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1 Introduction

This report collects the results from the theory of similarity relations and fuzzy orderings
that are prerequisite for the author’s forthcoming paper [3]. The results are presented in a
systematic manner to serve as ‘extended preliminaries’ to [3] for non-experts in fuzzy order-
ings. The report therefore covers the two topics relevant for [3], namely the correspondence
between similarity relations and fuzzy orderings in fuzzified crisp linear orders (Section 3)
and the notions of fuzzy bounds, maxima, minima, suprema, and infima of fuzzy sets in fuzzy
orderings (Section 4). Two alternative notions of fuzzy maxima and minima (depending on
whether lattice conjunction or residuated conjunction is employed in the definition) are dis-
cussed, and a justification for the weaker notions employing lattice conjunction is offered; the
results proved in [6] for the stronger notions based on residuated conjunction are adapted
here for the weaker, lattice conjunction–based notions.

Most of the results presented here are already known from the literature [14, 15, 16,
17, 21]. The secondary aim of this report is to re-prove these known results in a certain
format (described in Section 5) that enables a direct translation into the formalism of higher-
order fuzzy logic MTL∆. There are two motivations for this enterprise: the general one
is the fact that when formalized in higher-order MTL∆, these theorems can be utilized in
further developments of logic-based fuzzy mathematics [7, 8, 9]. A more particular motivation
is connected with the fact that the results of both the present report and the paper [3]
are themselves prerequisites for fuzzy semantics of counterfactual conditionals (preliminarily
described in [13]), which is carried out in higher-order fuzzy logic. For the applicability of
these theorems to fuzzy counterfactuals we thus need to demonstrate that they are formally
provable in higher-order fuzzy logic, which may not be immediately clear from their proofs
found in the literature. As explained in Section 5, the format of proofs given here ensures
that all of the results are indeed provable in higher-order fuzzy logic. A tertiary aim of this
report is thus to demonstrate that formal results of logic-based fuzzy mathematics provable
in higher-order fuzzy logic can be presented in the syntax of traditional fuzzy mathematics,
which may be more accessible to a broader community of fuzzy mathematicians.

2 Preliminaries

In this section we collect some standard definitions and lemmata on fuzzy sets and fuzzy
relations which will be needed in the following sections.

2.1 Membership degrees

Unless said otherwise, in this report we value all fuzzy sets and fuzzy relations in an arbitrary
fixed complete linear MTL-algebra:2

Definition 2.1 ([22]). The algebra L = ⟨L, ∗,⇒,∧,∨, 0, 1⟩ is a complete linear MTL-algebra
if:

• ⟨L,∧,∨, 0, 1⟩ is a linearly ordered complete lattice

• ⟨L, ∗,∧,∨, 1⟩ is an ordered commutative monoid

• ⇒ is the residuum of ∗, i.e., x ∗ y ≤ z iff x ≤ y⇒ z, for all x, y, z ∈ L, where ≤ is the
lattice order generated by ∧,∨.

2For some relaxation of the conditions required of the system of membership degrees see Section 5.
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Complete linear MTL-algebras can be characterized as linearly ordered complete (com-
mutative bounded integral) residuated lattices (see, e.g., [23, 11]). The class includes the
most commonly used algebras of membership degrees:

Example 2.2. Recall that a left-continuous t-norm is a binary operation ∗ on the real unit
interval [0, 1] which is commutative, associative, monotone, has the neutral element 1, and is
left-continuous in both arguments (see, e.g., [24, 11]).

In particular, the real unit interval equipped with any left-continuous t-norm ∗, its
residuum ⇒, and the usual order of reals is a complete linear MTL-algebra. (In fact, all
MTL-algebras on [0, 1] with the usual order of reals are of this form.)

The following lemma lists some properties of complete linear MTL-algebras, which will
be employed in proofs in subsequent sections. Their validity follows easily from theorems of
the logic MTL found, e.g., in [22, 11].

Lemma 2.3. The following statements are valid in any linear complete MTL-algebra:

1. (1⇒ α) = α

2. (α⇒ β) = 1 iff α ≤ β

3. α ∗ (α⇒ β) ≤ β

4. α ≤ (β⇒ γ) iff β ≤ (α⇒ γ)

5. If α ≤ β and α′ ≤ β′, then α ∧ α′ ≤ β ∧ β′

6. (α⇒ β) ∧ (α′ ⇒ β′) ≤ (α ∧ α′ ⇒ β ∧ β′)

7. If α ∗ β ≤ χ and α′ ∗ β′ ≤ χ′, then (α ∧ α′) ∗ (β ∧ β′) ≤ χ ∧ χ′

8. (α⇒ β) ≤ (α ∨ γ⇒ β ∨ γ)

9. (α⇒ β) ≤ ((β⇒ γ)⇒ (α⇒ γ))

10.
∧

i∈I(αi ⇒ βi) ≤
(∧

i∈I αi ⇒
∧

i∈I βi
)

2.2 Fuzzy sets and fuzzy relations

Throughout this report, X will denote a fixed crisp domain. A fuzzy set A on X is identified
with a mapping A : X → L, and a binary fuzzy relation R on X with a mapping R : X2 → L,
where L is a complete linear MTL-algebra. Since this report does not deal with fuzzy relations
of arities higher than two, we will use the term ‘fuzzy relation’ always to mean ‘binary fuzzy
relation’.

