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Abstract:

We present a new proof of the Hansen-Bliek-Rohn optimality result for interval linear equations
with unit midpoint.?
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2Above: logo of interval computations and related areas (depiction of the solution set of the system
2, 4]z1 + [-2,1]z2 = [-2,2], [-1,2]z1 + [2,4]z2 = [-2,2] (Barth and Nuding [1])).
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1 Introduction

For a system of interval linear equations Az = b, where A is an n X n interval matrix and
b is an interval n-vector, the interval hull is defined as

X(A>b) = m [x,y],

X(A,b)C[z,y]

where

X(A,b)={x| Ax = b for some A€ A, beb},

i.e., as the narrowest interval vector containing the solution set X(A,b). Computing the
interval hull is NP-hard [I1]. Yet it was shown by Hansen [3], Bliek [2] and Rohn [06] that
the hull can be expressed by relatively simple closed-form formulae in case that the system
matrix has unit midpoint, i.e., is of the form A = [I — A, I + A], where [ is the unit matrix.
However, the proof of this result is by no means straightforward. The formulae not using
interval arithmetic were proved in [6], [8] and those formulated in terms of interval arithmetic
by Ning and Kearfott [5] (using the result from [6]) and by Neumaier [4].

In this report we present another proof of the optimality result, based on a new char-
acterization of the interval hull (Theorem [1). We give an interval-arithmetic-free version
(Theorem [3) and an interval arithmetic version (Theorem /), both in new formulations
aimed at minimizing the number of auxiliary variables.

Notation used: diag(M) denotes the diagonal of a matrix M, My, its kth row, T, is the
diagonal matrix with diagonal vector z, a o b stands for the Hadamard (entrywise) product
of vectors a,b and a/b for their Hadamard division, minimum/maximum of a finite number
of vectors is taken entrywise, I is the identity matrix and e is the vector of all ones.

2 Interval hull

We shall later make use of the following characterization of the interval hull.

Theorem 1. Let A = [A. — A, A.+ A] be regular. Then for each z € {—1,1}" the matriz
equation

QA — |QIAT, =1
has a unique solution Q. and for each right-hand side b = [b. — 8, b, + d] there holds

x(A,b) = min (Q:b. —|Q:]6), max (Q.b.+ |Q.|5)]. (2.1)

ze{—1,1}n T ze{-11}n

Proof. The first part of the theorem is the assertion of [L0, Thm. 1], the second one follows
from [7, Thm. 2] if we take Z = {—1,1}" there. O

3 Matrices ().

In this section we show that the matrices (), can be expressed explicitly in case of an
interval matrix of the form A = [I — A, I 4+ A]. The result, as well as the subsequent ones,
is formulated in terms of the matrix

M= (I-A)""1.



The assumption M > I is equivalent to regularity of [I — A, I + A, see [10].
Theorem 2. Let M > 1. Then for each z € {—1,1}" the matriz Q. is given rowwise by

MyoT, if 2= 1,

° — . 3.1
(Q=)s { U (Mp1, .., =M, . . ., My T if 2, = —1, (3.1)
where
I/k:m (k‘zl,,n)
Proof. The expression for z; = 1 is contained in [10, Thm. 2]. The formula for z; = —1
was given in the same theorem as
(Qz)ko = ((Hk - 1)Mko - Mkeg)TZa
where
uk:w%/[]gffl (k=1,...,n).
Considering the fact that
(e = 1)Mye — pre = (e = 1) (M1, ., Mip = 3255, Myn)
= (k= 1)(Myp, -, — Mg - -, M)
= Vk(Mklu"'7_Mkk7“'7Mkn)7
we arrive at the desired result. O

4 Optimality result

The Hansen-Bliek-Rohn optimality result gives an explicit formula for the interval hull of an
interval linear system of the form
Ixr =b,

where I = [T — A, T + Al

Theorem 3. Let M > I. Then for each right-hand side b = [b. — 8,b. + J], denoting
d = diag(M), x, = dob. and x* = M(|b.| + 0), we have

x(I,b) = [min{z, z/(2d — e)}, max{z, &/(2d — e)}], (4.1)
where
z =z, — (@ =z,
o= o+ (@ = z)

Comment. In (4.1) we use (twice) the Hadamard division of vectors.
Proof. Denote [z,7] = x(A,b). Let k € {1,...,n}. We shall first derive a formula for Ty.
From (2.1) we have

T = zbc z5 = z obc z 067
Th ze?i?ﬁ}n(Q +1Q=10)k ze?ffi}n(@ Jkebe + |Qz|ed)



so that according to (3.1) for each z € {—1,1}" we must consider two cases: z; = 1 and
zp = —1.
If 2z = 1, then by Theorem 2

