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1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and processing
that enable representation of incomplete and uncertain knowledge, belief updating, and combination
of evidence. They were originally introduced as a principal notion of the Dempster-Shafer Theory or
the Mathematical Theory of Evidence [26].

When combining belief functions (BFs) by the conjunctive rules of combination, conflicts often
appear, which are assigned to ∅ by non-normalized conjunctive rule ∩⃝ or normalized by Dempster’s rule
of combination ⊕. Combination of conflicting BFs and interpretation of conflicts is often questionable
in real applications, thus a series of alternative combination rules was suggested and a series of papers
on conflicting BFs was published, e.g. [2, 6, 17, 23, 24, 25, 28].

In [10, 15], new ideas concerning interpretation, definition, and measurement of conflicts of BFs
were introduced. We presented three new approaches to interpretation and computation of conflicts:
the combinational conflict, the plausibility conflict, and the comparative conflict. Later, the pignistic
conflict — a pignistic analogy of plausibility conflict — was introduced in [16]. Differences were made
between mutual conflicts between BFs and internal conflicts of single BFs; a conflict between BFs was
distinguished from the difference between BFs.

When analysing mathematical properties of the three approaches to conflicts of BFs, there appears
a possibility of expression of a BF Bel as Dempster’s sum of non-conflicting BF Bel0 with the same
plausibility decisional support as the original BF Bel has and of indecisive BF BelS which does not
prefer any of the elements of frame of discernment.

A unique decomposition to such BFs Bel0 and BelS was demonstrated for BFs on 2-element frame
of discernment in [11]. The present study analyses its generalisation and conditions under which such
a decomposition of belief function on a 3-element frame of discernment exists. Three classes of BFs
on a 3-element frame for which such decomposition exists are described; it remains an open problem
for other BFs. Several other steps to a solution of this problem are also presented here.

As the idea of the decomposition is based on Hájek-Valdés analysis of BFs on 2-element frame of
discernment [21, 22] and its generalisation [13, 14], the study begins with belief functions and algebraic
preliminaries in Section 2. The present state of the art is briefly recalled in Section 3: the idea of
decomposition on 2-element frame and hypothesis on general frame. This is followed by discussion
and suggestion of generalisation of important Hájek-Valdés homomorphism f of semigroup of belief
functions onto its subsemigroup of indecisive ones in Section 4; the main issue, i.e., the decomposition
on 3-element frame is studied then. Several open problems from algebra of belief functions which are
related to the investigated topic and necessary for general solution of the issue of decomposition are
formulated in Section 5.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions (BFs) [26] on finite frames
of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9]; for illustration or simplicity, we often use 2- or
3-element frames Ω2 and Ω3. A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses (bbm). m(∅) = 0 is usually

assumed, then we speak about normalized bba. A belief function (BF) is a mapping Bel : P(Ω) −→
[0, 1], Bel(A) =

∑
∅≠X⊆A m(X). A plausibility function Pl(A) =

∑
∅≠A∩X m(X). There is a unique

correspondence among m and corresponding Bel and Pl thus we often speak about m as about belief
function.

A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all the focal
elements are singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief function
(BBF), it is a probability distribution on Ω in fact. If all the focal elements are either singletons or
whole Ω (i.e. |X| = 1 or |X| = |Ω|), then we speak about a quasi-Bayesian belief function (qBBF), it
is something like ’non-normalized probability distribution’. If all focal elements are nested, we speak
about consonant belief function.
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Dempster’s (conjunctive) rule of combination ⊕ is given as (m1⊕m2)(A)=
∑

X∩Y=A Km1(X)m2(Y)
for A ̸= ∅, whereK = 1

1−κ , κ =
∑

X∩Y=∅ m1(X)m2(Y ), and (m1⊕m2)(∅) = 0, see [26]; puttingK = 1
and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩⃝, see e. g. [27].
The disjunctive rule of combination is given by the formula (m1 ∪⃝m2)(A) =

∑
X∪Y=A m1(X)m2(Y ),

see [19].
Yager’s rule of combination Y⃝, see [30], is given as (m1 Y⃝m2)(A) =

∑
X,Y⊆Θ, X∩Y=A m1(X)m2(Y )

for ∅ ≠ A ⊂ Θ, (m1 Y⃝m2)(∅) = 0, and (m1 Y⃝m2)(Θ) = m1(Θ)m2(Θ)+
∑

X,Y⊆Θ, X∩Y=∅ m1(X)m2(Y ).
Dubois-Prade’s rule of combination DP⃝ is given as (m1DP⃝m2)(A) =

∑
X,Y⊆Θ, X∩Y=A m1(X)m2(Y )+∑

X,Y⊆Θ, X∩Y=∅,X∪Y=A m1(X)m2(Y ) for ∅ ̸= A ⊆ Θ, and (m1DP⃝m2)(∅) = 0, see [18].
We say that BF Bel is non-conflicting (or conflict free, i.e., it has no internal conflict), when

it is consistent, i.e., whenever Pl(ωi) = 1 for some ωi ∈ Ωn. Otherwise, BF is conflicting, i.e., it
contains some internal conflict [10]. We can observe that Bel is non-conflicting if and only if the
conjunctive combination of Bel with itself does not produce any conflicting belief masses3 (when
(Bel∩⃝Bel)(∅) = 0, i.e., Bel∩⃝Bel = Bel ⊕Bel).

Let us recall Un the uniform Bayesian belief function4 [10], i.e., the uniform probability distribution
on Ωn, and normalized plausibility of singletons5 of Bel: the BBF (probability distribution) Pl P (Bel)

such, that (Pl P (Bel))(ωi) =
Pl({ωi})∑
ω∈Ω Pl({ω}) [3, 8].

Let us define an indecisive (or nondiscriminative) BF as a BF, which does not prefer any ωi ∈ Ωn,
i.e., BF which gives no decisional support for any ωi, i.e., BF such that h(Bel) = Bel⊕Un = Un, i.e.,
Pl({ωi}) = const., i.e., (Pl P (Bel))({ωi}) = 1

n . Let us further define an exclusive BF as a BF Bel
such6 that Pl(X) = 0 for some ∅ ≠ X ⊂ Ω; BF is non-exclusive otherwise.

2.2 Belief Functions on a 2-Element Frame of Discernment; Dempster’s Semigroup

Let us suppose, that the reader is slightly familiar with basic algebraic notions like a semigroup (an
algebraic structure with an associative binary operation), a group (a structure with an associative
binary operation, with a unary operation of inverse, and with a neutral element), a neutral element
n (n ∗ x = x), an absorbing element a (a ∗ x = a), a homomorphism f (f(x ∗ y) = f(x) ∗ f(y)), etc.
(Otherwise, see e.g., [4, 7, 21, 22]; or any algebraic textbook of course. Nevertheless these algebraic
notions are necessary only for deeper understanding the used algebraic methods; they are unnecessary
for understanding of the issue conflicting part of BFs.)

We assume Ω2 = {ω1, ω2}, in this subsection. There are only three possible focal elements
{ω1}, {ω2}, {ω1, ω2} and any normalized basic belief assignment (bba) m is defined7 by a pair (a, b) =
(m({ω1}),m({ω2})) as m({ω1, ω2}) = 1−a− b; this is called Dempster’s pair or simply d-pair [21, 22]
(it is a pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1).

Extremal d-pairs are the pairs corresponding to BFs for which either m({ω1}) = 1 or m({ω2}) = 1,
i.e., exclusive d-pairs (1, 0) and (0, 1). The set of all non-extremal d-pairs is denoted as D0; the set
of all non-extremal Bayesian d-pairs (i.e. d-pairs corresponding to Bayesian BFs, where a+ b = 1) is
denoted as G; the set of d-pairs such that a = b is denoted as S (set of indecisive8 d-pairs), the set
where b = 0 as S1, and analogically, the set where a = 0 as S2 (simple support BFs). Vacuous BF is
denoted as 0 = (0, 0) and there is a special BF (d-pair) 0′ = ( 12 ,

1
2 ) = U2, see Figure 2.1.

