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High performance computing in micromechanics

R. Blaheta, R. Hrtus, O. Jakl, J. Starý

Institute of Geonics AS CR, Ostrava

1 Introduction

By micromechanics we understand analysis of the macroscale response of materials through
investigation of processes in their microstructure. Here by the macroscale, we mean the scale of
applications, where we solve engineering problems involving materials like different metals and
composites in aircraft design or rocks and concrete in a dam construction. Different applications
are characterized by different characteristic size. At macroscale the materials mostly look as
homogeneous or they are idealized as homogeneous or piecewise homogeneous. A substantial
heterogeneity is hidden and appears only after more detailed zooming view into the material.
This hidden heterogeneity can be called a microstructure. In metals it is created by crystals
and grains, in composite materials by matrix and inclusions, in concrete by gravel and mortar
or iron reinforcement etc. When the ratio between the characteristic dimensions on macro and
microstructure subjects is sufficiently large, then we say that the scales are well separated. In this
case, it is not possible to perform the macroscale analysis going into the microstructure details,
but it is possible to analyse the macroscopic problems with the use of effective (homogenized)
material properties, which are obtained by testing smaller samples of materials. In computational
micromechanics, the testing of such samples means solution of boundary value problems on test
domains involving the microstructure with loading provided by suitable boundary conditions.

We focus on X-ray CT image based micromechanics of geomaterials with the use of continuum
mechanics and the finite element computation of the microscale strains and stresses, see [2]. This
means that basic information about the microstructure is provided by analysing (segmentation)
of 3D images of real samples. This information should be completed by information on local
material properties, i.e. material properties of the individual material constituents.

There is a strong need for high performance parallel computing at several stages of the compu-
tational micromechanics, namely at

• analysis of CT scans,

• high resolution finite element solution of boundary value problems,

• solution of inverse problems for determination or calibration of local material properties.

In this contribution, we focus on the second point, i.e. solving the high resolution finite element
systems with tens or hundreds degrees of freedom on available parallel computers at the Institute
of Geonics and the IT4Innovations supercomputer centre in Ostrava. Following [3], we describe
efficiency of the in-house GEM solvers exploiting the Schwarz domain decomposition method
with aggregation by performing computational experiments on the above parallel computers.
The solution of these systems is also necessary for building efficient solution methods for inverse
material identification problems, see [4] and a further work in progress.
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2 High resolution FEM systems and GEM solvers

In analysis of geocomposites (see [2]), the domain Ω is a cube with a relatively complicated
microstructure. The FEM mesh is constructed on the basis of CT scans. As benchmarks, we
shall use FEM systems arising from CT scanning of a coal-resin geocomposite at CT-lab of the
Institute of Geonics. The characteristics of two benchmarks can be seen in Table 1.

Benchmark Discretization Size in DOF Data size

GEOC-2s 257×257× 257 50 923 779 8.5GB
GEOC-2l 257×257×1025 203 100 675 33.5GB

Table 1: Benchmarks representing microstructures of two geocomposite samples. Notation,
applied discretization meshes and sizes of resulting linear systems.

The elastic response of a representative volume Ω is characterized by homogenized elasticity C
or compliance S tensors (S = C−1). The elasticity and compliance tensors are determined from
the relations

C〈ε〉 = Cε0 = 〈σ〉 and S〈σ〉 = Sσ0 = 〈ε〉, (1)

respectively. Here 〈σ〉 and 〈ε〉 are volume averaged stresses and strains computed from the
solution of elasticity problem

−div(σ) = 0, σ = Cmε, ε = (∇u+ (∇u)T )/2 in Ω, (2)

with boundary conditions

u(x) = ε0 · x on ∂Ω and σ · n = σ0 · n on ∂Ω, (3)

respectively. Above, σ and ε denote stress and strain in the microstructure, Cm is the variable
local elasticity tensor, u and n denote the displacement and the unit normal, respectively. The
use of pure Dirichlet and pure Neumann boundary conditions allows us to get a upper and lower
bounds for the upscaled elasticity tensor, see e.g. [2].

By using the GEM software [1], the domain is discretized by linear tetrahedral finite elements.
The arising systems are then solved by PCG method with a stabilization in the singular case
(see [3]). The implementation in the GEM software uses two solvers:

GEM-DD is a solver implemented in the GEM software. It uses one-level additive Schwarz
domain decomposition preconditioner with subproblems replaced by displacement decom-
position incomplete factorization, see ref. in [3]. The resulting preconditioner is symmetric
positive definite even for the singular case.

