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 Forecasting Czech GDP Using Mixed-Frequency Data Models 
 

Michal Franta, David Havrlant, and Marek Rusnák* 
 

 
 

Abstract 
 

In this paper we use a battery of various mixed-frequency data models to forecast Czech 
GDP. The models employed are mixed-frequency vector autoregressions, mixed-data 
sampling models, and the dynamic factor model. Using a dataset of historical vintages of 
unrevised macroeconomic and financial data, we evaluate the performance of these models 
over the 2005–2012 period and compare them with the Czech National Bank’s 
macroeconomic forecasts. The results suggest that for shorter forecasting horizons the 
accuracy of the dynamic factor model is comparable to the CNB forecasts. At longer 
horizons, mixed-frequency vector autoregressions are able to perform similarly or slightly 
better than the CNB forecasts. Furthermore, moving away from point forecasts, we also 
explore the potential of density forecasts from Bayesian mixed-frequency vector 
autoregressions. 

 

 
Abstrakt 

V tomto článku pracujeme se sadou modelů využívajících data různých frekvencí a na jejich 
základě predikujeme HDP České republiky. Použité modely zahrnují vektorové autoregrese 
pro různé frekvence, modely dat různých samplovacích frekvencí a dynamický faktorový 
model. Za použití historických časových řad nerevidovaných makroekonomických a 
finančních indikátorů hodnotíme přesnost těchto modelů pro období let 2005–2012 a 
srovnáváme ji s makroekonomickými predikcemi České národní banky (ČNB). Výsledky 
naznačují, že přesnost dynamického faktorového modelu je pro kratší horizonty predikce 
srovnatelná s predikcemi ČNB. Na delším horizontu jsou pak modely vektorové autoregrese 
pro různé frekvence srovnatelné nebo dokonce nepatrně lepší než predikce ČNB. Kromě 
bodových predikcí také zkoumáme potenciál predikcí hustot HDP vycházejících 
z bayesovské vektorové autoregrese pro různé frekvence.  
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Nontechnical Summary 

For central banks to be able to implement monetary policy successfully, the ability to forecast the 
current and future macroeconomic environment is crucial. This paper looks at models that 
produce such forecasts and evaluates the precision of the forecasts produced in real time. Real-
time forecasters need to tackle several specific issues. First, some macroeconomic indicators are 
published with a significant lag. For example, GDP for a particular quarter is released in the third 
month of the next quarter. Second, the data used for forecasting are usually available at various 
sampling frequencies. So, forecasters work with daily data (e.g. the exchange rate), monthly data 
(e.g. industrial production, unemployment), and quarterly data (e.g. GDP). Finally, real-time 
forecasters face the fact that macroeconomic aggregates are revised (sometimes substantially) by 
statistics bureaus. 

In this paper, we use a battery of various models that have been developed only recently and that 
are able to deal with these issues. The models applied include mixed-frequency vector 
autoregressions (MF-VAR), mixed-data sampling models (MIDAS), and the dynamic factor 
model (DFM). We employ these models to produce forecasts of GDP, which is the main indicator 
of the state of the economy. 

The main focus is on assessing the forecasting ability of the selected approaches in the case of 
Czech GDP. In order to facilitate comparison with the macroeconomic forecasts produced by the 
Czech National Bank (CNB), we collect a dataset of historical vintages of unrevised 
macroeconomic variables. The nature of the models used allows us to include financial indicators 
such as interest rates, credit growth, and stock market growth. In order to exploit timely 
information we also add survey indicators about industry and consumer confidence. Finally, to 
capture the fact that the Czech economy is a small open economy, we also make use of several 
foreign indicators covering macroeconomic, survey, and financial variables. Using this dataset, 
we evaluate the forecasting performance of these models over the 2005–2012 period. 

The results suggest that for shorter forecasting horizons the accuracy of the dynamic factor model 
is comparable to the CNB forecasts. At longer horizons, mixed-frequency vector autoregressions 
are able to perform similarly or slightly better than the CNB forecasts. Regarding nowcasting it 
turns out that the precision of point forecasts generally increases as new information becomes 
available over the nowcasting period. Finally, we investigate the potential of density nowcasts 
from Bayesian mixed-frequency vector autoregressions. We show that the uncertainty related to 
GDP nowcasts decreases over the nowcasting period as additional information from the 
underlying indicators becomes available. 
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1. Introduction 

Forecasting is one of the key tasks of central banks, as monetary policy decision-making draws 
heavily on expected future developments in the economy. The role of forecasting is especially 
important for inflation targeting central banks, which set their policy rates so as to guarantee that 
the inflation forecast is close to the target at a given monetary policy horizon. The accuracy of the 
inflation outlook depends on appropriation estimation of the current and future values of other 
macroeconomic indicators. In this respect, GDP – an indicator of the performance of the economy 
– is one of the most important variables. 

An important aspect of forecasting is that the time series used in the forecasting process are often 
available at various sampling frequencies. For example, GDP is published quarterly, whereas 
labor market data are available monthly and financial data even daily. Most of the standard 
forecasting models assume that the data are sampled at the same frequency. As a consequence, 
higher frequency data are in practice typically aggregated to a lower frequency. There are, 
however, costs of ignoring the availability of high frequency data in the forecasting process. First, 
we lose information through temporal aggregation. Second, we lose the opportunity of providing 
real-time forecast updates at a higher frequency (e.g. every month when forecasting a quarterly 
indicator). Another aspect related especially to real-time forecasting is that the datasets available 
at a particular point in time are unbalanced. These ragged-edge datasets are the consequence of 
different frequencies per se and, in addition, the result of different publication lags for particular 
time series.  

In this paper, we evaluate the performance of commonly used mixed-frequency models when 
nowcasting and forecasting GDP in real-time. We consider the following mixed-frequency data 
models recently proposed in the forecasting literature: mixed-data sampling (MIDAS), mixed-
frequency vector autoregression (MF-VAR), and the dynamic factor model (DFM). MIDAS is a 
univariate approach that uses distributed lag polynomials, thus yielding a parsimonious 
specification suitable for forecasting. MF-VAR is a multivariate system that is set up as if all the 
data were available at the highest frequency in the dataset regardless of whether or not all the data 
points are observable. Finally, the DFM exploits comovements among macroeconomic variables 
by assuming that they are driven by a small number of unobserved factors.1  

Our evaluation focuses on the nowcasting and forecasting of Czech GDP. In order to assess the 
value of these models for practical use within the forecasting process in the central bank, we 
design our forecasting exercises so that the accuracy of the models can be compared with the 
macroeconomic forecasts of the Czech National Bank (CNB). In other words, we use vintages of 
unrevised real-time data in order to facilitate comparison with the forecasts of the CNB, so that 
neither the model-based forecasts nor the CNB’s forecasts have a significant information 
advantage stemming from different datasets. 