Convention 2.4. As usual, a crisp subset A of X is identified with the fuzzy set defined as:

Ax =

{
1 for all x ∈ A

0 for all x ∈ X \A,

and similarly for crisp fuzzy relations on X.

We will need several standard definitions of fuzzy set theory:
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Definition 2.5. We define the following operations with fuzzy sets A,B on a crisp domainX,
by setting for all x ∈ X:

(A ∩B)x =df Ax ∗Bx strong intersection

(A ⊓B)x =df Ax ∧Bx min-intersection

(A ⊔B)x =df Ax ∨Bx max-union

Furthermore we define the crisp kernel and support of a fuzzy set A on X as follows:

KerA =df {x ∈ X | Ax = 1} kernel

SuppA =df {x ∈ X | Ax > 0} support

Crisp inclusion is the relation ⊑ between fuzzy sets defined as follows:

A ⊑ B ≡df (∀x ∈ X)(Ax ≤ Bx) crisp inclusion

Graded inclusion is a fuzzy relation on fuzzy sets, which assigns a degree from L to any two
fuzzy sets A,B on X as follows:

A ⊆ B =df

∧
x∈X

(Ax⇒Bx) graded inclusion

Mutatis mutandis (namely, by taking x ∈ X2 instead of x ∈ X), the above definitions apply
to fuzzy relations as well. The following definitions are particular to fuzzy relations. For all
x, y ∈ X we set:

Idxy =df

{
1 if x = y

0 if x ̸= y
identity relation

R−1xy =df Ryx converse fuzzy relation

(R ◦ S)xy =df

∨
z∈X

(Rxz ∗ Szy) (sup-T) composition

All notions introduced in Definition 2.5 are standard and their properties can be found
in any comprehensive monograph on fuzzy set theory (e.g., [24, 15]).3 Observe that due to
Lemma 2.3(2), A ⊑ B iff (A ⊆ B) = 1.

2.3 Similarity relations and fuzzy orderings

Below we define several standard properties of fuzzy relations that generalize the correspond-
ing properties of crisp relations. The first four properties of Definition 2.6 can be found
already in [32]. The property we call here linearity is also known as strong linearity or strong
completeness (e.g., [16, 18]), while the name linearity may denote various different properties
in the literature (as is the case, e.g., in [32, 18]).

3The (perhaps less widely known) notion of graded inclusion has been employed, i.a., in [2, 24, 15, 6, 12].
As reported in [25], it was first considered (for  Lukasiewicz logic) by Klaua as early as the 1960’s.
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Definition 2.6. A fuzzy relation R on a crisp domain X is called:

• Reflexive if (∀x ∈ X)(Rxx = 1); that is, if Id ⊑ R

• Transitive if (∀x, y, z ∈ X)(Rxy ∗Ryz ≤ Rxz); that is, if R ◦R ⊑ R

• Symmetric if (∀x, y ∈ X)(Rxy ≤ Ryx); that is, if R ⊑ R−1

• Antisymmetric if (∀x, y ∈ X)((Rxy ∗Ryx > 0) ⇒ (x = y)); that is, if R ∩R−1 ⊑ Id

• Linear if (∀x, y ∈ X)(Rxy ∨Ryx = 1); that is, if R ⊔R−1 = X2.

Remark. Note that the properties of transitivity and antisymmetry are defined relative to the
strong conjunction ∗. For this reason they are often called ∗-transitivity and ∗-antisymmetry
in the literature. Since in this report we always work in a fixed MTL-algebra L of membership
degrees, we omit the parameter ∗ in the names as it is already determined by L. (The same
remark applies to the notions of E-antisymmetry, similarity, and fuzzy (E-)ordering defined
below.) For these properties to be well-defined, the MTL-algebra L of membership degrees
has to be specified in advance, including its monoidal operation ∗. The other properties of
fuzzy relations introduced in this section, on the other hand, rely just on the lattice ordering
of L (and so, e.g., coincide for all MTL-algebras on [0, 1], regardless of the left-continuous
t-norm ∗ used).

The following generalization of reflexivity and antisymmetry replaces the crisp equality in
the definition by a fuzzy relation. This move was first proposed in [28] and further developed
in [16, 17, 18, 4, 6].

Definition 2.7. Let X be a crisp domain and E a fuzzy relation on X. A fuzzy relation R
on X is called:

• E-reflexive if (∀x, y ∈ X)(Exy ≤ Rxy); that is, if E ⊑ R

• E-antisymmetric if (∀x, y ∈ X)(Rxy ∗Ryx ≤ Exy); that is, if R ∩R−1 ⊑ E.

Similarly as in the theory of crisp relations, combinations of the above properties delimit
certain important classes of fuzzy relations.

Definition 2.8. A fuzzy relation R on a crisp domain X is called:

• Fuzzy preorder(ing) if it is reflexive and transitive

• Similarity (or fuzzy equivalence relation) if it is reflexive, transitive, and symmetric

• Fuzzy order(ing) if it is reflexive, transitive, and antisymmetric

• Fuzzy E-order(ing) if it is E-reflexive, transitive, and E-antisymmetric, where E is a
fuzzy similarity relation on X.

