the t-score instead of the sfd. Weight function of distributions with linear sfd
(normal, gamma, beta) is wF (x) = 1. Weight function of the Weibull distribution is
wF (x) = (x/τ)c−1, c > 0 and of the Fréchet distribution wF (x) = (x/τ)c−1, c < 0. Fig.
4 shows weight functions of the concatenation of both distributions,

f(x) =
c

τ

(x
τ

)c−1

e−(x
τ

)c , c ∈ R (3.6)

for x∗ = τ = 1 and x∗ = 3 and some values of c. Value c = 1 corresponds to the
exponential distribution.

Fig. 4. Weight functions of members of family (3.6).

Function wF (x) can be used as a metric function, generating in the sample space
X a Riemannian distance

dF (x2, x1) =

∫ x2

x1

wF (x) dx = |SF (x2)− SF (x1)|, (3.7)

providing a one-to-one relation between probability measure F and distance (pseudo-
metric) in the sample space X .

4 Applications

4.1 Classification of models

The first attempt to systemize continuous distributions was undertaken by K. Pearson.
His system of distributions is actually based on the behavior of the sfd (1.2). Un-
fortunately, the system does not have a clear systematic basis (Johnson et al., 1994).
The reason for it follows from the previous account: formula (1.2) can not be used for
transformed distributions.

From the point of view of the behavior of sfds at boundaries of the support, distri-
butions can be classified into four basic classes, UU, BU, UB and BB, where U means
unbounded and B bounded sfd. For instance, UB means unbounded on the left and
bounded on the the right boundary of the support.

To give examples, we assign distributions mentioned in the paper into the respective
classes:

12



UU: normal, skew-normal, lognormal, Johnson’s UB, GIG, (2.11)
BU: Gumbel, Weibull, gamma, loggamma
UB: extreme value, Fréchet, inverse gamma
BB: logistic, loglogistic, beta-prime, Pareto, beta, (2.3), Kumaraswamy, Topp-

Leone.

4.2 Score moment estimates

Score moments of simple distributions are often simple functions of θ so that the
estimate θ̂n of the ’true’ θ0 based on Xn assuming a model FX ,θ can be obtained by
means of the generalized moment estimator, the score moment estimator (Fabián 2001,
2010), given by the sample version of (3.1),

1

n

n∑
i=1

SkF (xi; θ) = ESkF (θ), k = 1, ...,m. (4.1)

Score moment estimates, proven consistent and asymptotically normal with variance-
covariance matrix given in Fabián (2001), are in general not efficient, but for distribu-
tions from the BB class are all the components of θ̂n robust with respect to outliers
(either too large/small regular values of heavy-tailed distributions or consequences of
a contamination).

Consider here, for instance, the Pareto distribution with density (2.12) and tail
index γ = 1/c. By (2.14), γ = x∗ − 1. Using Table 2, ω2 = γ2(1 + 2γ). In simulation
experiments were data generated from FPareto(ω) and γ was estimated from samples of
length 75 points both by the ML and score moment method. The dependence of average
estimated γ on increasing ω is shown in upper panels of Fig. 45. The ML estimates
have lower mean squares error (MSE). Lower four panels show the average estimated
γ as a function Ω under increasing contamination represented by data generated from

Fc = 0.9FPareto(ω) + 0.1FPareto(Ω)

for two different values ω. It appeared that the score moment estimates of γ becomes
less biased than the ML ones when approximately Ω > 2ω, and the MSE of score
estimates become lower than those of ML estimates when approximately Ω > 3ω.
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Figure 5. ML and score estimates of the tail index of the Pareto distribution.

Since sfds are scalar-valued functions, sfds of distributions from classes BU, UB
and UU can be modified by robust approaches as trimming or huberising (Beran and
Schell, 2012), as in Fabián (2013) in cases of Weibull and gamma distributions.

Finally, let θ̂n be a sufficient estimate of θ0 based on Xn. No matter by which
method θ0 was estimated, the sample score mean can be in general constructed as
x̂∗n = x∗(θ̂n), and the sample score variance as ω̂2

n = ω2(θ̂n). It makes possible to
describe data samples by a central point and dispersion under an arbitrary assumed
parametric model and to compare results of the estimation for various models with
different types and different number of parameters.

4.3 Score average

Let us take SF (X) as a random variable associated to X with distribution F . Let
X1, ..., Xn be iid according to F . Let us denote by S̄F the arithmetic mean

S̄F =
1

n

n∑
i=1

SF (Xi).

Theorem 3.
lim
n→∞

P (|S̄F | ≥ ε) = 0.

As n→∞,
n1/2S̄F → Z ∼ N (0, ES2

F ).

Proof. The first assertion follows from the law of large numbers. Since ESF = 0
by Proposition 2 and ES2

F < ∞, the second assertion immediately follows from the
Central limit theorem. 2
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The first equation of the system (4.1) can be in some cases written in the form

n∑
i=1

SF (xi;x
∗) = 0. (4.2)

For distributions of the first kind with one (t-location) parameter, (4.2) is identical
with the ML equation. The solution x̂∗n of (4.2) is AN(x∗, σ2

∗), where σ2
∗ = ES2

F/[ES
′
∗]

2

and where S ′∗(x) = ∂SF (x;x∗)
∂x∗

, by the well-known result from the theory of M-estimates
(e.g. Marrona et al. 2006, Theorem 10.7). The confidence intervals for x∗n can be
constructed in accordance with the Rao scores test (Fabián 2009). By Theorem 3, the
asymptotic rejected region for x∗n is given by |S̄F (x∗n)| ≥ uα/2

√
nES2

F (x∗n) , where uα/2
is the α/2 quantile of the normal distribution.