The (conjunctive) Dempster’s semigroup D0 = (D0,⊕, 0, 0′) is the set D0 endowed with the binary
operation ⊕ (i.e., with the Dempster’s rule) and two distinguished elements 0 and 0′. Dempster’s rule

can be expressed by the formula (a, b)⊕(c, d) = (1− (1−a)(1−c)
1−(ad+bc) , 1−

(1−b)(1−d)
1−(ad+bc) ) for d-pairs [21]. In D0 it

is defined further: −(a, b) = (b, a), h(a, b) = (a, b)⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) =

1−b
2−a−b , f(a, b) =

(a, b) ⊕ (b, a) = (a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ); (a, b) ≤ (c, d) iff [h1(a, b) < h1(c, d) or h1(a, b) =

3Martin calls (m∩⃝m)(∅) autoconflict of the BF [25].
4Un which is idempotent w.r.t. Dempster’s rule ⊕, and moreover neutral on the set of all BBFs, is denoted as nD0′

in [8], 0′ comes from studies by Hájek & Valdés.
5Plausibility of singletons is called contour function by Shafer [26], thus Pl P (Bel) is a normalization of contour

function in fact.
6BF Bel excludes all ωi such, that Pl({ωi}) = 0.
7It is an enumeration of m-values.
8BFs (a, a) from S are called indifferent BFs by Haenni [20].
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Figure 2.1: Dempster’s semigroup D0. Homomorphism h is in this representation a projection of the
triangle representing semigroup D0 to group G along the straight lines running through the point
(1, 1). All the Dempster’s pairs lying on the same ellipse are mapped by homomorphism f to the
same d-pair in semigroup S.

h1(c, d) and a ≤ c] 9.
The principal properties of D0 are summarized by the following theorem:

Theorem 1 (i) The Dempster’s semigroup D0 with the relation ≤ D0 = (D0,⊕, 0, 0′,≤) is an ordered
commutative (Abelian) semigroup with the neutral element 0; 0′ is the only non-zero idempotent of
D0.

(ii) G = (G,⊕,−, 0′,≤) is an ordered Abelian group, isomorphic to the additive group of reals with
the usual ordering Re = (Re,+,−, 0,≤).

(iii) The sets S, S1, S2 with the operation ⊕ and the ordering ≤ form ordered commutative semigroups
with neutral element 0; they are all isomorphic to the positive cone of the group of reals Re≥0 =
(Re≥0,+,−, 0,≤) (or to Re≥0+ extended with ∞ in the case of S which includes absorbing element
0′).

(iv) h is an ordered homomorphism: (D0,⊕,−, 0, 0′,≤) −→ (G,⊕,−, 0′,≤); h(Bel) = Bel ⊕ 0′ =
Pl P (Bel), i.e., the normalized plausibility probabilistic transformation.

(v) f is a homomorphism: (D0,⊕,−, 0, 0′) −→ (S,⊕,−, 0); (but, not an ordered one).

For proofs see [21, 22, 29].

Notice, that ’−’ is an inverse on G (on BBFs) only, not in general. There is −Bel ⊕ Bel = 0′ for
any BBF Bel. This does not hold for general BFs. The operation ’−’ is some kind of symmetry only;
in the case of representation on Fig. 2.1, it is the symmetry along the axis S.

Let us denote h−1(a) = {x |h(x) = a} and similarly f−1(a) = {x | f(x) = a}. Using the theorem,
see (iv) and (v), we can express10 Dempster’s sum ⊕ of two general BFs (d-pairs) from D0 using homo-
morphisms f and h and Dempster’s sum on subalgebras of Bayesian and indecisive BFs G and S:

(a⊕ b) = h−1(h(a)⊕ h(b)) ∩ f−1(f(a)⊕ f(b)). (2.1)

9Note, that h(a, b) is an abbreviation for h((a, b)), similarly for h1(a, b) and f(a, b).
10This is neither a new nor alternative definition of Dempster’s rule ⊕. It is an important relationship of Dempster’s

combination of general d-pairs (combination on Dempster’s semigroup D0) with Dempster’s combination of special
cases: Bayesian and symmetric d-pairs (combination on subalgebras G and S of D0) based on homomorphisms h and
f and their preimages. For detail see [4].
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Let us denote D≥0
0 = {(a, b) ∈D0 | (a, b) ≥ 0} and analogically D≤0′

0 = {(a, b) ≤ 0′}. Let us further
denote negative and positive cones of group G as G≤0′ and G≥0′ .

Besides the classic results by Hájek & Valdés [21, 22, 29] we will use also our new result from [12]
motivated by [11] (in fact also a special case of automorphisms of Dempster’s semigroup investigated
by the author of this study in 90’s [4, 5]):

Theorem 2 Mapping − : D0 −→ D0, −(a, b) = (b, a) for (a, b) ∈ D0 is an automorphism of D0,
i.e., a bijective homomorphism: (D0,⊕,−, 0, 0′,≤) −→ (D0,⊕,−, 0′,≤).

For proof see [12].

2.3 BFs on an n-Element Frame of Discernment

Analogically to the case of Ω2, we can represent a BF on any n-element frame of discernment Ωn by
an enumeration of its m-values (bbms), i.e., by a (2n−2)-tuple (a1, a2, ..., a2n−2), or as a (2n−1)-tuple
(a1, a2, ..., a2n−2; a2n−1) when we want to explicitly mention also the redundant value m(Ω) = a2n−1 =

1 −
∑2n−2

i=1 ai. For BFs on Ω3 we use (a1, a2, ...., a6; a7) = (m({ω1}),m({ω2}),m({ω3}),m({ω1, ω2}),
m({ω1, ω3}), m({ω2, ω3});m({Ω3})).

2.4 On Dempster’s Semigroup on Ω3

(on a 3-Element Frame of Discernment)

There is significant increase of complexity considering 3-element frame of discernment Ω3. While we
can represent BFs on Ω2 by a 2-dimensional triangle, we need a 6-dimensional simplex in the case of
Ω3. Further, all the dimensions are not equal: there are 3 independent dimensions corresponding to
singletons from Ω3, but there are other 3 dimensions corresponding to 2-element subsets of Ω3, each
of them is somehow related to 2 dimensions corresponding to singletons (dimension corresponding to
{ω1, ω2} is related to those corresponding to singletons {ω1} and {ω2}, etc.).

Dempster’s semigroup D3 on Ω3 is defined analogously to D0 on Ω2. First results on algebraic
structures related to BFs on Ω3 were recently presented at IPMU’12 (a quasi-Bayesian case, the
dimensions related to singletons only, D3−0, see Figure 2.2) [13] and at WUPES’12 (a general case,
all six dimensions, D3, see Figure 2.3) [14].

Let us briefly recall the following results on D3 which are related to our topic.

Figure 2.2: Quasi-Bayesian BFs on 3-element
frame Ω3.

Figure 2.3: General BFs on 3-element frame Ω3.
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Theorem 3 (i) Dempster’s semigroup D3 = (D3,⊕, 0, U3) of non-exclusive BFs on Ω3 is a commu-
tative semigroup with neutral element 0 = (0, 0, 0, 0, 0, 0) (i.e. it is monoid), and with just four other
idempotents 0′ = U3 = ( 13 ,

1
3 ,

1
3 , 0, 0, 0), (

1
2 , 0, 0, 0, 0,

1
2 ), (0,

1
2 , 0, 0,

1
2 , 0), and (0, 0, 1

2 ,
1
2 , 0, 0).