The presented econometric analysis extends two recent studies by Arnoštová et al. (2010) and 
Rusnák (2013a). Arnoštová et al. (2010) explore several single-frequency models to forecast 

                                                           
1 Recently developed time-series models employing mixed-frequency data also include factor-MIDAS 
(Marcellino and Schumacher, 2010) and mixed sampling frequency VAR models (Ghysels, 2012). For a recent 
overview of methods that deal with mixed-frequency data see Foroni and Marcellino (2013). 
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quarterly GDP using monthly indicators.2 Rusnák (2013a) deals with a dynamic factor model that, 
similarly to MIDAS and MF-VAR, combines data of different frequencies directly. The results 
from the two above-mentioned studies are discussed to complete our discussion of the 
performance of mixed-frequency data models.  

In addition to point nowcasts and forecasts, density nowcasts are touched upon. For that purpose, 
a variant of MF-VAR is estimated by Bayesian techniques (MF-BVAR). This exercise allows, 
among other things, for a discussion of the uncertainty related to point nowcasts and its change 
with the arrival of new information. 

The results based on the 2005–2012 evaluation period suggest that all of the models considered 
are able to beat a naïve benchmark (a random walk forecast). Over the nowcasting period a 
striking increase in the precision of the nowcasts in the third month of the nowcasted quarter 
coincides with the release of GDP data for the previous quarter. For nowcasting horizons, only the 
dynamic factor model is able to compete with the CNB nowcasts. Regarding forecasting, at longer 
horizons mixed-frequency VAR and the dynamic factor model deliver forecasts that are 
comparable to or better than the CNB forecasts. At shorter horizons, the CNB forecasts perform 
best. 

Even though the examination of density forecasts is largely intended to illustrate the use of this 
tool for the Czech case, some results are worth emphasizing. It turns out that the size of the 
uncertainty decreases with the arrival of new information over the nowcasting period. Moreover, 
the estimates obtained later during the nowcasting period, which are surrounded by less 
uncertainty, are no worse than the less precise estimates at the beginning of the nowcasting 
period. 

The rest of the paper is organized as follows. Section 2 presents the mixed-frequency data models 
used in the analysis and discusses their estimation. The dataset is introduced in Section 3. In 
Section 4 the results of the nowcasting and forecasting exercises are presented. Section 5 provides 
several notes on the uncertainty related to nowcasts based on the MF-BVAR model. Finally, 
Section 6 concludes. Some additional results related to robustness issues are included in 
appendices. 

2. Models and Estimation 

The motivation to examine all the currently used mixed-frequency data models – MIDAS, MF-
VAR, and the DFM – stems from the fact that there is no theoretical preference a priori between 
the model approaches. As argued by Kuzin et al. (2011), MIDAS regression is a parsimoniously 
parameterized single-equation model but does not account for dynamic interrelations among the 
variables. On the other hand, while MF-VAR might be able to better capture the dynamics of the 
variables, it is more vulnerable to the curse of dimensionality, since one needs to specify a 

                                                           
2 Arnoštová et al. (2010) consider a naïve MA(4) model of GDP, the model based on prediction of the 
expenditure components of GDP used in the CNB for near-term output forecasting, a simple bivariate VAR 
model of quarterly GDP and an aggregated monthly indicator, and a bridge equations model that starts with 
forecasting of monthly indicators, which are then combined with the GDP series in a VAR model for quarterly 
data. Apart from these four models, Arnoštová et al. (2010) also examine several factor models based on static 
principal components and dynamic factors. 
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dynamic model for all variables.3 The DFM also tries to exploit the dynamics of the variables, but 
attempts to turn the curse of dimensionality into a blessing by exploiting the comovements of the 
variables using a small number of common factors. 

The three model classes are described in the following sub-sections. The rest of the models used 
for forecasting performance analysis are then discussed. Our set of models will be compared with 
a naïve (random walk) forecast and a CNB macroeconomic forecast. 

We estimate the MIDAS and MF-VAR models using only GDP and one indicator variable at a 
time, while the dynamic factor model is estimated using all of the indicators jointly. We prefer 
this approach for the MIDAS and MF-VAR models since these models – unlike the DFM – are 
not equipped to deal with the curse of dimensionality that arises when one considers all of the 
indicators. Kuzin et al. (2011) follow a similar strategy. 

2.1 Mixed-data Sampling (MIDAS) 

The MIDAS approach was first applied in volatility forecasting (Ghysels et al., 2004), but since 
then a vast literature has accumulated documenting the gains from using higher frequency 
information in forecasting real activity in the U.S. and the euro area (see, for example, Clements 
and Galvão, 2008, Kuzin et al., 2011, and the survey by Andreou et al., 2011, for additional 
references). In addition, Clements and Galvão (2009) and Armesto et al. (2010) corroborate these 
findings using real-time vintages. See Ghysels et al. (2007) and Andreou et al. (2011) for 
comprehensive surveys on MIDAS. 

We are interested in forecasting quarterly GDP growth Q
htq

y   (h quarters ahead) using a monthly 

indicator for the i-th month in quarter qt , M
ti q

X , . In our baseline application we use an unrestricted 

MIDAS (U-MIDAS) specification: 
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0
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where MN  denotes the number of months in a quarter. The advantage of the unrestricted 
specification is that it can easily be estimated by OLS. We use U-MIDAS as our baseline MIDAS 
model, but we also investigate the robustness of our results to different polynomial schemes for 
coefficients   in Appendix C. The results in Appendix C show that the forecasting performance 
of U-MIDAS is similar to that of other MIDAS specifications. This is in line with Foroni et al. 
(2014), who show in a Monte Carlo experiment that when the difference between frequencies is 
small (e.g. monthly vs. quarterly in our case) one might not need to employ more complex 
polynomial schemes such as Almon or beta lag polynomials, and that U-MIDAS generally 
performs well.  

In our baseline estimations, we use the last six available observations of the monthly indicator 
(lags and leads depending on the forecast horizon). Since GDP growth tends to be rather 
persistent, we also include a lag of GDP growth to improve the forecasting accuracy. Note that 

                                                           
3 Regarding the relative forecasting performance of MIDAS and MF-VAR in output forecasting, Kuzin et al. 
(2011) show that in the case of nowcasting and forecasting of euro area GDP, MF-VAR performs better for 
longer horizons (5 to 9 months) while MIDAS outperforms MF-VAR at shorter horizons (1 to 4 months). 
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MIDAS is a single equation model which does not model the dynamics of the indicators on the 
right-hand side. Therefore, MIDAS can only provide direct forecasts, which results in a need to 
re-estimate the model for each forecasting horizon. 