Similarity relations and fuzzy orderings have been extensively studied in the literature,
see, e.g., [32, 31, 30, 19, 15, 6]. Similarity-based fuzzy orderings, or fuzzy E-orders, have been
studied, e.g., in [28, 16, 17, 18, 6]. The following properties of similarity relations are standard,
too (e.g., [27, 16, 17]). Separated similarities are also known as unimodal similarities or fuzzy
equality relations.

Definition 2.9. Let � be a crisp ordering on a crisp domain X. We say that a similarity
relation E on X is:
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• Separated if (∀x, y ∈ X)((Exy = 1) ⇔ (x = y)); that is, if Ker(E) = Id

• Compatible with � if (∀x, y, z ∈ X)((x� y � z) ⇒ (Ezx ≤ Eyx ∧ Ezy)).

For convenience, we also define the corresponding properties of fuzzy orderings:

Definition 2.10. Let � be a crisp ordering on a crisp domain X. We say that a fuzzy
E-ordering L on X:

• Extends � if (∀x, y ∈ X)((x� y) ⇒ (Lxy = 1)); that is, if � ⊑ L

• Fuzzifies � if (∀x, y ∈ X)((x� y) ⇔ (Lxy = 1)); that is, if � = Ker(L)

• Is compatible with � if (∀x, y, z ∈ X)((x� y � z) ⇒ (Lzx ≤ Lyx ∧ Lzy)).

Remark. Clearly, the properties introduced in Definition 2.10 can meaningfully be defined
for any fuzzy relation L and w.r.t. any crisp relation � on X, regardless of whether L is
a fuzzy E-ordering and � a crisp ordering. (Note, however, that in [16], fuzzification of a
crisp relation is a concept different from ours.) By definition, every fuzzy relation fuzzifies its
kernel, which is a crisp equivalence relation for a similarity and a crisp ordering for a fuzzy
E-ordering if E is separated. Separated similarities are thus those similarities which fuzzify
the crisp equality Id.

Notice also that since the crisp order � fuzzified by a fuzzy E-ordering L can be recovered
from L (as its kernel), the notions related to fuzzified crisp orderings could as well be defined
in terms of fuzzy E-orderings only. Since, however, considerations on fuzzified orders typically
regard the underlying crisp order as primary, we prefer to make our definitions relative to an
underlying crisp order (which is then to be specified in advance).

3 Correspondence between similarities and similarity-based
fuzzy orderings on linearly ordered domains

Further on, let � be a given crisp linear ordering of a crisp domain X.

Definition 3.1. Given a fuzzy relation L on X, we define its min-intersective symmetrization
EL, by setting:

ELxy =df Lxy ∧ Lyx

for all x, y ∈ X; that is, EL = L ⊓ L−1.
Conversely, given a fuzzy relation E on X, we can define the fuzzification LE of the crisp

order � with E:

LExy =df (x� y) ∨ Exy

for all x, y ∈ X; that is, LE = � ⊔ E.

It will be seen that in fuzzified linear orderings, the operators L 7→ EL and E 7→ LE

are mutually inverse. Indeed, the theorems given in this section show that the assignments
L 7→ EL and E 7→ LE can be regarded as inverse functors between the ⊑-ordered poset
category of all similarity relations compatible with � on X and the ⊑-ordered poset category
of all fuzzy orderings extending and compatible with �, as well as between their respective
subcategories delimited by the conditions of separatedness and �-fuzzification.
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These results effectively say that it is immaterial in the setting of fuzzified linear orderings
whether we start with a fuzzy similarity relation or a similarity-based fuzzy ordering. Even
if in many cases it is admittedly more natural to regard the fuzzy similarity as primary
and the similarity-based fuzzy ordering as derivative, the theorems show that under certain
assumptions, both ways are formally equivalent.

Most of the results of this section are known in the setting of t-norms on the real unit
interval [16, 17]; we re-prove them here over any complete linear residuated lattices. The
proofs are presented in a specific format, for reasons explained in Section 5.

Theorem 3.2. Let � be a crisp linear order on a crisp domain X and L a fuzzy preorder
on X. Then:

1. EL is a similarity relation.

2. L is actually a fuzzy EL-ordering.

3. If L is linear, then E = EL is the unique similarity such that L is an E-ordering.

4. If L fuzzifies �, then EL is separated.

5. If L is compatible with and extends �, then EL is compatible with �.

Proof.

1. Reflexivity: ELxx = Lxx ∧ Lxx = 1 by the definition of EL and the reflexivity of L.

Transitivity: The required condition (Lxy∧Lyx)∗(Lyz∧Lzy) ≤ Lxz∧Lzx is obtained
by Lemma 2.3(7) from the inequalities Lxy ∗Lyz ≤ Lxz and Lzy ∗Lyx ≤ Lzx, ensured
by the transitivity of L.

Symmetry: Trivial by the definition of EL.

2. Trivially EL = L⊓L−1 ⊑ L, so L is EL-reflexive; also trivially L∩L−1 ⊑ L⊓L−1 = EL,
so L is EL-antisymmetric (cf. Definition 2.7).