(Qz)kobc + ’Qz|k06 == Mkoszc + Mko(S

= > Myzi(be); + Min(be)i + Mied
jk
Z Mij|(be)jl + Mk (be)k + Mye.
ik

IA

Introducing the vector z(k) € {—1,1}" by

1 if j=Fk,
Z(k); = 1 if j# k and (b.); > 0, (j=1,...,n),
~1 if j #k and (b.); <O

we can write

> Migj|(be)s| + Mk (be)k + Mied = MyaTsrybe + Mie6 = (Qz(k) kobe + | Q)| ke,
J#k
hence for each z € {—1,1}" with z; = 1 we have

(Qz)kobc + |Qz‘k05 < (Qf(k))kobc + |Q2(k)|k05;

and the upper bound is obviously attained.
If z; = —1, then, again by Theorem 2,

(Q2)kebe + [Qz|ked = vi(Mg1, ..., =My, ..., Mn)T2be + v Mo
= ve Y Myjzi(be)j + Vi Mk (be)r + Vi Myed
o
< vk > Mig|(be);| + vk Mg (be)i + vk Myed
ik
= Vk(Mk‘la"'7_Mk:k;7"'7Mk‘n)T§(k;)bc+ykMk‘05

= (Qg(kz))k’obc + |Qg(/€)|k05

where we have employed the vector z(k) given by
-1 if j =k,
z(k); = 1 if j#k and (b.); > 0, (7=1,...,n),
—1 if j# kand (b.); <0
hence for each z € {—1,1}" with z; = —1 we have
(Qz)kebe + |Qz[ked < (Q(k))kobe + [Qz(k)lked,
and the upper bound is again obviously attained. In this way we have proved the formula

Tp, = max{Qz(x) ) kebe + [Qz() ko0, (Qz(k))kobe + |Qz(k)|ked}-
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Now,

(Qz(k) Jkobe + |Qz(ty ko0 = D Mgl (be)j| + My (be)r + Myad
J#k
= Mye(|be| +6) + Mrr((be)r — |belr)
(z. + 2" — |z, |)k

Ty

and similarly

(Qa(k) ) kobe + 1Quiiy ko0 = i > Migjl(be);| + vk My (be)i + viMyed
ik
= k(Mo (|be| 4+ 6) + Myr((be) ks — [belx))

Vk(x* + J}* - ‘x*’)k

= UpTg
which together gives
T = max{ik, l/kjk}.
Since
vkTk = T/ (2Mpr — 1),
we finally obtain
T = max{z,z/(2d — e)},

where we have used the Hadamard (entrywise) division of vectors.

To prove the formula for z, consider the system Iz = —b, where I = [I — A, I + A] as
before and —b = {—b | b € b} = [-b. — I, —b. + ¢]. Then X(I,—b) = —X(I,b), hence
x(I,—b) = [-Z, —z]. Now we can apply the previously derived formula for the upper bound
of the interval hull:

—x = max{—dob. + M(|be| + ) — |dobe|,(—d o b. + M(|b| + ) — |dob.])/(2d —e)},
hence
z = min{dob. — M(|b.| + )+ |dobe|, (dob. — M(|bc| +9)+|dob.|)/(2d —e)}

= min{z, — 2" + |z,|, (z, — 2"+ |z.])/(2d — €)}
= min{z, z/(2d — e)}.

This proves that
x(I,b) = [min{z, /(2d — e)}, max{z, z/(2d — e)}].

Using the interval arithmetic, we can bring the result to yet simpler form.

Theorem 4. Let M > I. Denoting d = diag(M), z, = dob. and x* = M(|b.| + 0), we
have .
<$*> = |:‘C*|>

X(Lb) = =g

(4.2)



Comment. In (4.2) we use the Hadamard (entrywise) division of interval vectors and
their midpoint-radius representation, i.e., (a,b) = [a — b,a + b].
Proof. Because v < & and v > 0, we can write (4.1) as

x(I, b) = [min{‘?/ea '?/(2d —e), /e, i’/(2d - 6)}, max{'?/(a? ‘?/(2d - 6)75%/67 j/(Zd - e)}]a

which is the Hadamard division performed in interval arithmetic:

[z, 2]
x(Lb) = o (4.3)
Since
['?7 j] = [x* - (‘T* - ‘x*Dv Ty + (‘T* - |JI*D] = <$*7 z* — \Jf*D
and

le, 2d —e] = (d, d — e),

(4.3) implies (4.2). O
The Hansen-Bliek-Rohn optimality result should not be misunderstood for the Hansen-
Bliek-Rohn enclosure, see [9].
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