2.2 Mixed-frequency VAR (MF-VAR) 

Mariano and Murasawa (2003, 2010) applied methods dealing with different sample frequencies 
to the quarterly time series of output and a monthly indicator within an MF-VAR framework. 
Recent contributions to this stream of literature can be divided according to whether the 
estimation of the system of equations is based on maximum likelihood (Kuzin et al., 2011) or 
Bayesian methods (Marcellino et al., 2012; Schorfheide and Song, 2011; Chiu et al., 2011). 

MF-VARs are multivariate models able to account for endogenous variables of different sampling 
frequencies. The model is set up to produce forecasts of the highest sampling frequency of the 
time series entering the analysis. The following specification is formulated for the quarterly series 
of GDP and a monthly indicator (e.g. industrial production in a sector, a business climate index, 
etc.). 

Following Mariano and Murasawa (2003) we assume that the observed quarterly level of GDP, 
Q

tq
Y , relates to the unobserved monthly levels of GDP in the relevant quarter, M

tm
Y
~

, as their 

geometric mean: 
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where the time index mt  denotes months. Subtracting from equation (2) the same equation lagged 

by three months provides an equation in observed q-o-q growth rates, 
Q
tq

y , and unobserved m-o-m 

growth rates, M
tm

y~ : 
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Combining unobserved monthly observations of the GDP growth rate with a monthly indicator 

M
tm

X  into the VAR model structure yields: 
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Equation (3) relates observed and unobserved variables and together with equation (4) can easily 
be rewritten into a linear state space form (for 5Mp ): 
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where  2,0~ INv

mt
. The specification of matrices A, B, and C together with equation (5) for 

5Mp  can be found in Mariano and Murasawa (2010). 

System (5) is estimated by the EM algorithm and is then used to forecast output by the Kalman 
smoother procedure. As is usual in this context the observed data are demeaned prior to the 
estimation to reduce the size of the parameter set. The mean is then added to the forecasted 
values. The one-step-ahead forecasts are then iterated to obtain forecasts for longer horizons. The 
number of lags, Mp , is determined using the Bayesian Information Criterion for each estimated 
model separately. The maximum lag considered is six months. 

The bivariate system (5) is estimated for all monthly indicators, and the individual forecasts are 
then combined into a simple mean. As a robustness check, the weighting scheme based on the 
previous forecasting performance of a particular bivariate VAR is employed. More specifically, 
the weights are computed as the inverse of the mean squared errors over the previous four 
quarters.4 The weights of the bivariate models are then normalized to unity and used to calculate 
the resulting forecast. The results are largely unaffected by the choice of alternative weighting 
scheme and are presented in Appendix A. 

2.3 Mixed-frequency Bayesian VAR (MF-BVAR) 

The MF-VAR model is estimated by the EM algorithm, which allows us to deal with missing 
values of GDP growth. Another possible approach to the estimation of MF-VAR draws on 
Bayesian techniques. More precisely, we employ the Gibbs sampler as in Chiu et al. (2012). The 
sampler draws subsequently from the conditional posteriors of the model parameters and from the 
assumed distribution of the missing values. For each draw of model parameters and missing 
values a forecast is computed. The median of the simulated distribution of the forecasts for each 
forecasting horizon is then taken. 

Note that the point forecasts produced by MF-VAR estimated by Bayesian techniques (MF-
BVAR) can provide results different from the MF-VAR model, as the Bayesian approach allows 
one to incorporate additional information in the form of priors on top of the information provided 
by the data. 

We follow Chiu et al. (2012) and define: 
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4 Since nowcasts are computed for several points in a quarter only, the MSE is computed at the same point in the 
previous four quarters. 
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where again Q

tm
y~  is quarterly growth of GDP with missing values for the second and third month 

of the quarter, and M
tm

X  denotes a fully observable monthly indicator. The model is formulated as 

a VAR-type model: 
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where  ,0~ Nu

mt
. The Gibbs sampler is described in Appendix A of Chiu et al. (2012). As an 

alternative, the Gibbs sampler discussed in Schorfheide and Song (2013) can be used. These two 
samplers differ in the way the missing values are treated.  

Regarding the prior assumed for the model parameters, we employ the independent normal 
inverse-Wishart prior. Since the data are transformed to be stationary prior to estimation, the prior 
mean for the AR parameters is set to zero. The prior variance of the AR parameters is set in line 
with the Minnesota-style prior with the standard hyperparameter values as in Canova (2007). The 
inverse-Wishart distribution for the prior on the covariance matrix of the error term is assumed to 
have an identity matrix as a scale matrix and three degrees of freedom. 

Note that in contrast to the MF-VAR model, the series entering the analysis are not demeaned, as 
the uncertainty of the intercept is of interest as well as the uncertainty related to the other model 
parameters. To simulate the posterior distributions, 6,000 draws from the Gibbs sampler are 
generated. The first 5,000 draws are discarded to minimize the effect of the initial values of the 
sampler, and the last 1,000 draws are used for inference. In model (7), we assume six lags  
( 6Mp ).  

Similarly to MF-VAR and MIDAS, the bivariate models based on a particular monthly indicator 
(7) are combined such that the median nowcast of a particular model enters the combination 
procedure. The simple mean of the medians is presented. The weighted mean – using the inverses 
of the MSE over the last four quarters as weights – is presented in Appendix A. 

2.4 Dynamic Factor Model (DFM) 

One of the most heavily used mixed-frequency data models is the dynamic factor model 
(Giannone et al., 2008; Camacho and Perez-Quiros, 2010; Banbura and Modugno, 2014). 
Therefore, we also compare the MIDAS and MF-VAR models with the DFM. Similarly to MF-
VAR, the DFM is a multivariate approach that uses monthly indicators to predict quarterly GDP. 
The model is cast into state space representation and is estimated by the EM algorithm. By using 
the Kalman filter and smoother, the model is able to handle missing observations and unbalanced 
datasets as well as mixed frequencies. 

The dynamic factor model is specified as follows: 

 

ttt fx  , (8)

ttt uAff  1 , (9)
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where tx  is a vector of monthly indicators and quarterly GDP,   is a matrix of factor loadings, 

tf  stands for an unobserved common factor, while A captures the dynamics of the factor. Shocks 

t  and tu  are assumed to be mutually uncorrelated. We use one factor to capture the 
comovements across variables and two lags to describe the autoregressive dynamics of the factor. 
Further details about the model and the specification we use can be found in Rusnák (2013a), who 
also evaluates the performance of the DFM for forecasting Czech GDP under various 
specifications. Further, technical details of the estimation using the EM algorithm can be found in 
Banbura and Modugno (2014).  