3. Observe that if L is linear, then L ∩ L−1 = L ⊓ L−1 = EL; thus L is E-antisymmetric
only if EL ⊑ E. Furthermore, L is E-reflexive only if E ⊑ L; then, however, also
E−1 ⊑ L−1, thus E ⊓E−1 ⊑ L⊓L−1 = EL. Since E ⊓E−1 = E by the symmetry of E,
L is therefore E-reflexive only if E ⊑ EL. Thus the linear fuzzy preorder L is a fuzzy
E-ordering iff E = EL.

4. Ker(EL) = Ker(L⊓L−1) = Ker(L)∩Ker(L−1) = �∩� as L fuzzifies �, and �∩� = Id
by the antisymmetry of �.

5. Let x � y � z. Then Lzx ≤ Lyx, as L is compatible with �. Since moreover Lxz =
Lxy = 1 as L extends �, we obtain Lzx ∧ Lxz ≤ Lyx ∧ Lxy, i.e., ELzx ≤ ELyx.
Similarly it is proved that ELzx ≤ ELzy; thus EL is compatible with �.

Theorem 3.3. Let � be a crisp linear order on a crisp domain X and E a similarity on X.

1. If E is separated, then LE fuzzifies �.

2. If E is compatible with �, then LE is a fuzzy E-ordering compatible with and extend-
ing �.
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Proof.

1. (LExy = 1) ⇔ ((x� y) ∨ (Exy = 1)) ⇔ ((x� y) ∨ (x = y)) ⇔ (x� y), respectively by
the definition of LE , the separatedness of E, and the reflexivity of �.

2. Trivially, LE is E-reflexive (as E ⊑ E ⊔�) and extends � (as � ⊑ E ⊔�).

Transitivity: We shall prove LExy ∗ LEyz ≤ LExz for all x, y, z ∈ X by taking the
following crisp cases (which are exhaustive due to the linearity of �):

– If x� z, then LExz = 1 ≥ LExy ∗ LEyz.

– If z � y � x, then LExy = Exy, LEyz = Eyz, and LExz = Exz, so the claim
follows from the transitivity of E.

– If z � x� y, then LExy ∗ LEyz = Eyz ≤ Exz as E is compatible with �.

– If y � z � x, then LExy ∗ LEyz = Exy ≤ Exz as E is compatible with �.

E-antisymmetry: We need to prove LE ∩ L−1
E ⊑ E. By the distributivity of ∗ over ∨

we obtain: LE ∩L−1
E = (E⊔�)∩ (E⊔�) = (E∩E)⊔ (E∩�)⊔ (E∩�)⊔ (�∩�). Now

observe that the first three components are contained in E (as E ∩ R ⊑ E for any R)
and that (� ∩�) = Id ⊑ E by the antisymmetry of � and the reflexivity of E.

Compatibility with �: If x� y� z, then LEzx = Ezx, LEyx = Eyx, and LEzy = Ezy,
so the claim instantiates the assumption that E is compatible with �.

Theorem 3.4. Let E1, E2, L1, L2 be fuzzy relations on a crisp domain X equipped with a
crisp linear order �, and let EL, LE be defined for any E,L as in Definition 3.1. Then:4

1. (E1 ⊆ E2) ≤ (LE1 ⊆ LE2); in particular, if E1 ⊑ E2 then LE1 ⊑ LE2.

2. (L1 ⊆ L2) ≤ (EL1 ⊆ EL2); in particular, if L1 ⊑ L2 then EL1 ⊑ EL2.

Proof.

1. By definitions and Lemma 2.3(8) we obtain: (E1 ⊆ E2) =
∧

x,y∈X(E1xy ⇒ E2xy) ≤∧
x,y∈X

(
(E1xy ∨ (x� y))⇒ (E2xy ∨ (x� y))

)
= (LE1 ⊆ LE2). The non-graded claim

(E1 ⊑ E2) ⇒ (LE1 ⊑ LE2) is an instance of the graded claim for (E1 ⊆ E2) = 1.

2. By definition, (L1 ⊆ L2) =
∧

x,y∈X(L1xy⇒ L2xy) ≤ (L1pq⇒ L2pq), for any p, q ∈ X.
Similarly, (L1 ⊆ L2) ≤ (L1qp⇒ L2qp). Combining these inequalities by Lemma 2.3(5)
and applying Lemma 2.3(6) thus yields: (L1 ⊆ L2) ≤

(
(L1pq ⇒ L2pq) ∧ (L1qp ⇒

L2qp)
)
≤

(
(L1pq∧L1qp)⇒(L2pq∧L2qp)

)
, for any p, q ∈ X. Consequently, (L1 ⊆ L2) ≤∧

p,q∈X
(
(L1pq ∧ L1qp)⇒ (L2pq ∧ L2qp)

)
=

(
(L1 ⊓ L−1

1 ) ⊆ (L2 ⊓ L−1
2 )

)
= (EL1 ⊆ EL2).

The non-graded claim (L1 ⊑ L2) ⇒ (EL1 ⊑ EL2) is an instance of the graded claim for
(L1 ⊆ L2) = 1.