D3−0 = (D3−0,⊕, 0, U3) is its subalgebra, where D3−0 is set of non-exclusive quasi-Bayesian belief
functions D3−0 = {(a, b, c, 0, 0, 0) | 0 ≤ a+ b+ c ≤ 1; 0 ≤ a, b, c; a+ b < 1; a+ c < 1; b+ c < 1}.
(ii) Subalgebra of non-exclusive Bayesian BFs G3 = ({(a, b, c, 0, 0, 0) | a+ b+ c = 1; 0 < a, b, c},⊕, ’−’,
U3) is a subgroup of D3, where ’−’ is given11 by −(d1, d2, 1−(d1+d2), 0, 0, 0) = (x1,

d1

d2
x1,

d1

1−(d1+d2)
x1,

0, 0, 0; 0), and x1 = 1/(1 + d1

d2
+ d1

1−(d1+d2)
).

(iii a) The sets of non-exclusive BFs S0 = {(a, a, a, 0, 0, 0) | 0≤a≤ 1
3}, S1 = {(a, 0, 0, 0, 0, 0) | 0≤a<1},

S2, S3, S1−2 = {(0, 0, 0, a, 0, 0) | 0≤a<1}, S1−3, S2−3 with the operation ⊕ and VBF 0 form commuta-
tive semigroups with neutral element 0 (monoids); they are all isomorphic12 to the positive cone of the
additive group of reals Re≥0 (to Re≥0+ extended with ∞ in the case of S0 which includes absorbing
element U3).

(iii b) There are another subsemigroups S = ({(a, a, a, b, b, b) ∈ D3},⊕) and SPl = ({(d1, d2, ..., d23) ∈
D3 | Pl(d1, d2, ..., d23) = U3},⊕) which are alternative generalisations of Hájek-Valdés S, both with
neutral idempotent 0 and absorbing one U3. (note that set of BFs {(a, a, a, a, a, a) ∈ D3} is not closed
under ⊕, thus it does not form a semigroup).

(iv) Mapping h is a homomorphism: (D3,⊕, 0, U3) −→ (G3,⊕, ’−’, U3); h(Bel) = Bel ⊕ U3 =
Pl P (Bel), i.e., the normalized plausibility of singletons.

For detail and proofs of the assertions from the theorem see [13, 14], proof of (iv) already in [11].

Unfortunately, a full generalisation of − or f was not yet found [13, 14].

3 State of the Art

Let us introduce a unique decomposition of a BF on a 2-element frame of discernment and a unique
non-conflicting part of a general BF on a general finite frame in this section.

3.1 Non-conflicting and Conflicting Parts of Belief Functions on a 2-Element Frame of
Discernment

For BFs on a 2-element frame discernment Ω2 the following holds true:

Proposition 1 BF Bel on Ω2 is non-conflicting iff Bel ∈ S1 ∪ S2.

For proof of this and other assertions in this Section see [11].

Using the important property of Dempster’s sum (2.1), which is respecting the homomorphisms h
and f (i.e., respecting the h-lines and f -ellipses, when two BFs are combined on two-element frame
of discernment [21, 22]), we obtain the following statement.

Proposition 2 (i) Any belief function (a, b) ∈ Ω2 is the result of Dempster’s combination of BF
(a0, b0) ∈ S1 ∪ S2 and a BF (s, s) ∈ S, such that (a0, b0) has the same plausibility decision support
(same normalized plausibility) for the elements of Ω2 as (a, b) does.

(ii) (a0, b0) ∈ S1 ∪ S2 has no internal conflict, and (s, s) does not prefer any of the elements of
Ω2. Let us call (a0, b0) a non-conflicting part of (a, b). There is (a0, b0) = (a−b

1−b , 0) for a ≥ b and

(a0, b0) = (0, b−a
1−a ) for a ≤ b.

11An alternative expression for group operation ’−’ on G3 is −(a, b, c, 0, 0, 0) = ( bc
ab+ac+bc

, ac
ab+ac+bc

, ab
ab+ac+bc

, 0, 0, 0)

[11].
12o-isomorphic as in the case of D0 in fact, see Theorem 1. Nevertheless, there is no ordering of elements of Ω3, thus

we are either not interesting in ordering of algebras Si in this text.
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Figure 3.1: Conflicting and non-conflicting parts of BF on a 2-element frame of discernment.

Let us look for (s, s) from the proposition now. It holds true that (a, b) = (a0, b0)⊕(s, s), thus it also
holds true f(a, b) = f(a0, b0)⊕f(s, s). Let us denote f(a0, b0) = (u, u), f(a, b) = (v, v), f(s, s) = (x, x)

for a moment, thus we have (u, u) ⊕ (x, x) = (v, v), where v = 1 − (1−u)(1−x)
1−2ux = u+x−3ux

1−2ux , hence

u + x − 3ux = v − 2vux and x = v−u
1−3u+2uv . We can express this as Lemma 1 (i), further we have

Lemma 1(ii), (iii). Finally, we obtain a summarization in Theorem 4.

Lemma 1 (i) For any BFs (u, u), (v, v) on S, such that u ≤ v, we can compute their Dempster’s
’difference’ (x, x) such that (u, u)⊕ (x, x) = (v, v), as (x, x) = ( v−u

1−3u+2uv ,
v−u

1−3u+2uv ).

(ii) For any BF (w,w) on S, we can compute its Dempster’s ’half ’ (s, s) such that (s, s) ⊕ (s, s) =

(w,w), as (s, s) = ( 1−
√
1−3w+2w2

3−2w , 1−
√
1−3w+2w2

3−2w ) = (
1−

√
(1−w)(1−2w)

3−2w ,
1−

√
(1−w)(1−2w)

3−2w ).

(iii) There is no Dempster’s ’difference’ on D0 in general.

Theorem 4 Any BF (a, b) on a 2-element frame of discernment Ω2 is Dempster’s sum of its unique
non-conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique conflicting part (s, s) ∈ S, which does not
prefer any element of Ω2, i.e.,

(a, b) = (a0, b0)⊕ (s, s).

It holds true that

(a, b) = (
a− b

1− b
, 0)⊕ (s, s) for a ≥ b, where s =

b(1− a)

1− 2a+ b− ab+ a2
=

b(1− b)

1− a+ ab− b2
;

and similarly that

(a, b) = (0,
b− a

1− a
)⊕ (s, s) for a ≤ b, where s =

a(1− b)

1 + a− 2b− ab+ b2
=

a(1− a)

1− b+ ab− a2
.

For proofs see [11] again.

We can summarize formulas from the theorem as it follows

(a, b) = (a0, b0)⊕ (s, s) =

(max(a−b
1−b , 0),max( b−a

1−a , 0))⊕ ( min(a,b)(1−max(a,b))
1−ab+min(a,b)−2max(a,b)−max2(a,b) ,

min(a,b)(1−max(a,b))
1−ab+min(a,b)−2max(a,b)−max2(a,b) ) =

(max(
a− b

1− b
, 0),max(

b− a

1− a
, 0))⊕ (

min(a, b)(1−min(a, b))

1 + ab−max(a, b)−min2(a, b)
,

min(a, b)(1−min(a, b))

1 + ab−max(a, b)−min2(a, b)
).
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3.2 Non-conflicting Part of BFs on General Finite Frames of Discernment

We would like to verify that Theorem 4 holds true also for BFs defined on general finite frames, i.e.,
to verify the following hypothesis:

Hypothesis 1 We can represent any BF Bel on an n-element frame of discernment Ωn = {ω1, ..., ωn}
as Dempster’s sum Bel = Bel0 ⊕ BelS of non-conflicting BF Bel0 and of indecisive conflicting BF
BelS which has no decisional support, i.e. which does not prefer any element of Ωn to the others, see
Figure 3.2.

Figure 3.2: Schema of Hypothesis 1.

Analogously to the 2-element case we have:

Proposition 3 The set of non-conflicting BFs is just the set of all BFs such, that all focal elements
of a BF have non-empty intersection, i.e., the set of consistent BFs.
Consonant BFs are a special case of non-conflicting BFs.