In general, (4.2) is to be solved by an iterative way. However, the form of sfds of
distributions in Table 1 (except the loglogistic one) is so simple that the sample score
mean is given by an explicit formula x̂∗n = S−1

F (S̄Fn). In such cases we speak on score
average, in Table 1 denoted by x̄S. In cases of the Weibull and Fréchet distributions
formula for x̄S holds for a fixed value of c. It is apparent that the score average of
distributions the center point with linear sfd is the arithmetic mean, whereas a typical
value of heavy-tailed distributions considered here (inverse gamma, Pareto, Fréchet
with c =1) is the harmonic mean.

The last observation led to a ’harmonic mean based’ Hill estimator of the tail index
of Pareto distribution, c.f. Stehĺık et al. (2012) and Beran et al. (2014).

4.4 Observed sfd

The sfd evaluated at θ̂n is the observed sfd, as well as ES2
F (θ̂n) is the observed Fisher

information. Observed sfds of two random variables with arbitrary interval support
have been used for estimation of a measure of their association. The distribution-
dependent score correlation coefficient of random variables X and Y with marginal
distributions FX , FY and sfds SX , SY , respectively, was defined in Fabián (2009) by

ρF (X, Y ) = ρP (SX(X), SY (Y )) (4.3)

where ρP (X, Y ) is the Pearson’s correlation coefficient. Behavior of the sample ver-
sion of (4.3) were compared by means of simulation experiments (Fabián, 2013b) with
behavior of correlation coefficients in current use. For distributions with ’mild’ non-
symmetry (with X = ΠR, gamma, Weibull) the average values of all correlation coeffi-
cients were roughly equal to the theoretical value: correlation properties have overcome
the structure of distributions. However, in cases of highly non-symmetric distributions
from ΠR+ results were strongly dependent on the variability of the distribution. Fig 5.
shows the dependence of the average score, Spearman and robust (with Huber score
function) correlation coefficients between X and Y = αX + (1 − |α|)Z, where X and
Z were iid according to the beta-prime distribution with true ρ under increasing vari-
ability described by ω with a conclusion that only the score and Spearman correlation
coefficients are capable to indicate association of random variables with heavy-tailed
distributions.
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Fig. 6. Average sample correlation coefficients under increasing variability of samples.

Results could be used for distribution-dependent (and robust) spectral analysis of
time series, as indicated in Fabián (2011b).

5 Conclusions

To any univariate absolute continuous distribution with arbitrary support X can be
assigned a scalar function, the score function of distribution, a counterpart of the
density, describing (for given values of parameters) the relative influence of x ∈ X with
respect to the central point of the distribution, the score mean. This assignment seems
to be unique: in unclear cases it is preferred the choice of the simplest innate mapping
(to obtain simplest expressions for score moments) with a comparison of the resulting
t-score with t-scores of similar distributions. However, a quantitative comparison of
sfds of different distributions on the given support is meaningful only if distributions
have the same innate mapping.

The score function of distribution (sfd) appears to be a new alternative description
of continuous distributions. The score mean, the zero of the sfd, a finite value without
the defect of the mean, can be taken as a center point (typical value) of a distribution.
The sfd, a scalar-valued function even if the model distribution has a vector parameter,
can be explained as an extended Fisher (maximum likelihood) score for this center
point, either it is a value of some parameter (in this case is sfd actually the Fisher
score function for it) or a function of parameters.

The score moment estimates of parameters of parametric distributions are in general
not efficient, but for distributions with bounded sfds robust with respect to outliers.
Unbounded sfds can be in principle easily modified by some of robust approaches.

We think that concept of the sfd provides a new direction in parametric estimation:
the estimated parameters are not the final products of estimation procedures. The
sample score mean and sample score variance, constructed from them, are comparable
among various models with different types of parameters. Methods based on the sfd
could be particularly useful in the study of skewed and heavy-tailed distributions.
Moreover, we hope that the observed sfd could prove to be useful in other statistical
tasks, such as, for instance, correlation and regression.
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Appendix. Proof of Theorem 1. Let a location distribution Gµ ∈ ΠR has density
g(y − µ) and sfd SG(y − µ). Consider transformed distribution Fτ ∈ ΠX with density
f(x; τ) = g(η(x) − η(τ))η′(x), where τ is given by (2.8), and with score function SF .
Set u = η(x)− η(τ). Using (2.2) and the chain rule for integration, we obtain

∂

∂τ
log f(x; τ) =

1

g(u)η′(x)

∂

∂τ
[g(u)η′(x)]

=
1

g(u)

dg(u)

du

∂u

∂τ
= SG(u)η′(τ),

where SG(u) = −g′(u)/g(u)). By Proposition 1 and (2.2) TF (x; τ) = SG(u) so that
from TF (x; τ) = 0 it follows that x∗ = τ , and

∂

∂τ
log f(x; τ) = η′(x∗)TF (x; τ) = SF (x; τ).
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