Theorem 3.5. Let E,L be fuzzy relations on a crisp domain X, and let EL, LE be defined
for any E,L as above.

1. If E is reflexive, then ELE
= E.

2. If L extends �, then LEL
= L.

4See Definition 2.5 for the graded notion of inclusion ⊆.
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Proof. 1. ELE
= (E⊔�)⊓(E⊔�)−1 = (E⊔�)⊓(E⊔�) = (E⊓E)⊔(E⊓�)⊔(E⊓�)⊔(�⊓�)

by the distributivity of ⊓ over ⊔. Now observe that the first term in the max-union is E, the
second and third are contained in E, and the fourth equals Id (by the antisymmetry of �),
which is contained in E (by the reflexivity of E). Thus ELE

= E.
2. LEL

= � ⊔ (L ⊓ L−1) = (� ⊔ L) ⊓ (� ⊔ L−1) by the distributivity of ⊔ over ⊓. Now
observe that the first term in the min-intersection equals L, since L extends �; and the second
equals X2, since L−1 extends � and �⊔� = X2 as � is linear. Thus LEL

= L⊓X2 = L.

Remark. As seen from their proofs, Theorems 3.4–3.5 actually do not need � to be a crisp
linear order. Only the antisymmetry of � is used in the proof of Theorem 3.5(1), and the
linearity of � in the proof of Theorem 3.5(2); the proof of Theorem 3.4 makes no requirement
on � whatsoever.

4 Maxima and minima in fuzzy orderings

In this section we develop a basic apparatus of maxima and minima in fuzzy orderings, as a
prerequisite for the investigation of their special case in fuzzified crisp linear orderings, dealt
with in [3].

The notions of minima and maxima can in the fuzzy setting be defined in several ways. We
shall use one of the most natural generalizations of the corresponding crisp notions, namely
the definitions based on bounds.

Definition 4.1. Let L be a fuzzy relation on a crisp domain X and A a fuzzy subset of X.
The fuzzy sets A↑L , A↓L of upper and lower bounds of A with respect to L, or the upper and
lower cones of A in L, are defined, respectively, by setting for all q ∈ X:

A↑Lq =
∧
x∈X

(Ax⇒ Lxq), A↓Lq =
∧
y∈X

(Ay⇒ Lqy).

The definition of bounds can be understood as reinterpreting the classical (crisp set–
theoretical) definitions in the fuzzy setting, arrived at by replacing the quantifier ∀ with the
lattice infimum

∧
and the classical implication with the residuum, which is a usual method

of fuzzification in formal fuzzy logic (cf. Section 5). The notions introduced in Definition 4.1
are standard in the theory of fuzzy relations (see, e.g., [14, 15, 20, 6]); formally they are
special instances of inf-R composition of fuzzy relations, see [12, Section 5] and cf. [1] and
[15, Remark 6.16].

Definition 4.2. The fuzzy sets MaxLA,MinLA of the maxima and minima of A w.r.t. a
fuzzy relation L are defined, respectively, as:

MaxLA = A ⊓A↑L , MinLA = A ⊓A↓L .

The definition of fuzzy maxima and minima is based on the classical concept of selecting
those elements in a set which are its upper (or lower) bounds. However, unlike in classical
mathematics where the maximum or minimum of a set is unique (if it exists), the fuzzified
condition yields in general a fuzzy set of minima or maxima. It can also be noticed that even
though the notions of cones and maxima or minima are most meaningful for fuzzy preorders,
they are actually well-defined for any fuzzy relation L.

The notions of fuzzy maxima and minima introduced in Definition 4.2 have already oc-
curred in the literature [20]. A similar notion of fuzzy maxima and minima was employed
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in [6], differing only in using the strong intersection ∩ instead of the min-intersection ⊓ in
the defining terms. We will denote these alternative notions by Max∗LA and Min∗LA:

Definition 4.3. The fuzzy sets Max∗LA,Min∗LA of ∗-based maxima and minima of A in L
are defined, respectively, as:

Max∗LA = A ∩A↑L , Min∗LA = A ∩A↓L .

Even though both variants of the definitions are formally sound, the following reasons can
be given for preferring the min-intersection ⊓ over the ∗-intersection ∩ in the defining terms:

• As argued in [10], notions defined as the strong conjunction φ1∗ . . .∗φk of separate con-
ditions φ1, . . . , φk (such as the two conditions in our definition of maxima, namely that
of being an element of A and that of being an upper bound of A) are of limited utility
in contraction-free fuzzy logics (i.e., fuzzy logics with non-idempotent conjunction ∗).
Instead, a parameterized set of notions φ(n1,...,nk) ≡df φ

n1
1 ∗ · · · ∗φnk

k with ni-tuple con-
junction φni

i = φi ∗ · · · ∗ φi (ni times) of each condition φi should be considered, as
each of the conditions φi may be needed with varied multiplicity ni in different graded
theorems (see [10, Sect. 7] for details). Thus, the definition employed in [6] is only a
fragment of a useful ∗-based notion of maxima or minima in the fuzzy setting.