We would like to follow the idea from the case of two-element frames, see Figure 3.3. Unfortunately,
we have only a simple description of the most basic algebraic substructures and homomorphism h
on Dempster’s semigroup on Ω3. We have not yet any generalisation or analogy of −Bel and of
homomorphism f , we have not group properties of the set of indecisive BFs.

Using group properties of G3, structure of Bayesian BFs (including inverse Bel⊕−Bel = U3 ) and
homomorphic properties of h we have a partial generalisation of mapping ’−’ to sets of Bayesian and
consonant BFs, thus we have −h(Bel) and −Bel0.

Theorem 5 (i) For any BF Bel defined on Ωn there exists unique consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel)

for any BF BelS such that BelS ⊕ Un = Un.

(ii) If for h(Bel) = (h1, h2, ..., hn, 0, 0, ..., 0) holds true that, 0 < hi < 1, then further exist unique BFs
−Bel0 and −h(Bel0) such that,

h(−Bel0⊕BelS) = −h(Bel) = h(−Bel0), and h(Bel0)⊕−h(Bel0) = Un.

Corollary 1 (i) For any consonant BF Bel such that Pl({ωi}) > 0 there exists a unique BF −Bel;
−Bel is consonant in this case.

(ii) There is one-to-one correspondence between Bayesian BFs and consonant BFs.

The construction of Bel0 is a projection of the set of all BFs to consonant BFs, i.e., Bel0 is a
consonant approximation of Bel such that h(Bel0) = h(Bel). For any BBF we have its ’−’ inverse,

7



- Bel  +  Bel

- Bel  + Bels s

Bel

- Bel   +  Belo o

Belo

Bel- Bel

- Belo

Un

s

Figure 3.3: Schema of a decomposition of BF Bel.

thus also for BBF h(Bel): h(Bel) ⊕ −h(Bel) = Un. −Bel0 is then constructed as a non-conflicting
part of −h(Bel), i.e. −Bel0 = (−h(Bel))0. For detail of proofs see [11]. There was also verified that
the above partial definition of −Bel using −h(Bel) satisfies: −m(X) = m(Ω \X) for X ⊂ Ω and SSF
m.

Let us notice the importance of the consonance property here: that a stronger statement for
general consistent (non-conflicting) BFs does not hold true on Ω3. There could be several different
non-conflicting BFs Beli (and usially there are many Beli) such that h(Beli ⊕ BelS) = h(Bel) for
any indecisive BF BS , but there is just one consonant BF Bel0 among them. For an example see [11];
see also the following example.

Example 1. To BF Bel = (0.25, 0.175, 0.075, 0.35, 0.15, 0) with h(Bel) = (0.25, 0.175, 0.075, 0.35, 0.15,
0)⊕( 13 ,

1
3 ,

1
3 , 0, 0, 0) = (0.50, 0.35, 0.15, 0, 0, 0) there are following non-conflicting BFs: Bel0 = (0.3, 0, 0,

0.4, 0, 0; 0.3), Bel1 = (0.2, 0, 0, 0.5, 0.1, 0; 0.2); Bel2 = (0.1, 0, 0, 0.6, 0.2, 0; 0.1), Bel3 = (0, 0, 0, 0.7, 0.3, 0;
0), Pli({ω1}) = 1, thus Belis are all non-conflicting, we can simply verify that h(Beli) = h(Bel), thus
(Beli ⊕BelS)⊕ U3 = Beli ⊕ (BelS ⊕ U3) = Beli ⊕ U3 = h(Bel).

There are numerous other such Beli’s: e.g., any BF Beli = (0.3 − j, 0, 0, 0.4 + j, j, 0; 0.3 − j) for
0 ≤ j ≤ 0.3 and any Beli = (0.2− k, 0, 0, 0.5+ k, 0.1+ k, 0; 0.2− k) for 0 ≤ k ≤ 0.2 have this property.
Bel0 = (0.3, 0, 0, 0.4, 0, 0; 0.3) is the unique consonant BFs among all such BFs.

Including Theorem 5 into the diagram of decomposition we obtain Figure 3.4. We still have only
partial results; to complete the diagram, we need a definition of −Bel for general BFs on Ω3 and
Ωn to compute Bel ⊕ −Bel, we further need an analysis of indecisive BFs (i.e. BFs Bel such that,
h(Bel) = Un) to compute BelS ⊕−BelS and resulting BelS and to specify conditions under which a
unique BelS exists. Hence an algebraic analysis of BFs on a general finite frame of discernment was
required in [11].
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Figure 3.4: Detailed schema of a decomposition of BF Bel.

4 Towards Conflicting Parts of BFs on a 3-Element Frame Ω3

4.1 A General Idea

An introduction to the algebra of BFs on a 3-element frame of discernment was performed, but
a full generalisation of basic homomorphisms of Dempster’s semigroup ’−’ and f is still missing
[11, 12, 13, 14]. We need f(Bel) = −Bel ⊕ Bel to complete the decomposition diagram (Figure 3.4)
according to the original idea from [11] trying to follow the 2-element case as close as possible.

Let us forget for a moment a meaning of ’−’ and its relation to group ’minus’ in subgroups G and
G3; and look at its construction −(a, b) = (b, a). It is a simple transposition of m-values of ω1 and ω2

in fact. Generally on Ω3 we have:

Lemma 2 Any transposition τ of a 3-element frame of discernment Ω3 is an automorphism of D3.
τ12(ω1, ω2, ω3) = (ω2, ω1, ω3), τ23(ω1, ω2, ω3) = (ω1, ω3, ω2), τ13(ω1, ω2, ω3) = (ω3, ω2, ω1).

Proof. Bijection of D3 onto D3 is obvious. Thus proof is a verification of homomorphic properties of
τ , i.e. τ(Bel1 ⊕Bel2)(X) = (τ(Bel1)⊕ τ(Bel2))(X) for individual subsets X of Ω3.

Let us start with τ12 and {ω1}. (m1⊕m2)({ω1}) = K(m1({ω1})m2({ω1})+m1({ω1})m2({ω1, ω2})+
m1({ω1})m2({ω1, ω3})+m1({ω1})m2({ω1, ω2, ω3})+m2({ω1})m1({ω1, ω2})+m2({ω1})m1({ω1, ω3})+
m2({ω1})m1({ω1, ω2, ω3}) +m1({ω1, ω2})m2({ω1, ω3}) +m1({ω1, ω3})m2({ω1, ω2})), where K is the
corresponding normalisation constant. Thus there is:
τ12(m1 ⊕ m2)({ω1}) = K(m1({ω2})m2({ω2}) + m1({ω2})m2({ω1, ω2}) + m1({ω2})m2({ω2, ω3})+
m1({ω2})m2({ω1,ω2,ω3})+m2({ω2})m1({ω1,ω2})+m2({ω2})m1({ω2,ω3})+m2({ω2})m1({ω1,ω2,ω3})+
m1({ω1, ω2})m2({ω2, ω3}) +m1({ω2, ω3})m2({ω1, ω2, })).
(τ12(m1) ⊕ τ12(m2))({ω1}) = K ′(τ12(m1)({ω1})τ12(m2)({ω1}) + τ12(m1)({ω1})τ12(m2)({ω1, ω2})+
τ12(m1)({ω1})τ12(m2)({ω1,ω3})+τ12(m1)({ω1})τ12(m2)({ω1,ω2,ω3})+τ12(m2)({ω1})τ12(m1)({ω1,ω2})+
τ12(m2)({ω1})τ12(m1)({ω1, ω3}) + τ12(m2)({ω1})τ12(m1)({ω1, ω2, ω3}) + τ12(m1)({ω1, ω2})
τ12(m2)({ω1, ω3}) + τ12(m1)({ω1, ω3})τ12(m2)({ω1, ω2, })) = K ′(m1({ω2})m2({ω2}) + m1({ω2})
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m2({ω1, ω2})+m1({ω2})m2({ω2, ω3})+m1({ω2})m2({ω1, ω2, ω3})+m2({ω2})m1({ω1, ω2})+m2({ω2})
m1({ω2, ω3})+m2({ω2})m1({ω1, ω2, ω3})+m1({ω1, ω2})m2({ω2, ω3})+m1({ω2, ω3})m2({ω1, ω2, })) =
K′

K τ12(m1 ⊕m2)({ω1}). In the same way we can show equality upto normalisation constants also for
{ω2} and {ω3}.