Note that the difference between the DFM and MIDAS and MFVAR lies in how the models 
aggregate the information coming from the different indicators. While the DFM weights the 
different indicators endogenously within the estimation procedure, the individual MFVAR and 
MIDAS forecasts are weighted out of the model using a specific weighting scheme (simple and 
MSE-weighted means). 

2.5 The CNB’s Macroeconomic Forecasts 

We compare the forecasts from the three models with the CNB’s macroeconomic forecasts. 
Currently, GDP forecasting up to one quarter ahead (referred to as near-term forecasting at the 
CNB) is based on a set of linear regressions, which capture the dynamics of single expenditure 
components. Additional information stemming from monthly indicators is incorporated in the 
form of expert judgment. Subsequently, the predicted expenditure components are aggregated, 
and further expert judgment is applied in order to obtain a sufficiently smooth trajectory of overall 
GDP. 

For forecasting horizons longer than one quarter ahead, the CNB’s GDP forecast is based on the 
structural core model of the CNB. A small open-economy gap model – QPM (Coats et al., 2003) – 
was used until 2008, and a standard DSGE model – g3 (Andrle et al., 2009) – has been applied 
since then. Again, expert judgments are often incorporated into the forecast during the forecasting 
process (Brůha et al., 2013). 

3. Data 

There is a range of variables of monthly frequency that might provide information useful for the 
forecasting of GDP. Our approach in selecting the indicators is to focus on the so-called headline 
macro aggregates and not to consider disaggregated information (due to the unavailability of real-
time data and the possible over-representation of one variable or sector in the dataset). Our dataset 
thus comprises real GDP growth and 27 indicators covering hard data and financial, survey, and 
foreign variables.  

Hard data indicators are included because of their natural connection with the production side 
(e.g. industrial production, construction) and the expenditure side (e.g. sales, unemployment rate) 
of the economy. Financial variables are considered since there is some evidence of the importance 
of these variables for Czech GDP (Havranek et al., 2012). Furthermore, survey variables have 
been shown to be crucial for precise and timely nowcasting in the U.S. and some other countries 
(Giannone et al., 2008). Finally, the rationale for including data capturing foreign developments is 
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straightforward: the Czech economy is a small open economy and is therefore strongly affected by 
foreign variables.  

In our forecasting performance exercise we will attempt to match the dataset to the information 
set that is available to forecasters when they are preparing their regular forecasts. This amounts to 
using vintages of unrevised macroeconomic data and taking into account publication lags of 
macroeconomic variables (for example, GDP is released with a considerable lag, approximately 
70 days after the end of the reference quarter).  

Using unrevised data might be important since there is evidence that revisions to Czech GDP are 
of considerable magnitude (Rusnák, 2013b). The use of revised data for the out-of-sample 
exercise may overestimate the predictive power of the indicators and understate the forecasting 
errors that would have been made when forecasting using only the information available in real 
time. If the revisions are weakly correlated one might expect them to tend to average out when 
using real-time data (Giannone et al., 2008), but this is ultimately an empirical matter that we are 
not able to rule out beforehand. We provide the results using only the last available vintage in 
Appendix B. 

Table 1 summarizes our dataset. We use ten series that are subject to frequent revisions, so for 
those series we use historical vintages obtained from the OECD real-time database. A further look 
at Table 1 reveals considerable variation in the publication delays for the variables. For the 
purposes of our forecasting exercise we map these publication delays into unbalancedness patterns 
observed in the middle of the month and at the end of the month. Besides the OECD real-time 
database, the data sources are the Czech Ministry of Labor and Social Affairs (MLSA), the Czech 
National Bank ARAD database (CNB), the Prague Stock Exchange (PSE), the Czech Statistical 
Office (CZSO), the Ifo Institute for Economic Research (IFO), and Eurostat. 
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Table 1: List of Variables Used in Forecasting Exercises 

  Variable Rev. Pub. lag Unb. Pat Source 

1 Real GDP Y 68 to 71 4,5,3-4,5,3 OECD 
2 Industrial production index Y 37 to 45 2-2 OECD 
3 Construction output Y 37 to 45 2-2 OECD 
4 Retail sales Y 35 to 49 2-2 OECD 
5 Unemployment rate N 8 to 11 1-1 MLSA 
6 CPI total N 8 to 11 1-1 CZSO 
7 Exports (current prices) Y 35 to 39 2-2 OECD 
8 Imports (current prices) Y 35 to 39 2-2 OECD 
9 Export price index N 43 to 47 3-2 CZSO 
10 Import price index N 43 to 47 3-2 CZSO 
11 CZK/EUR exchange rate N 0 1-0 CNB 
12 M2 Y 30 to 31 2-1 CNB 
13 Credit Y 30 to 31 2-1 CNB 
14 3M PRIBOR  N 0 1-0 CNB 
15 1Y PRIBOR  N 0 1-0 CNB 
16 PX-50 stock index N 0 1-0 PSE 
17 Czech government bond yield (10Y) N 0 1-0 CNB 
18 Consumer confidence indicator N -7 to -2 1-0 CZSO 
19 Industry confidence indicator N -7 to -2 1-0 OECD 
20 Construction confidence indicator N -7 to -2 1-0 OECD 
21 Trade confidence indicator N -7 to -2 1-0 OECD 
22 Services confidence indicator N -7 to -2 1-0 OECD 
23 3M EURIBOR  N 0 1-0 CNB 
24 1Y EURIBOR  N 0 1-0 CNB 
25 Oil price (Brent) N 0 1-0 Datastream 
26 Ifo Business Climate for Germany N -10 to -4 1-0 IFO 
27 Euro area Business Climate Indicator N -4 to -1 1-0 Eurostat 

28 German exports Y 40 2.2 OECD 

Notes: Rev. indicates whether the data used are revised or not. Pub. Lag indicates the typical publication 
delay of the variable in days (average during 2005–2012 period). Unb. Pat. stands for 
Unbalancedness Pattern and indicates the number of missing observations in the middle of the month 
and at the end of the month, respectively. All indicators except for GDP are at monthly frequency. 
All of the variables are in logarithms and differenced, except for the industry, construction, trade, 
and services confidence indicators, which are differenced only. 