• There appears to be no strong intuition as to why both of the defining conditions
(rather than either one of them) should be needed for inferring facts from the graded
assumption that an element is a minimum or maximum, and therefore why strong
(rather than weak) conjunction should be used in the definition.5

The ∧-based definitions of maxima and minima are logically weaker than the ∗-based
ones (as φ ∧ ψ ≥ φ ∗ ψ). Nevertheless, it turns out that the properties proved in [6, Sect. 5]
for Max∗L and Min∗L hold for the ∧-based notions MaxL and MinL as well, as shown by the
following Theorem 4.6. Since the theorems for the ∧-based notions are stronger than those
of [6] (as their assumptions with the ∧-based maxima and minima are weaker), the ∗-based
results of [6] need be proved anew for the ∧-based definitions. We shall only prove the variants
for maxima. The analogous theorems for minima are obtained as corollaries by the following
lemma, obvious by expansion of definitions:

Lemma 4.4. For any fuzzy relation L and fuzzy set A, A↑L = A↓L−1 and A↓L = A↑L−1 .
Consequently, MinLA = MaxL−1 A and MaxLA = MinL−1 A (and analogously for Max∗ and
Min∗).

5Cf. the discussion of the inferential rôles of weak and strong conjunction in [5, Sect. 4], esp. at the end of
Remark 8 and in Example 9. Admittedly, our definition implies

(∀x ∈ X)
(
(Ax ≤ (MaxL A)x) ∨ (A↑Lx ≤ (MaxL A)x)

)
, (4.1)

which fuzzifies the classical-logic formula

(∀x ∈ X)
(
((x ∈ A) ⇒ (x ∈ MaxL A)) ∨ ((x ∈ A↑L) ⇒ (x ∈ MaxL A))

)
. (4.2)

Even though (4.2) is true as well for crisp sets, it is hardly intuitive: its validity for crisp sets can be viewed
as related to the paradoxes of material implication in classical logic. On the other hand, the fuzzy concept of
residual implication is a material one (rather than, e.g., relevant or strict), and so the ‘⇒’ in fuzzified (4.2)
should not be understood along the lines of “x ∈ A justifies x ∈ MaxL A” or similar, which would produce
the implausible reading of the definition. Consequently, the present author’s condemnation of the use of ∧ in
such contexts, expressed in [5, Example 9], was probably too hurried.
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We shall also need the following lemmata on cones, which generalize well-known properties
of crisp cones. Lemma 4.5(1) expresses the graded fact that the elements of a set indeed
follow the elements of its lower cone and precede the elements of its upper cone in the fuzzy
ordering. Lemmata 4.5(2)–(4) have been proved in [14, Lem. 3] and [6, Th. 5.8]; for the sake
of completeness and clarity, we re-prove them here in our notation.

Lemma 4.5. Let A,B be fuzzy subsets of a crisp domain X and L a fuzzy relation on X.
Then:

1. A↓Lx ∗Ay ≤ Lxy and Ax ∗A↑Ly ≤ Lxy, for all x, y ∈ X.

2. (A ⊆ B) ≤ (B↑L ⊆ A↑L) and (A ⊆ B) ≤ (B↓L ⊆ A↓L).

In particular, if A ⊑ B, then B↑L ⊑ A↑L and B↓L ⊑ A↓L.

3. A ⊑ (A↑L)↓L and A ⊑ (A↓L)↑L.

4. A↑L = ((A↑L)↓L)↑L and A↓L = ((A↓L)↑L)↓L.

Proof.

1. By definition, A↓Lx =
∧

z∈X(Az ⇒ Lxz) ≤ (Ay ⇒ Lxy) for any x, y ∈ X. Thus
A↓Lx ∗ Ay ≤ (Ay⇒ Lxy) ∗ Ay ≤ Lxy, by the monotony of ∗ and Lemma 2.3(3). The
dual claim for upper cones follows from Lemma 4.4.

2. By Lemma 2.3(9), (Ax⇒Bx) ≤ ((Bx⇒ Lxy)⇒ (Ax⇒ Lxy)) for all x, y ∈ X. Thus,∧
x∈X

(Ax⇒Bx) ≤
∧
x∈X

((Bx⇒ Lxy)⇒ (Ax⇒ Lxy))

≤
∧
x∈X

(Bx⇒ Lxy)⇒
∧
x∈X

(Ax⇒ Lxy)

by Lemma 2.3(10), for all y ∈ X; hence also∧
x∈X

(Ax⇒Bx) ≤
∧
y∈X

( ∧
x∈X

(Bx⇒ Lxy)⇒
∧
x∈X

(Ax⇒ Lxy))
)
,

i.e., (A ⊆ B) ≤ (B↑L ⊆ A↑L). The dual claim follows by Lemma 4.4 and the non-graded
claims instantiate the graded ones for (A ⊆ B) = 1.

3. For each a ∈ X, from
∧

y∈X(Ay⇒ Lyx) ≤ (Aa⇒ Lax) we obtain by Lemma 2.3(4):

Aa ≤
( ∧
y∈X

(Ay⇒ Lyx)
)
⇒ Lax

for any x ∈ X; hence

Aa ≤
∧
x∈X

(( ∧
y∈X

(Ay⇒ Lyx)
)
⇒ Lax

)
for each a ∈ X, i.e., A ⊑ (A↑L)↓L . The dual claim follows by Lemma 4.4.