For {ω1, ω2} we simply obtain τ12(m1 ⊕ m2)({ω1, ω2}) = (m1 ⊕ m2)({ω1, ω2}) = (τ12(m1) ⊕
τ12(m2))({ω1, ω2}). Analogously to the singleton case, for τ12 and {ω1, ω3} we obtain:
(m1 ⊕m2)({ω1, ω3}) = K(m1({ω1, ω3})m2({ω1, ω3}) +m1({ω1, ω3})m2({ω1, ω2, ω3}) +m2({ω1, ω3})
m1({ω1, ω2, ω3})). Thus there is: τ12(m1 ⊕ m2)({ω1, ω3}) = K(m1({ω2, ω3})m2({ω2, ω3})+
m1({ω2, ω3})m2({ω1, ω2, ω3}) +m2({ω2, ω3})m1({ω1, ω2, ω3})).
(τ12(m1) ⊕ τ12(m2))({ω1, ω3}) = K ′(τ12(m1)({ω1, ω3})τ12(m2)({ω1, ω3}) + τ12(m1)({ω1, ω3})
τ12(m2)({ω1, ω2, ω3}) + τ12(m2)({ω1, ω3})τ12(m1)({ω1, ω2, ω3})) = K ′(m1({ω2, ω3})m2({ω2, ω3}) +
m1({ω2, ω3})(m2)({ω1, ω2, ω3}) + m2({ω2, ω3})(m1)({ω1, ω2, ω3})) = K′

K τ12(m1 ⊕ m2)({ω1, ω3}). In
the same way we can show equality up to normalisation constants also for {ω2, ω3}.

Finally, we simply obtain τ12(m1 ⊕m2)({ω1, ω2, ω3}) = τ12K(m1({ω1, ω2, ω3})m2({ω1, ω2, ω3}) =
K(m1({ω1,ω2,ω3})m2({ω1,ω2,ω3}). And (τ12(m1)⊕ τ12(m2))({ω1,ω2,ω3}) = K ′(τ12(m1)({ω1,ω2,ω3})
τ12(m2)({ω1, ω2, ω3})) = K ′(m1({ω1, ω2, ω3})m2({ω1, ω2, ω3})) = K′

K τ12(m1 ⊕m2)({ω1, ω2, ω3}).
We have equality up to normalisation constants for all subsets of Ω3. Both results are normalised,

thus the normalisation constant must be same, i.e., K = K ′ and K′

K = 1. Thus equality holds for all
the subsets of the frame of discernment and τ12(m1 ⊕m2) = τ12(m1)⊕ τ12(m2) holds true.

The proofs for τ23 and τ13 are completely analogous.

Alternative presentation of the proof for τ12 is the following. LetBela=(a1, a2, a3, a12, a13, a23; a123)
andBelb = (b1, b2, b3, b12, b13, b23; b123), thus τ12(Bela) = (a2, a1, a3, a12, a23, a13; a123) and τ12(Belb) =
(b2, b1, b3, b12, b23, b13; b123). Thus (Bela ⊕ Belb)({ω1}) = K[a1(b1 + b12 + b13 + b123) + (a12 + a13 +
a123)b1 + a12b13 + a13b12]. There is τ12(Bela ⊕ Belb)({ω1}) = (Bela ⊕ Belb)({ω2}) = K[a2(b2 +
b12 + b23 + b123) + (a12 + a23 + a123)b2 + a12b23 + a23b12]. And τ12(Bela) ⊕ τ12(Belb)({ω1}) =

K ′[a2(b2 + b12 + b23 + b123) + (a12 + a23 + a123)b2 + a12b23 + a23b12] =
K′

K τ12(Bela ⊕ Belb)({ω1}).
In the same way we obtain equality up to normalisation constant for {ω2}, {ω3} and analogously for
{ω1, ω2}, {ω1, ω3}, {ω2, ω3} and {ω1, ω2, ω3}. From these equalities and assumed normality of BFs we
obtain K ′ = K and full equality for all subsets of the frame of discernment Ω3 Hence the assertion
holds true. �

Theorem 6 Any permutation π of a 3-element frame of discernment Ω3 is an automorphism of D3.

Proof. We can verify homomorphic properties of individual permutations analogously to the proof
for transpositions. Or we can use that π213(ω1, ω2, ω3) = (ω2, ω1, ω3) = τ12, π231(ω1, ω2, ω3) =
(ω2, ω3, ω1) = τ12τ23, π132(ω1, ω2, ω3) = (ω1, ω3, ω2) = τ12τ23τ13, π312(ω1, ω2, ω3) = (ω3, ω1, ω2) =
τ12τ23τ13τ12, π321(ω1, ω2, ω3) = (ω3, ω2, ω1) = τ12τ23τ13τ12τ23, π123(ω1, ω2, ω3) = (ω1, ω2, ω3) = τ12τ23
τ13τ12τ23τ13 and keeping of homomorphic properties by composition. �

Considering function ’−’ as transposition (permutation), we have f(a, b) = (a, b)⊕ (b, a) a Demp-
ster’s sum of all (both in the case of BFs on Ω2) permutations of Bel given by (a, b) on Ω2. Analogously
we can define

f(Bel) =
⊕
π∈Π3

π(Bel) (4.1)

where Π3 = {π123, π213, π231, π132, π312, π321}, i.e.,

f(a, b, c, d, e, f ; g) =
⊕
π∈Π3

π(a, b, c, d, e, f ; g) =

(a, b, c, d, e, f ; g)⊕ (b, a, c, d, f, e; g)⊕ (b, c, a, f, d, e; g) ⊕ (4.2)

(a, c, b, e, d, f ; g)⊕ (c, a, b, e, f, d; g)⊕ (c, b, a, f, e, d; g).

Theorem 7 Function f : D3 −→ S, f(Bel) =
⊕

π∈Π3
π(Bel) is homomorphism of Dempster’s

semigroup D3 to its subsemigroup S = ({(a, a, a, b, b, b; 1− 3a− 3b)},⊕).
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Proof. From homomorpic properties of permutations and commutativity of homomorhism with ⊕ we
have also the homomorphic property of f . The rest is verification that

⊕
π∈Π3

π(Bel) is in S. We
can either compute

⊕
π∈Π3

π(a, b, c, d, e, f ; g) according to Equation 4.2, further, compute h(f(Bel)
and verify that it is equal to U3, i.e. compute (using (4.2)) a verify that the following holds true:
h(f(Bel)) =

⊕
π∈Π3

π(a, b, c, d, e, f ; g)⊕ U3 = U3. Or alternatively, it follows the symmetry property
of BFs from S: m({ω1}) = m({ω2}) = m({ω3}) and m({ω1, ω2}) = m({ω1, ω3}) = m({ω2, ω3}),
which holds for any BF Bel ∈ S and its corresponding bba m; and further the fact that Dempster’s
sum of all 6 permutations of any Bel on Ω3 is symmetric. �

We have to note here, that Dempter’s sum of 3 transpositions is not enough for a homomorphism
to S. As a counterexample, we can use Bel = (0.1, 0, 0, 0, 0.2, 0.6): we obtain (0.1, 0, 0, 0, 0.2, 0.6) ⊕
(0, 0.1, 0, 0, 0, 0.6, 0.2) ⊕ (0, 0, 0.1, 0.6, 0.2, 0) = ( 7

95 ,
11
95 ,

36
95 , 0,

20
95 ,

20
95 ;

1
95 ) ⊕ (0, 0, 0.1, 0.6, 0.2, 0; 0.1) =

( 303674 ,
77
674 ,

205
674 ,

6
674 ,

62
674 ,

20
674 ;

1
674 ). This is obvious, as we have used the original BF Bel, τ12(Bel), and

τ13(Bel), where τ13(Bel) ̸= τ23(τ12(Bel)). Thus the transpositions do not make a cycle and mutual
interchange of m-values of ω2 and ω3 is not used in fact.