 

We use a real-time database of 99 monthly vintages: the first vintage is from October 2004 and 
the last from December 2012. Most of the variables start from 2000M1. Note that the monthly 
data on the Czech government bond yield (10Y) and the services confidence indicator exhibit a 
few missing values at the beginning of 2000. Since MIDAS and MF-VAR assume fully 
observable monthly indicators, the two indicators are excluded from the estimation and 
forecasting for the two model classes.  

We do not preselect the variables from our dataset any further. Models using variables selected 
based on some in-sample criteria might be subject to structural breaks and their out-of-sample 
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performance might not be satisfactory. On the other hand, choosing variables based on some out-
of-sample training sample might not be a good strategy for the Czech Republic, since variables 
preselected using the pre-crisis period might lose their predictive power in the crisis period. 
Therefore, we use all of the variables in our dataset to produce the forecasts. The DFM should be 
able to arrive at proper weights for the indicators provided that the variables are not over-
represented in the dataset to confuse idiosyncratic shocks with the estimated factors. For the 
MIDAS and MFVAR models we combine the forecasts from the individual bivariate models 
using simple averages or weights based on past forecast errors. 

4. Results 

The assessment of the out-of-sample forecasting precision is based on the root-mean-square error 
(RMSE), which is computed over the evaluation period. The evaluation sample covers the period 
2005Q1–2012Q3. We use two measures of the observed GDP growth rate: the first release of 
GDP growth, and the growth rate as reported in our last available vintage, i.e., the December 2012 
vintage. While the first releases might be closer to the forecasters’ loss function and might be 
important from the communication point of view (e.g. the CNB’s comments on the first data 
releases), the last available vintage growth rates are arguably closer to the true values, as they are 
based on all the available information and the latest methodology. 

In what follows, we denote nowcasts as forecasts for a given quarter which are conducted during 
the previous quarter, during the given quarter, and in the first month of the next quarter. More 
precisely, the nowcasting period refers to all the middles and ends of the months of the previous 
quarter: Q(-1) M1 mid, Q(-1) M1 end, …, Q(-1) M3 end, to the same periods in the current quarter 
Q(0) M1 mid, Q(0) M1 end, …, Q(0) M3 end, and to the middle and end of the first month of the 
quarter following the quarter the nowcast is done for: Q(1) M1 mid and Q(1) M1 end. Forecasts 
are considered for the current quarter (nowcasts) and up to six quarters ahead.  

4.1 Nowcasting 

Nowcasts of GDP are used as inputs into the core CNB forecasting model, so models that are able 
to provide precise nowcasts are of great relevance for the CNB. Figure 1 presents the results of 
our mixed-frequency data models and compares the predictive accuracy with the CNB nowcasts.  

The results show that the performance of the DFM is superior to all other mixed-frequency model 
forecasts. Moreover, the nowcasting accuracy of the DFM is comparable to the nowcasts 
historically produced by the CNB. MF-VAR and MF-BVAR outperform the DFM for forecasts 
carried out at the beginning of the previous quarter for a horizon of a quarter. 
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Figure 1: Root Mean Square Errors at Different Nowcast Origins 
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On the whole, all of the models tend to be more precise with the arrival of new information, as 
documented by the decreasing root mean square error. The decrease is not monotonous though, 
and the biggest decrease seems to come in the middle of the third month of the nowcasted quarter. 
This is most likely due to the release of the GDP data for the previous quarter and probably 
reflects additional information about GDP that is not present in the monthly indicators. 

The results are qualitatively similar when the forecasts are evaluated using the first releases of 
GDP or using the latest available vintage from December 2012. Naturally, the RMSE evaluated 
using the latest vintage is larger because it also reflects the presence of future revisions that are 
not known at the time when the forecast is made. Note that it is generally hard to predict revisions 
to Czech GDP out of sample (Rusnak, 2013b). 

For GDP nowcasts for the euro area, Foroni and Marcellino (2014) find that the MIDAS model 
outperforms MF-VAR if the nowcasting period (Q(0) in our notation) is considered. For Czech 
GDP nowcasting the opposite result is found. 

4.2 Forecasting 

The models we consider are geared predominantly to short-term forecasting, due to their ability to 
work with mixed frequencies and ragged ends. Mixed-frequency models, however, might also 
perform well for longer-term forecasts due to their ability to provide a precise starting point. Sims 
(2002) provides anecdotal evidence suggesting that much of the advantage of judgmental 
forecasts over model-based forecasts comes from their ability to obtain more precise forecasts of 
the current quarter.  

In this section, we therefore look at the suitability of our models for medium-term forecasting. 
Tables 2 and 3 present the RMSEs for forecasting horizons up to six quarters ahead. The forecast 
origin for these forecasts is chosen to be the end of the third month of the current quarter (Q(0)M3 
end), since this largely corresponds to the information set available to the CNB when producing 
its macroeconomic forecast. 

Table 2: Root Mean Square Forecast Errors (Evaluated Using First Releases) 

  Nowcast 1Q-ahead2Q-ahead3Q-ahead4Q-ahead 5Q-ahead 6Q-ahead
RW 0.93 1.25 1.29 1.38 1.52 1.55 1.52 
DFM 0.49 0.79 1.10 1.18 1.18 1.17 1.20 
MIDAS 0.79 1.14 1.27 1.28 1.29 1.34 1.37 
MF-VAR 0.80 1.01 1.06 1.13 1.20 1.18 1.19 
MF-BVAR 0.82 0.95 1.03 1.10 1.15 1.14 1.15 
CNB 0.48 0.70 0.97 1.06 1.16 1.21 1.28 

Note: Bold indicates the lowest value of the RMSE for a particular horizon. 
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Table 3: Root Mean Square Forecast Errors (Evaluated Using Dec 2012 Vintage) 

  Nowcast 1Q-ahead2Q-ahead3Q-ahead4Q-ahead 5Q-ahead 6Q-ahead
RW 0.93 1.28 1.44 1.53 1.67 1.70 1.67 
DFM 0.74 0.96 1.20 1.31 1.34 1.33 1.34 
MIDAS 0.89 1.22 1.44 1.45 1.49 1.54 1.54 
MF-VAR 0.93 1.15 1.22 1.28 1.35 1.37 1.35 
MF-BVAR 0.96 1.10 1.18 1.25 1.30 1.30 1.30 
CNB 0.70 0.86 1.07 1.19 1.32 1.38 1.44 

Note: Bold indicates the lowest value of the RMSE for a particular horizon. 