4. The claim is a direct corollary of claims 2 and 3.
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Now we are ready to generalize the results of [6, Th. 5.12] for ∧-based minima and maxima.
Theorem 4.6(1) is a graded version of the classical property of monotonicity of maxima with
respect to inclusion of subsets: if A is a subset of B, x a maximum of A, and y a maximum of
B in L, then x precedes y in L. Theorem 4.6(2) expresses the graded uniqueness of maxima
with respect to the min-symmetrization EL of L: if x and y are maxima of A in L, then
they are equivalent in EL. Theorem 4.6(3) states an analogous property of E-uniqueness of
maxima in linear E-antisymmetric fuzzy relations (e.g., in linear fuzzy E-orderings).

Theorem 4.6 (cf. [6] for Max∗). Let A,B be fuzzy subsets of X, L a fuzzy relation on X,
and E a similarity on X. Then the following properties hold for all x, y ∈ X:

1. (A ⊆ B) ∗ (MaxLA)x ∗ (MaxLB)y ≤ Lxy

2. (MaxLA)x ∗ (MaxLA)y ≤ ELxy

3. If L is linear and E-antisymmetric, then (MaxLA)x ∗ (MaxLA)y ≤ Exy.

Proof.

1. By Lemma 4.5(2), (A ⊆ B) ≤ (B↑L ⊆ A↑L) =
∧

y∈X(B↑Ly⇒A↑Ly) ≤ (B↑Ly⇒A↑Ly).

Moreover, by definition, (MaxA)x ≤ Ax and (MaxB)y ≤ B↑Ly. Combining these
inequalities, by the monotonicity of ∗ we obtain:

(A ⊆ B) ∗ (MaxLA)x ∗ (MaxLB)y ≤ (B↑Ly⇒A↑Ly) ∗Ax ∗B↑Ly ≤ Ax ∗A↑Ly ≤ Lxy,

where the second inequality uses the instance B↑Ly ∗ (B↑Ly ⇒ A↑Ly) ≤ A↑Ly of
Lemma 2.3(3) and the third uses Lemma 4.5(1).

2. By definition and Lemma 4.5(1), (MaxLA)x∗(MaxLA)y ≤ Ax∗A↑Ly ≤ Lxy. Similarly,
(MaxLA)x ∗ (MaxLA)y ≤ A↑Lx ∗ Ay ≤ Lyx. Thus (MaxLA)x ∗ (MaxLA)y ≤ Lxy ∧
Lyx = ELxy.

3. By claim 2, (MaxLA)x∗(MaxLA)y ≤ ELxy. Moreover by the proof of Theorem 3.2(3),
if L is linear and E-antisymmetric then EL ⊑ E; thus ELxy ≤ Exy.

Corollary 4.7. In the setting of Theorem 4.6, the following properties of fuzzy minima hold:

1. (B ⊆ A) ∗ (MinLA)x ∗ (MinLB)y ≤ Lxy

2. (MinLA)x ∗ (MinLA)y ≤ ELxy

3. If L is linear and E-antisymmetric, then (MinLA)x ∗ (MinLA)y ≤ Exy.

Proof. The claims follow directly from Theorem 4.6 by the duality of Lemma 4.4.

The related notions of suprema and infima of fuzzy sets in fuzzy orderings can be defined,
respectively, as the minima and maxima of the upper and lower cones. This definition for-
malizes, in the fuzzy setting, the classical notion of the supremum as the least upper bound
and the infimum as the greatest lower bound. Like fuzzy minima and maxima, the fuzzified
suprema and infima are fuzzy sets rather then single elements. This notion of fuzzy suprema
and infima is standard in the literature on fuzzy lattices (e.g., [15, Ch. 4], [20]).

Definition 4.8. Let L be a fuzzy relation on a crisp domain X and A a fuzzy subset of X.
Then the fuzzy sets of (∧-based) suprema and infima are defined, respectively, as follows:

SupLA = MinL(A
↑L), InfLA = MaxL(A

↓L).
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In [6, Sect. 5], the analogous notions of fuzzy suprema and infima have been defined by
means of ∗-based minima and maxima:

Definition 4.9 ([6]). Let L be a fuzzy relation on a crisp domain X and A a fuzzy subset
of X. Then the fuzzy sets of ∗-based suprema and infima are defined, respectively, as follows:

Sup∗LA = Min∗L(A
↑L), Inf∗LA = Max∗L(A

↓L).

Several properties of ∗-based suprema and infima have been proved in [6, Sect. 5]. It
turns out that all of these properties can be proved for ∧-based suprema and infima as well,
as shown in Theorem 4.10 below. Since the duality of Lemma 4.4 extends to suprema and
infima by Theorem 4.10(1), we will only prove the versions for suprema. Theorem 4.10(5)
and Theorem 4.10(5) are known (see [21, Prop. 2.4(v)] and [15, Lem. 4.54], respectively); in
our exposition they are direct consequences of previous results on fuzzy minima.