Having homomorphism f , we can leave a question of existence −Bel such that h(−Bel) = −h(Bel),
where ’−’ from group of BBFs G3 is used on the right hand side. Unfortunately, we have not an
isomorphism of S to the additive group of reals as in the case of semigroup S of D0, thus we have an
open question of subtraction there. Let us focus, at first, on the subsemigroup of quasi-Bayesian BFs
for simplification.

4.2 Towards Conflicting Parts of Quasi-Bayesian Belief Functions on Ω3

Let us consider qBBFs (a, b, c, 0, 0, 0; 1−a−b−c) ∈ D3−0 in this section. Following Theorem 7 we
obtain the following formulation for qBBFs:

Theorem 8 Function f : D3−0 −→ S0, f(Bel) =
⊕

π∈Π3
π(Bel) is homomorphism of Dempster’s

semigroup D3−0 to its subsemigroup S0 = ({(a, a, a, 0, 0, 0; 1−3a)},⊕).

Proof. D3−0 is subalgebra of D3, thus homomorphic properties are preserved. Further, f(Bel) ∈ S as
a Dempster’s sum of elements from D3−0 must be in D3−0 again, i.e. in S0 which is both restriction
of S to D3−0 and also a subalgebra of S and D3−0. �

S0 is isomorphic to the positive cone of the additive group of reals, see Theorem 3, thus there is
subtraction which is necessary for completion of diagram from Figure 3.4. Utilizing isomorphism with
reals, we have also existence of ’Dempster’s sixth’13 which is needed to obtain preimage of f(Bel) in
S0:

Lemma 3 ’Dempster’s sixth’. Having f(BelS) in S0, there is unique f−1(f(BelS)) ∈ S0, such that⊕
(6-times) f

−1(f(BelS)) = f(BelS). If BelS ∈ S0 then f−1(f(BelS)) = BelS.

Proof. Utilizing isomorphism of S0 with the positive cone of the additive group of reals we obtain
unique ′ 1

6Bel′ ∈ S0 such that
⊕

(6-times)
′ 1
6Bel′ = Bel for any Bel ∈ S0. Specially also for f(BelS) if

it is in S0. The second part of the statement follows uniqueness of ′ 1
6Bel′. �

On the other hand there is a complication considering qBBFs on Ω3 that their non-conflicting part
is a consonant BF frequently out of D3−0. Hence we can simply use the advantage of properties of S0

only for qBBFs with singleton simple support non-conflicting parts.

Lemma 4 (i) Quasi-Bayesian belief functions which have quasi-Bayesian non-conflicting part are just
BFs from the following sets Q1 = {(a, b, b, 0, 0, 0) | a≥ b}, Q2 = {(b, a, b, 0, 0, 0) | a≥ b}, Q3 = {(b, b, a,
0, 0, 0) | a≥b}.
(ii) Q1, Q2, Q3 with ⊕ are subsemigroups of D3−0; their union Q = Q1∪Q2∪Q3 is not closed w.r.t. ⊕
thus it is not a subalgebra of D3−0. (Q1,⊕) is further subsemigroup of D1−2=3 = ({(d1, d2, d2, 0, 0, 0)},

13Analogously we can show existence of general ’Demspter’s k-th’ for any natural k and any BF Bel from S0, but we
are interested in ’Dempster’s sixth’ in our case.
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⊕, 0, U3); analogously (Q2,⊕) is subsemigroup of D2−1=3, and (Q3,⊕) is subsemigroup of D3−1=2,

see [14]. Following this, we can denote (Qi,⊕) as Di≥j=k
i−j=k.

Proof. From construction of non-conflicting part Bel0 of a BF Bel [11] we can see that for quasi-
Bayesian Bel0, i.e., singleton simple support belief function, there is Pl = (x, y, y) where x ≥ y
if Bel0 ∈ S1 (or Pl = (y, x, y) or Pl = (y, y, x) for Bel0 from S2 or S3). From this we obtain
Bel = (a, b, b) or Bel = (b, a, b) or Bel = (b, b, a) where a ≥ b, a + b + b ≤ 1. The rest follows
properties of Di−j=k see [13]. �

Figure 4.1: Quasi-Bayesian BFs with unique decomposition into
Bel0 ⊕BelS on 3-element frame of discernment Ω3.

Figure 4.2: SPl — subsemigroup
of general indecisive belief func-
tions.

Theorem 9 Belief functions Bel from Q = D1≥2=3
1−2=3 ∪D2≥1=3

2−1=3 ∪D3≥1=2
3−1=2 have unique decomposition

into their conflicting part BelS ∈ S0 and non-conflicting part in S1 (S2 or S3 respectively).
For quasi-Bayesian BFs out of Q (i.e. BFs from D3−0 \Q) we have not decomposition into conflict-
ing and non-conflicting part according to Hypothesis 1, as we have not f(Bel0) ∈ S0 and have not
subtraction in S in general.

Proof. Bel0 ∈ Si ⊂ D3−0 for Bel ∈ Di≥j=k
i−j=k, thus f(Bel0) ∈ S0 which is isomorphic to the positive

cone of the additive group of reals. Hence there is subtraction and Dempster’s ’sixth’, which gives us
unique BelS ∈ S0. �

BFs from D3−0 \Q either have their conflicting part in SPl \S0 or in SPl \S or have not conflicting
part according to Hypothesis 1 (i.e. their conflicting part is a pseudo belief function out of D3).
Solution of the problem is related to a question of subtraction in subsemigroups S and SPl, as f(Bel0)
is not in S0 but in S \ S0 for qBBFs out of Q. Thus we have to study these qBBFs together with
general BFs from the point of view of their conflicting parts.

4.3 Towards Conflicting Parts of General Belief Functions on Ω3

There is a special class of general BFs with singleton simple support non-conflicting part, i.e. BFs with
f(Bel0) ∈ S0. Nevertheless due to the generality of Bel, we have f(Bel) ∈ S in general, thus there is
a different special type of belief ’subtraction’ ((a, a, a, b, b, b)⊖ (c, c, c, 0, 0, 0, 0) for f(Bel)⊖ f(Bel0)).

We are interested to follow the idea of the decomposition schema from Figure 3.4 as much as
possible. What do we already have?

12



We have the entire right part: given Bel, Bel ⊕ U3, and non-conflicting part Bel0 (Theorem 5
(i)); in the left part we have −Bel ⊕ U3 = −(Bel ⊕ U3) using G3 group ’−’ (Theorem 3 (ii)) and
−Bel0 = (−Bel ⊕ U3)0 (a non-conflicting part of −Bel ⊕ U3). In the central part of the figure, we
only have U3 and −Bel0 ⊕ Bel0 in fact. As we have not −Bel we have not −Bel ⊕ Bel, we use
f(Bel) =

⊕
π∈Π3

π(Bel) instead of it; f(Bel) ∈ S in general, (in the special case of qBBF Bel:
f(Bel) ∈ S0).