Looking at Table 2, there are several observations worth noting. First, all the models perform 
better than the naïve random walk forecast. Second, the DFM comes out as the best among the 
mixed-frequency model-based forecasts for the nowcast and the 1Q-ahead horizon. The DFM is 
competitive with the CNB for nowcasts (the difference in the RMSE being less than 0.1). Third, 
MF-BVAR performs best for horizons beyond 1Q ahead. MF-BVAR is competitive with the CNB 
at 2Q–3Q and performs best for horizons beyond the third quarter. Table 3 shows qualitatively 
similar results when the December 2012 vintage is used for evaluating the forecasts. 

According to Arnoštová et al. (2010), the CNB framework performed much better than the DFM 
in terms of forecasting accuracy. However, this might stem from a lack of information contained 
in the time span examined, which ended in 2009. Our results suggest that extending the time span 
to 2012, i.e., including the information carried by the recent financial and economic crisis, 
improves the performance of the DFM substantially. 

The relative performance of the two variants of MF-VAR and MIDAS is comparable for nowcasts 
and worse in the case of MIDAS if a longer forecasting horizon is considered. This is similar to 
the findings for nowcasting GDP in the euro area in Kuzin et al. (2011), who find that MIDAS 
forecasts better for nowcasting (up to 4–5 quarters) and MF-VAR outperforms MIDAS for longer 
horizons. 

5. Density Nowcasts from MF-BVAR 

Bayesian estimation of MF-VAR offers a straightforward way of constructing density 
nowcasts/forecasts. We restrict our attention to density nowcasts. 

The motivation for extending our analysis to density nowcasting is twofold. First, we want to 
illustrate how density nowcasts of output are constructed in the context of Czech real-time vintage 
data. As suggested by some practitioners, density nowcasts allow uncertainty to be introduced into 
core forecasting models (usually DSGE-type models), which use nowcasts as initial conditions 
(e.g. Bache et al., 2010). Density nowcasting then represents the first step in developing such a 
procedure, the second step being soft conditioning of the forecasts on the nowcast densities. The 
second motivation is to examine how the uncertainty and precision of GDP nowcasts change with 
the release of new data during the forecasting period.  
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We start by evaluating density nowcasts. The measure we apply is based on the Kullback-Leibler 
Information Criterion (KLIC) – see Mitchell and Hall (2005). The KLIC for a model i is defined 
as follows: 

   
        titttt

tit

tt
tti yfyfEdy

yf

yf
yfKLIC ,

,

lnlnln , (10) 

 
where  tt yf  is the true density of a random variable and  tit yf ,  is the density based on model i. 

 
To compare the performance of density nowcasts from two models ( 2,1i ), it is enough to 
compare the expected logarithmic score (as the logarithmic score of the true density in the KLIC 
in formula (10) is the same for both models): 

 
  titi yfESE ,lnln  . (11) 

 
The model with the higher expected logarithmic score gives on average a higher probability to 
events that have occurred ex post. The expected logarithmic score can be estimated by the average 
of  tit yf ,ln  over the evaluation sample. The resulting number is called the log score. 

Figure 2: Log Score for Selected Indicators Over the Nowcasting Horizon 

 
 

As an example, Figure 2 presents log scores for selected monthly indicators. The figure suggests 
which monthly indicators (bivariate VARs) provide more accurate density nowcasts. It turns out, 
for example, that industrial production is a more useful monthly indicator than the unemployment 
rate for all the nowcasting periods considered. Furthermore, Figure 2 suggests how the accuracy 
of the density nowcasts changes with the arrival of new data during the nowcasting period. 
Surprisingly, for some indicators the log score decreases at the end of the nowcasting period, 
when the most accurate information consistent with the ex-post observed GDP growth should be 
available. 
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Figure 3 shows the log score for the combined density nowcasts. The individual density nowcasts 
from bivariate MF-BVARs are combined linearly with equal weights. As a robustness check, 
linear combination with recursive log score weights is used (see Kascha and Ravazzolo, 2010, for 
a discussion of various weighting schemes for density combination). The results, however, are 
largely unaffected. 

Figure 3: Log Score for the Combined Density Nowcast 

 
 

The log score for the combined nowcast densities is higher than the individual log scores 
presented in Figure 2. The magnitude of the change over the nowcasting period, however, is not 
large, i.e., the accuracy of the density nowcasts does not change much with the arrival of new 
information. So, the new information arriving seems to add as much new relevant information as 
noise. 

Next, Figure 4 shows how the uncertainty related to the nowcasts decreases over the nowcasting 
period. The figure presents the distance of a particular quantile of the posterior distribution of the 
combined nowcast to the median of the distribution. The number for a particular nowcasting 
period represents the average over all quarters considered for nowcasting. The falling profiles for 
all the quantiles considered suggest decreasing uncertainty as a consequence of the arrival of new 
information during the nowcasting period. 

Figure 4: Average Distance to the Median of the Combined Density Nowcast for Selected 
Quantiles 
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Finally, Figure 5 reports selected quantiles of the density nowcasts computed at the end of the 
relevant quarter (Q(0) M3) and the observed GDP growth. As above, the density nowcasts are 
produced by combining the density nowcasts from bivariate VARs and simply averaged. The 
combination based on log scores provides almost identical results.  

Figure 5: Nowcasts and Observed GDP Growth, 2005Q1–20012Q3 

 
Two points are worth emphasizing. First, the uncertainty related to the nowcasts increased 
significantly during and after the 2008 crisis, which hit the Czech Republic in 2009. Second, the 
fall in GDP in 2009 is not captured by the 95% credible set of nowcasts even though foreign 
monthly indicators are included. This only reflects the severity of the negative shock to GDP 
during the 2009 recession. 

6. Concluding Remarks 

In this paper we employ three classes of mixed-frequency data models to examine the forecasting 
of Czech GDP in real time. Specifically, we use two variants of mixed-frequency vector 
autoregression estimated by the EM algorithm and the Kalman smoother (MF-VAR) and by 
Bayesian techniques (MF-BVAR), the mixed-data sampling model (MIDAS), and the dynamic 
factor model (DFM) and evaluate their precision against the CNB’s macroeconomic forecasts.  

The results suggest that for nowcasting and short-term forecasting the performance of the 
dynamic factor model is comparable to the macroeconomic forecasts published by the CNB. At 
longer horizons, MF-VARs compete successfully with the CNB’s forecasts. Moreover, the 
Bayesian approach to the estimation of the MF-VAR model adds to the precision of the GDP 
forecasts. To summarize, mixed-frequency data models are an important complementary tool to 
the currently used forecasting approaches, which often draw heavily on expert judgment. As 
mixed-frequency models take into account a much broader set of time series than single-
frequency models they can provide a similar level of forecasting quality as judgmental forecasts. 