Theorem 4.10 (cf. [6] for Sup∗). Let L be a fuzzy relation on a crisp domain X and A a
fuzzy subset of X. Then:

1. SupLA = InfL−1 A and InfLA = SupL−1 A

2. SupLA = A↑L ⊓ (A↑L)↓L

3. SupLA = InfL(A
↑L)

4. (B ⊆ A) ∗ (SupLA)x ∗ (SupLB)y ≤ Lxy

5. (SupLA)x ∗ (SupLA)y ≤ ELxy

6. If L is linear and E-antisymmetric, then (SupLA)x ∗ (SupLA)y ≤ Exy.

Proof.

1. By Lemma 4.4, SupL−1 A = MinL−1(A↑L−1 ) = MaxL(A
↓L) = InfLA, and analogously

for the second claim.

2. The claim holds trivially by the definition of Sup.

3. By the dual of claim 2, Lemma 4.5(4), and claim 2,

InfL(A
↑L) = (A↑L)↓L ⊓ ((A↑L)↓L)↑L = (A↑L)↓L ⊓A↑L = SupLA.

The claims 4–6 are proved by applying Corollary 4.7 to A↑L and B↑L .

5 Formalization in higher-order fuzzy logic

In this report we have deliberately used the usual notation of traditional fuzzy mathematics,
in order to make the results more accessible to a broader community of fuzzy mathematicians.
Nevertheless, all of the definitions, theorems, and proofs have been intentionally formulated
in such a way that they can easily be translated into the higher-order fuzzy logic MTL∆ [11,
Sect. 5.5.2].6 The informal proofs given in this report are thus actually disguised MTL∆-
proofs, written in a notational variant of Henkin-style higher-order MTL∆. The translation
between the two notations is as follows:

6Higher-order fuzzy logic refers here to its form known as Fuzzy Class Theory [7], i.e., Russell-style simple
fuzzy type theory, formalized (Henkin-style) in first-order fuzzy logic MTL∆. Formalization in higher-order
fuzzy logic in the form of Novák’s (Church-style) Fuzzy Type Theory [29] should present no difficulties, either,
as the two theories share essentially the same expressive and deductive power.
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• We use ∗ and ⇒ for the MTL∆-connectives & and →

• We write φ ≤ ψ and φ = ψ instead of the MTL∆-formulae ∆(φ→ ψ) and ∆(φ↔ ψ)

• We write φ = 1 instead of the MTL∆-formula ∆φ and φ > 0 instead of ¬∆¬φ

• We use
∧

and
∨

for ∀ and ∃; in particular,
∧

φ(x) ψ(x) stands for (∀x)(φ(x) → ψ(x))
and

∨
φ(x) ψ(x) for (∃x)(φ(x) & ψ(x)).

A careful reader familiar with higher-order fuzzy logic MTL∆ can verify that under this
translation, all proof steps in the present report follow sound rules of inference in higher-order
MTL∆ (some of these inference rules are collected in Lemma 2.3). Consequently, all of the
results presented in this report are also provable in higher-order MTL∆, and are (under the
indicated translation) part of the development of formal fuzzy mathematics in the framework
of higher-order fuzzy logic [7, 8, 9]. This, beside the completeness of exposition, was another
reason for giving explicit proofs of some known results of Sections 3 and 4, in a form easily
translatable into higher-order MTL∆.

Let us illustrate the translation by giving one of the proofs in higher-order MTL∆ for
comparison:

Proof of Lemma 4.5(2). By suffixing we have (Ax→ Bx) → ((Bx→ Lxy) → (Ax→ Lxy)),
whence we obtain by generalization on x and distribution of the quantifier:

(∀x)(Ax→ Bx) → (∀x)((Bx→ Lxy) → (Ax→ Lxy))

→ ((∀x)(Bx→ Lxy) → (∀x)(Ax→ Lxy)).

Generalization on y and a quantifier shift then yields:

(∀x)(Ax→ Bx) → (∀y)((∀x)(Bx→ Lxy) → (∀x)(Ax→ Lxy)),

i.e., (A ⊆ B) → (B↑L ⊆ A↑L). The dual claim follows by Lemma 4.4 and the non-graded
claim by ∆-necessitation and distribution of the ∆ over the implication.

It can be observed that despite the difference in notation and terminology, the steps in the
proof of Lemma 4.5(2) as given in Section 4 directly correspond to those in higher-order
MTL∆. A similar correspondence is ensured by the chosen format of the proofs for all
theorems presented in this report.

While the translation into higher-order MTL∆ is straightforward (or requires just obvious
adjustments), two metamathematical remarks are worth making regarding the employed
algebra of truth degrees. First, although we assumed (see Section 2.1) L to be a lattice-
complete linear MTL-algebra, the translation into higher-order MTL∆ shows that the results
are in fact valid as well in safe models (see [26, 11]) over lattice-incomplete linear MTL-
algebras. Moreover, since the axiom (∀3) of first-order MTL∆ (see [22, 11]) has never been
used in the derivation of the results, the theorems are actually valid in safe models over all
(not only linear) MTL-algebras of membership degrees. The formalization in MTL∆ thus in
effect slightly generalizes the results presented in the previous sections.
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[7] Libor Běhounek and Petr Cintula. Fuzzy class theory. Fuzzy Sets and Systems, 154(1):34–
55, 2005.
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