We can also compute14 −Bel0 ⊕Bel0; is it equal to f(Bel0)? If not, what is their relation then?
One of the important questions is: When f(BelS) is computable from f(Bel) and f(Bel0) as

f(Bel)⊖ f(Bel0)?
The other important question is: What is a relation of f(BelS) and BelS? It is not possible to

compute BelS only from f(BelS) ∈ S \ S0 as there should be multiple pre-images of f(BelS) out
of S0. There is the simple one-dimensional abscissa (segment of line) S0 in D3−0, similarly to S in
classic Dempsters’ semigroup D0 on Ω2. Besides S0, there is also two-dimensional triangle S (given
by vertices 0, U3, (0, 0, 0,

1
3 ,

1
3 ,

1
3 )) and six-dimensional SPl of indecisive BFs (with Pl(Bel) = U3) in

D3 in general, see Figure 4.2.
What about ’Dempster’s sixth’? We know that the unique Dempster’s sixth exits for BFs from

S0. Is it unique for f(Bel) ∈ S? Does it always exist there (also out of S0)? What it its relation to
Bel and BelS?

Thinking about these structures, a new question arises: is the homomorphism f , as it is defined in
Theorem 7, the only generalisation of f , i.e. does it hold that f(Bel) =

⊕
π∈Π3

π(Bel) = −Bel⊕Bel?
We can include these questions into the diagram of decomposition of a BF Bel into its conflicting and
non-conflicting part as it is in Figure 4.3.

Figure 4.3: Updated detailed schema of a decomposition of BF Bel.

14For examples of computation of -Bel0 ⊕Bel0 and consequential results and new open problems see the Appendix.
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4.4 Example of Decomposition with Conflicting Part out of S

Example 2. A general BF Bel = ( 50
128 ,

28
128 ,

4
128 ,

22
128 ,

4
128 ,

2
128 ;

8
128 ) has its non-conflicting part Bel0 =

( 2
12 , 0, 0,

6
12 , 0, 0;

4
12 )=(0.166, 0, 0, 0.5, 0, 0; 0.333) and conflicting part BelS=( 3

12 ,
1
12 ,

1
12 ,

1
12 ,

1
12 ,

3
12 ;

2
12 )=

(0.2500, 0.0833, 0.0833, 0.0833, 0.0833, 0.2500; 0.1666) which is in SPl = {Bel |Pl P =U3} out of S.

5 Open Problems for a Future Research

A series of open questions were suggested in the last subsection of the previous section. The particular
open problems are really numerous, nevertheless each of them is a subproblem of one of 3 main general
open problems.

• Improvement of the algebraic analysis, is really necessary, especially of sugbroup SPl of indecisive
BFs.

• A new question is related to two approaches to generalisation of f :
(i) homomorphism f is defined by f(Bel) = −Bel ⊕Bel, respecting ’−’ on G3,
(ii) the presented approach which is based on permutations of elements of frame of discernment.
Produce these approaches same f and same BelS (if it exists)? Or there are two different
generalisations of homomorphism f and of conflicting part BelS from the 2-element case of
frame of discernment?

• And a principal question of the study: a specification of sets (or of subalgebras) of BFs which
are decomposable into Bel0 ⊕BelS and which are not.

6 Summary and Conclusions

New approach to understanding operation ’−’ and homomorphism f from D0 (a transposition of
elements instead of some operation related to group ’minus’ of G, G3). is introduced in this study.

First generalisation of Hájek-Valdés homomorphism f is presented. Specification of first classes
of BFs (on Ω3) which are decomposable into Bel0 ⊕ BelS . And several other partial results were
obtained.

The presented results improve general understanding of conflicts of belief functions and the entire
nature of belief functions. Correct understanding of conflicts may consequently improve a combination
of conflicting belief functions. These results can be also used as one of the mile-stones to further study
of conflicts between belief functions.
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Appendix

7 Two Different Generalisations of Hájek-Valdés homomor-
phism f

.
From the previous text, we have two ways of generalisation of Hájek-Valdés homomorphism f :

(i) The original way using simple generalisation of Hájek-Valdés definition from Demspter’s semigroup
on a two-element frame; f(Bel) = −Bel ⊕ Bel. As it was mentioned this definition is only partial,
defined for consonant and Bayesian BFs only; as we have not yet full generalisation of the operation
’−’.
(ii) The presented new approach which is based on permutations of elements of the frame of discern-
ment.

There is a question, whether these approaches mutually coincide, i.e., whether they produce the
same generalisation of homomorphism f or not. There are two different classes of BFs, where classic
way is defined, i.e., two classes where we can make a comparison. We can show that the approaches
coincide on Baeysian BFs, whereas we can simply find counterexamples for consonant BFs.

Lemma 5 −Bel ⊕Bel =
⊕

π∈Π3
π(Bel) for Bayesian belief functions on D3 (i.e., for BFs on G3).

Proof. −Bel is defined such that, −Bel ⊕ Bel = U3 on G3. From definition of
⊕

π∈Π3
we can easy

see that it is symmetric BF (i.e.,
⊕

π∈Π3
∈ S). All the permutations of a Bayesian BF are Bayesian

again, thus
⊕

π∈Π3
= U3, as U3 is the only symmetric Bayesian BF. (Alternatively, we can take any

general consonant BF, e.g., (a, 0, 0, b, 0, 0; 1 − a − b), all its permutations: (a, 0, 0, 0, b, 0; 1 − a − b),
(0, 0, 0, b, 0, 0; 1− a− b), ..., and combine them; we obtain U3 as a result again). �
Example 3. A counterexample: a general consonant belief function.
Let us take consonant BFs Belcons = ( 14 , 0, 0,

2
4 , 0, 0;

1
4 ). We obtain corresponding Plcons = ( 44 ,

3
4 ,

1
4 ,

4
4 ,

4
4 ,

3
4 ;

4
4 ) and Pl Pcons = ( 48 ,

3
8 ,

1
8 ), further h(Belcons) = ( 48 ,

3
8 ,

1
8 , 0, 0, 0; 0). Thus −h(Belcons) =

( 3
19 ,

4
19 ,

12
19 , 0, 0, 0; 0) (as (−h(Belcons))({ω1})= 3·1

3·1+4·1+4·3 =
3
19 , etc.) and−Belcons=(−h(Belcons))0=

(0, 0, 8
12 , 0, 0,

1
12 ;

3
12 ).

Hence, we can easily compute Belcons ⊕ −Belcons = ( 14 , 0, 0,
2
4 , 0, 0;

1
4 ) ⊕ (0, 0, 8

12 , 0, 0,
1
12 ;

3
12 ) =

( 3
48 ,

2
48 ,

8
48 ,

6
48 , 0,

1
48 ;

3
48 |

8+1+16
48 )=( 3

23 ,
2
23 ,

8
23 ,

6
23 , 0,

1
23 ;

3
23 ). We can verify, that h(Belcons⊕−Belcons)=

U3, because of related plausibility is equal to (3+6+3
23 , 2+6+1+3

23 , 8+1+3
23 , 15

23 ,
20
23 ,

20
23 ;

23
23 ). Unfortunately,

it is not a symmetric BF which
⊕

π∈Π3
π(Belcons) should be.

Let us compute
⊕

π∈Π3
π(Belcons) now. It is equal to (( 14 , 0, 0,

2
4 , 0, 0;

1
4 ) ⊕ ( 14 , 0, 0, 0,

2
4 , 0;

1
4 )) ⊕

((0, 1
4 , 0,

2
4 , 0, 0;

1
4 )⊕ ( 14 , 0, 0, 0, 0,

2
4 ;

1
4 )) ⊕ ((0, 0, 1

4 , 0,
2
4 , 0;

1
4 )⊕ (0, 0, 1

4 , 0, 0,
2
4 ;

1
4 )). Dempster’s sum of

the first couple is equal to (4+6+1
16 , 0, 0, 2

16 ,
2
16 , 0;

1
16 ), analogously sums of the second and third couples

are (0, 11
16 , 0,

2
16 , 0,

2
16 ;

1
16 ) and (0, 0, 11

16 , 0,
2
16 ,

2
16 ;

1
16 ). The rest is Dempster’s sum of these three partial

results; thus we obtain15 ( 11·3+2·2
256 , 2·13+1·11

256 , 2·2
256 ,

2·3+1·2
256 , 2·1

256 ,
2·1
256 ;

1·
256 |

11·13+2·11
256 )=(3791 ,

37
91 ,

4
91 ,

8
91 ,

2
91 ,

2
91 ;

1
91 ) and ( 3791 ,

37
91 ,

4
91 ,

8
91 ,

2
91 ,

2
91 ;

1
91 )⊕(0, 0, 11

16 , 0,
2
16 ,

2
16 ;

1
16 ) = ( 2·45+37

91·16 , 2·45+37
1456 , 11·9+2·6+2·6+4

1456 , 8
1456 ,

2·3+2
1456 ,

2·3+2
1456 ; 1·

1456 |
11·37+11·37+11·8+2·37+2·37

1456 ) = ( 127406 ,
127
406 ,

127
406 ,

8
406 ,

8
406 ,

8
406 ;

1
406 ) ∈ S.