The models presented here might be useful for nowcasting and forecasting other variables as well, 
especially ones that have long publication delays. Future improvements to the models might lie in 
combining the forecasts from various models or combining forecast densities similarly to Aastveit 
et al. (2011). Alternatively, capturing possible nonlinear relationships between the indicators (e.g. 
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financial variables) and GDP might improve the predictions. Finally, note that the models that 
employ the Kalman filter (MF-VAR and DFM) can also be used to produce conditional forecasts 
in a relatively straightforward manner (Banbura et al., 2014). 
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APPENDIX A: Combination of Individual Bivariate MF-VARs/MF-BVARs   

based on MSE  

As a benchmark, the simple mean over the nowcasts/forecasts from the bivariate MF-VARs is 
considered. However, the performance of the models might be improved if the weights depend on 
the previous forecasting error of a particular model. In this section, we compare the results for the 
two weighting schemes. Note that the mean squared errors used to compute the weights for 
quarter qt  are taken for quarters 2 5,...,q qt t   to account for the GDP publication lag. 

The results using MSE weighting suggest that the improvements in the various weighting schemes 
are generally modest. Moreover, the performance varies for different horizons and different 
models. Selecting the top five models generally works best for MF-BVAR, while for MIDAS and 
MFVAR there are no clearly preferred weighting schemes. 

 

Table A1: Nowcasting – Different Weighting Schemes (Evaluated Using First Releases) 

  

Q(‐1) 
M1 
mid 

Q(‐1) 
M1 
end 

Q(‐1) 
M2 
mid 

Q(‐1) 
M2 
end 

Q(‐1) 
M3 
mid 

Q(‐1) 
M3 
end 

Q(0) 
M1 
mid 

Q(0) 
M1 
end 

Q(0) 
M2 
mid 

Q(0) 
M2 
end 

Q(0) 
M3 
mid 

Q(0) 
M3 
end 

Q(+1) 
M1 
mid 

Q(+1) 
M1 
end 

MFVAR                                           

Simple Mean  1.03  1.03  1.04  1.02  1.01 1.00 1.00 1.00 1.00 0.99 0.79  0.80  0.79  0.80

Inverse MSE  1.00  1.00  1.01  0.98  1.00 0.98 0.98 0.99 0.99 0.98 0.77  0.78  0.78  0.78

Best model  1.11  1.15  1.03  1.07  1.04 1.12 1.10 1.04 0.99 1.12 0.85  0.84  0.83  0.65

Top 5 models  1.02  1.01  1.01  0.97  1.00 0.99 1.00 0.99 0.99 0.98 0.70  0.72  0.72  0.73

MF‐BVAR                                           

Simple Mean  1.00  0.99  0.99  0.98  0.96 0.94 0.93 0.93 0.92 0.91 0.80  0.82  0.82  0.82

Inverse MSE  0.98  0.99  0.99  0.95  0.94 0.91 0.92 0.90 0.91 0.91 0.79  0.80  0.80  0.81

Best model  1.01  1.04  1.02  0.98  0.95 0.95 0.96 0.98 0.99 0.96 0.80  0.79  0.85  0.90

Top 5 models  0.98  0.96  1.00  0.98  0.93 0.91 0.92 0.91 0.93 0.95 0.75  0.75  0.79  0.80

MIDAS 

Simple Mean  1.22  1.19  1.18  1.19  1.20 1.20 1.11 1.20 1.09 1.08 0.82  0.79  0.79  0.82

Inverse MSE  1.19  1.19  1.14  1.32  1.06 1.07 1.03 1.06 1.03 1.03 0.78  0.78  0.78  0.78

Best model  1.25  1.15  1.10  1.40  1.18 1.07 1.14 1.19 1.32 1.04 0.59  0.87  0.90  1.27

Top 5 models  1.26  1.22  1.11  1.24  1.23 1.11 1.13 1.22 1.11 1.09 0.76  0.75  0.73  0.81
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Table A2: Nowcasting – Different Weighting Schemes (Evaluated Using Dec 2012 Vintage) 

  

Q(‐1) 
M1 
mid 

Q(‐1) 
M1 
end 

Q(‐1) 
M2 
mid 

Q(‐1) 
M2 
end 

Q(‐1) 
M3 
mid 

Q(‐1) 
M3 
end 

Q(0) 
M1 
mid 

Q(0) 
M1 
end 

Q(0) 
M2 
mid 

Q(0) 
M2 
end 

Q(0) 
M3 
mid 

Q(0) 
M3 
end 

Q(+1) 
M1 
mid 

Q(+1) 
M1 
end 

MFVAR                                           

Simple Mean  1.21  1.21  1.21  1.20  1.15 1.15 1.15 1.15 1.15 1.15 0.93  0.93  0.93  0.93

Inverse MSE  1.17  1.17  1.18  1.16  1.14 1.13 1.13 1.14 1.14 1.13 0.91  0.92  0.92  0.92

Best model  1.24  1.26  1.18  1.20  1.09 1.18 1.17 1.13 1.07 1.18 0.98  0.97  0.96  0.82

Top 5 models  1.19  1.18  1.17  1.15  1.12 1.13 1.15 1.13 1.13 1.11 0.85  0.87  0.88  0.88

MF‐BVAR                                           

Simple Mean  1.17  1.17  1.16  1.15  1.11 1.09 1.08 1.08 1.08 1.07 0.95  0.96  0.96  0.97

Inverse MSE  1.15  1.17  1.17  1.12  1.09 1.06 1.07 1.04 1.07 1.06 0.95  0.95  0.95  0.96

Best model  1.17  1.19  1.19  1.15  1.05 1.04 1.09 1.13 1.14 1.12 0.97  0.92  0.99  1.02

Top 5 models  1.15  1.14  1.17  1.15  1.06 1.07 1.07 1.07 1.09 1.12 0.92  0.91  0.95  0.96

MIDAS 

Simple Mean  1.41  1.35  1.37  1.35  1.32 1.35 1.20 1.32 1.16 1.18 0.89  0.89  0.89  0.89

Inverse MSE  1.39  1.37  1.31  1.46  1.19 1.23 1.14 1.20 1.11 1.14 0.88  0.90  0.89  0.88

Best model  1.45  1.34  1.25  1.53  1.29 1.22 1.18 1.30 1.31 1.13 0.78  1.00  1.02  1.36

Top 5 models  1.46  1.38  1.29  1.39  1.30 1.26 1.20 1.28 1.15 1.19 0.87  0.85  0.85  0.90

 
 

Table A3: Forecasting – Different Weighting Schemes (Evaluated Using First Releases) 