Hence we have verified that Belcons ⊕−Belcons ̸=
⊕

π∈Π3
π(Belcons).

Example 4. A counterexample: a singleton simple support belief function.
Let us show also a counterexample for a representative of the simplest consonant BFs, a singleton
simple support BF. Let us take BelsSSF = ( 14 , 0, 0, 0, 0, 0;

3
4 ) now. Analogously to the previous ex-

ample, we obtain corresponding PlsSSF = ( 44 ,
3
4 ,

3
4 ,

4
4 ,

4
4 ,

3
4 ;

4
4 ) and Pl PsSSF = ( 4

10 ,
3
10 ,

3
10 ), further

h(BelsSSF ) = ( 4
10 ,

3
10 ,

3
10 ,0,0,0;0). Thus −h(BelsSSF ) = ( 3

11 ,
4
11 ,

4
11 ,0,0,0;0) (as (−h(BelsSSF ))({ω1}) =

3·3
3·3+3·4+3·4 = 9

33 = 3
11 , etc.) and −BelsSSF = (−h(BelsSSF ))0 = (0, 0, 0, 0, 0, 1

4 ;
3
4 ).

15We use 2n notation, i.e., 8-tuples (m∩⃝({ω1}),m∩⃝({ω2}),m∩⃝({ω3}),m∩⃝({ω1, ω2}),m∩⃝({ω1, ω2}),m∩⃝({ω2, ω3});
m∩⃝(Ω) |m∩⃝(∅)) for representation non-normalised intermediate results; m∩⃝(Ω) is separated by semicolon and sum of
multiples of conflicting belief masses m∩⃝(∅) by ’|’ there.
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Hence, we can easily compute BelsSSF ⊕ −BelsSSF = ( 14 , 0, 0, 0, 0, 0;
3
4 ) ⊕ (0, 0, 0, 0, 0, 1

4 ;
3
4 ) =

( 3
15 , 0, 0, 0, 0,

3
15 ;

9
15 ). Analogously to the previous example we have h(BelsSSF ⊕ −Belcons) = U3;

unfortunately the result is not symmetric again.⊕
π∈Π3

π(BelsSSF ) = (( 14 , 0, 0, 0, 0, 0;
3
4 )⊕( 14 , 0, 0, 0, 0, 0;

3
4 )) ⊕ ((0, 1

4 , 0, 0, 0, 0;
3
4 )⊕( 14 , 0, 0, 0, 0, 0;

3
4 )) ⊕

((0, 0, 1
4 , 0, 0, 0;

3
4 )⊕(0, 0, 1

4 , 0, 0, 0;
3
4 )) = ( 7

16 , 0, 0, 0, 0, 0;
9
16 )⊕(0, 7

16 , 0, 0, 0, 0;
9
16 )⊕(0, 0, 7

16 , 0, 0, 0;
9
16 ) =

( 9·7
256 ,

9·7
256 , 0, 0, 0, 0;

9·9
256 |

7·7
256 ) ⊕ (0, 0, 7

16 , 0, 0, 0;
9
16 ) = ( 9·7

207 ,
9·7
207 , 0, 0, 0, 0;

9·9
207 ) ⊕ (0, 0, 7

16 , 0, 0, 0;
9
16 ) =

( 9·9·7
9·9(7+7+7+9) ,

9·9·7
81·30 ,

9·9·7
81·30 , 0, 0, 0;

9·9·9
81·30 |

9·7·7+9·7·7
81·30 ) = ( 7

30 ,
7
30 ,

7
30 , 0, 0, 0;

9
30 ) ∈ S0.

Hence we have verified that BelsSSF ⊕−BelsSSF ̸=
⊕

π∈Π3
π(BelsSSF ).

Any of the above counterexamples shows that −Bel⊕Bel is not equal to
⊕

π∈Π3
π(Bel) in general.

Lemma 6 −Bel⊕Bel is not equal to
⊕

π∈Π3
π(Bel) in general. Thus there are two different gener-

alisations of homomorphism f to D3.

Learning this, a series of new open problems arises, both theoretic algebraic problems and problems
related to the decomposition of a BF into conflicting and non-conflicting parts. On the other hand,
we can update the diagram of decomposition of a BF Bel into its conflicting and non-conflicting part,
as it is in Figure 7.1.

Figure 7.1: Updated schema of decomposition of Bel.
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Neither −Bel0 ⊕Bel0 is equal to f(Bel0) =
⊕

π∈Π3
π(Bel0) nor −Bel⊕Bel is equal to f(Bel) =⊕

π∈Π3
π(Bel) in general. We yet do not know, what is a relationship of these two approaches? What

is their relationship to the decomposition of Bel. Whether one of them (and which one) can be used
for the decomposition of a BF into conflicting and non-conflicting parts. Thus it is more correct to use

Bel⊕−Bel ̸=
⊕

π∈Π3
π(Bel) instead of the original Bel⊕−Bel

?
= f(Bel) and Bel⊕−Bel ̸= f(Bel)

(analogously for Bel0) as it is in Figure 7.2.

Figure 7.2: Updated and corrected schema of decomposition of Bel.

8 Updated Open Problems

There are three main general open problems coming from this study:

• Elaboration of algebraic analysis. Besides problems from [13] and [14] related to generalisation
of Dempster’s semigroup to a general finite frame of discernment, there has arisen a special
importance of an algebraic analysis of sugbroup SPl (indecisive BFs).
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• New question are related to two approaches to generalisation of f :
(i) homomorphism f defined by f(Bel) = −Bel ⊕Bel, respecting ’−’ on G3,
(ii) the presented new approach which is based on permutations of elements of the frame of
discernment.
What are the properties of this two different generalisations of homomorphism f ; where these
generalisation mutually coincide and where not (supposing to find a full generalisation of the
classic way of definition); what is their relationship? What is a relationship of these generali-
sations to conflicting part of a belief function and to decomposition of a BF into its conflicting
and non-conflicting parts?

• Principal question of the study: verification of Hypothesis 1; otherwise a specification of sets (or
of subalgebras) of BFs which are decomposable into Bel0 ⊕BelS and which are not.

9 Conclusion

New approach to understanding operation ’−’ and homomorphism f from D0 (a transposition of
elements instead of some operation related to group ’minus’ of G, G3) is introduced in this study.

The first complete generalisation of Hájek-Valdés important homomorphism f is presented. It
was observed, that this generalisation differs from the previous partial generalisation using partially
generalised operation − (defined only for consonant and Bayesian BFs), thus a series of new open
problems has arisen. Specification of several classes of BFs (on Ω3) which are decomposable into
Bel0 ⊕BelS , and several other partial results were obtained.

The presented results improve general understanding of conflicts of BFs and of the entire nature of
belief functions. These results can be also used as one of the mile-stones to further study of conflicts
between belief functions. Correct understanding of conflicts may consequently improve a combination
of conflicting belief functions.
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