   Nowcast 1Q‐ahead  2Q‐ahead 3Q‐ahead 4Q‐ahead 5Q‐ahead  6Q‐ahead 

MFVAR                      

Simple Mean  0.80  1.01  1.06  1.13  1.20  1.18  1.19 

Inverse MSE  0.78  1.00  1.01  1.13  1.20  1.18  1.19 

Best model  0.84  1.13  1.21  1.13  1.20  1.20  1.23 

Top 5 models  0.72  1.00  1.06  1.12  1.19  1.19  1.21 

MF‐BVAR 

Simple Mean  0.82  0.95  1.03  1.10  1.15  1.14  1.15 

Inverse MSE  0.80  0.93  1.02  1.10  1.15  1.14  1.15 

Best model  0.79  0.98  1.13  1.12  1.18  1.16  1.17 

Top 5 models  0.75  0.91  1.02  1.09  1.14  1.12  1.13 

MIDAS 

Simple Mean  0.79  1.14  1.27  1.28  1.29  1.34  1.37 

Inverse MSE  0.78  1.05  1.32  1.23  1.24  1.28  1.31 

Best model  0.87  1.12  1.31  1.30  1.34  1.35  1.52 

Top 5 models  0.76  1.13  1.23  1.18  1.31  1.43  1.43 
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Table A4: Forecasting –Different Weighting Schemes (Evaluated Using Dec 2012 Vintage) 

   Nowcast 1Q‐ahead  2Q‐ahead 3Q‐ahead 4Q‐ahead 5Q‐ahead  6Q‐ahead 

MFVAR                      

Simple Mean  0.93  1.15  1.22  1.28  1.35  1.37  1.35 

Inverse MSE  0.92  1.14  1.16  1.28  1.35  1.37  1.35 

Best model  0.97  1.18  1.31  1.29  1.36  1.37  1.38 

Top 5 models  0.87  1.13  1.20  1.27  1.35  1.36  1.34 

MF‐BVAR 

Simple Mean  0.96  1.10  1.18  1.25  1.30  1.30  1.30 

Inverse MSE  0.95  1.07  1.18  1.25  1.30  1.30  1.30 

Best model  0.92  1.07  1.26  1.28  1.34  1.33  1.31 

Top 5 models  0.91  1.05  1.17  1.23  1.29  1.28  1.26 

MIDAS 

Simple Mean  0.89  1.22  1.44  1.45  1.49  1.54  1.54 

Inverse MSE  0.90  1.15  1.46  1.39  1.43  1.48  1.48 

Best model  1.00  1.19  1.42  1.43  1.51  1.55  1.66 

Top 5 models  0.86  1.18  1.38  1.35  1.50  1.62  1.60 
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APPENDIX B: Results Based on Forecasts That Use Revised Data  

Using the last vintage data instead of the data available at the time of the forecast does not 
consistently lower the forecast errors. There is some evidence of a decline in errors for the DFM 
at short horizons and also for the MF-BVAR at medium horizons. Often, however, using last 
vintage data worsens the forecasting performance, although the differences in the RMSE are 
mostly rather small.  

Figure B1: RMSE Error of Real-time Nowcasts Relative to Nowcasts Based on Revised Data 

 

Figure B2: RMSE Error of Real-time Forecasts Relative to Forecasts Based on Revised Data 
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APPENDIX C: Alternative Polynomial Weights for MIDAS Models 

 
We also evaluate a more general MIDAS model: 
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where  kw  denote the weights for the respective lags with a vector of parameters  , and MN  
denotes the number of months in the quarter. We consider two different polynomial schemes: 

(i) a normalized beta polynomial scheme with a zero last lag: 
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(ii) a normalized exponential Almon lag polynomial scheme: 
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The index k covers all considered lags of the monthly indicator (in order from the most recent 
observations). The parameters , ,    are estimated by nonlinear least squares.  

The results of this sensitivity check generally suggest that the unrestricted MIDAS performs 
consistently better than the exponential and beta polynomial schemes, especially at shorter 
horizons.  

Table C1: Nowcasting – Alternative MIDAS Polynomial Schemes 

  

Q(‐
1) 
M1 
mid 

Q(‐
1) 
M1 
end 

Q(‐
1) 
M2 
mid 

Q(‐
1) 
M2 
end 

Q(‐
1) 
M3 
mid 

Q(‐
1) 
M3 
end 

Q(0) 
M1 
mid 

Q(0) 
M1 
end 

Q(0) 
M2 
mid 

Q(0) 
M2 
end 

Q(0) 
M3 
mid 

Q(0) 
M3 
end 

Q(+1) 
M1 
mid 

Q(+1) 
M1 end 

Evaluated using first releases of GDP                              

Beta 1.22 1.19 1.22 1.21 1.20 1.19 1.13 1.21 1.12 1.11 0.86 0.84 0.84 0.86
Exp 1.21 1.19 1.22 1.20 1.24 1.19 1.14 1.23 1.13 1.11 0.86 0.84 0.84 0.86
UMIDAS 1.22 1.19 1.18 1.19 1.20 1.20 1.11 1.20 1.09 1.08 0.82 0.79 0.79 0.82
Evaluated using Dec 2012 vintage 
Beta 1.40 1.35 1.40 1.37 1.32 1.34 1.22 1.33 1.19 1.19 0.92 0.92 0.91 0.92
Exp 1.39 1.36 1.41 1.36 1.35 1.33 1.23 1.35 1.20 1.20 0.91 0.91 0.91 0.92
UMIDAS 1.41 1.35 1.37 1.35 1.32 1.35 1.20 1.32 1.16 1.18 0.89 0.89 0.89 0.89
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For longer forecasting horizons the performance of all the MIDAS polynomials is largely 
comparable, with beta mostly having the smallest RMSE. 

Table C2: Forecasting – Alternative MIDAS Polynomial Schemes 

  
Nowcast

1Q‐
ahead 

2Q‐
ahead 

3Q‐
ahead 

4Q‐
ahead 

5Q‐
ahead 

6Q‐
ahead 

Evaluated using first releases 
of GDP               
Beta 0.84 1.15 1.26 1.28 1.28 1.34 1.35 
Exp 0.84 1.17 1.26 1.28 1.28 1.34 1.35 
UMIDAS 0.79 1.14 1.27 1.28 1.29 1.34 1.37 

Evaluated using Dec 2012 
vintage 
Beta 0.92 1.23 1.43 1.45 1.48 1.53 1.53 
Exp 0.91 1.25 1.43 1.46 1.48 1.54 1.52 
UMIDAS 0.89 1.22 1.44 1.45 1.49 1.54 1.54 
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