GEM-DD-CG solver differs in preconditioning, which is now a two-level Schwarz domain de-
composition arising from the previous GEM-DD by additive involvement of a coarse prob-
lem correction. The coarse problem is created by a regular aggressive aggregation with
3 DOF’s per aggregation. In singular case, the coarse problem is also singular with a
smaller null space containing only the rigid shifts. The coarse problem is solved only ap-
proximately by inner (not stabilized) CG method with a lower solution accuracy - relative
residual accuracy ε0 ≤ 0.01.

Note that in the computational experiments described in the next Section, we solve the problems
with pure Neumann boundary conditions.
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3 Parallel computers and computational experiments

The computational experiments are performed on two computers:

Enna - 64-core NUMA multiprocessor at the Institute of Geonics:

• eight octa-core Intel Xeon E7-8837/2.66GHz processors

• 256GB of DDR2 RAM

• CentOS 6.3, Intel Cluster Studio XE 2013, Trilinos 11.4.1

Anselm - multicomputer (cluster) with 207 compute nodes at the Supercomputing Center
IT4Innovations. We employed the computing nodes equipped with:

• two octa-core Intel E5-2665/2.4GHz processors

• 64GB of memory and 500GB of local disk capacity

• Infiniband QDR interconnection, fully non-blocking, fat-tree

• Bullx Linux OS (Red Hat family), Intel Parallel Studio XE 2013

Table 2 shows the timings of GEM solvers (without and with coarse grid problem applied)
obtained for GEOC2s, i.e. a problem of more than 50 million DOF’s, where the performance
up to 64 processing elements on Enna and up to 128 processing elements on Anselm could be
compared. The stopping criterion was ‖r‖/‖b‖ ≤ ε = 10−5 and the DD-CG solver made use of
a coarse problem with aggregation factors 9×9×9 (81 000 DOF’s).

Enna Anselm

DD DD-CG DD DD-CG

#Sd # It Titer #It Titer A/E Titer A/E Titer

2 914 8461.2 437 3523.1 0.67 5644.2 0.79 2785.4
4 1129 4973.3 428 1923.6 0.59 3526.2 0.72 1383.4
8 1421 2942.5 416 922.9 0.82 2422.6 0.79 725.7
16 1655 1994.6 376 415.8 0.64 1325.8 0.84 348.7
32 1847 1923.5 329 348.3 0.42 798.3 0.56 194.8
64 2149 3074.9 295 505.9 0.20 620.8 0.23 117.6

128 n/a 515.7 n/a 107.1

Table 2: Timings of the GEOC2s benchmark achieved by the GEM solvers on the multiprocessor
Enna and cluster Anselm: Iteration counts (#It), wall-clock time (in seconds) of the solution
(Titer) and the corresponding performance ratio Anselm/Enna (A/E) are provided for up to 128
subdomains (#Sd).

For greater number of subdomains, the results confirm the advantage of systems with distributed
memory, when the multiprocessors in general suffer from the memory-processor bandwidth con-
tention. Thus, while on Enna the scalability fades out at about 32 cores, the turning point on
Anselm is around 128 processing elements, when the small size of subdomains deteriorates the
computation/communication ratio.

In absolute figures, we were able to solve the benchmark 3 – 4 times faster on Anselm than on
Enna. The advantage of Anselm is to be derived partially from the fact that its newer Intel
Sandy Bridge CPU architecture as such outperforms Enna’s Westmere one, in our application
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Enna Anselm

DD-9×9×9 DD-9×9×18 DD-9×9×27 DD-9×9×27

#Sd # It Titer #It Titer #It Titer #It Titer

4 751 13719.0 858 15737.6 997 18518.4 997 12671.4
8 690 6237.7 800 6960.8 917 8062.9 917 5803.9
16 585 2717.4 674 4010.6 777 4815.6 777 2576.6
32 585 2483.6 622 2923.8 708 3452.5 708 1157.5
64 627 3637.0 627 558.8

128 652 358.5
256 631 299.6
512 649 333.5

Table 3: Timings of the GEOC2l benchmark achieved by the GEM-DD-CG solver on the mul-
tiprocessor Enna and cluster Anselm: Iteration counts(#It) and wall-clock time (in seconds)
for the solution time (Titer) are provided now for different sizes of CG problem involved in
computations and for various numbers of subdomains (#Sd).

by 20-40%, what can be estimated from the test up to 8 processing elements (one socket) when
the processors work in similar conditions.

Table 3 reports computations with the largest benchmark GEOC2l (about 200 million DOF)
and demonstrates the impact of the coarse grid size on the time of the solution. We can observe
that very aggressive aggregation leads to the best results. We could confirm this observation on
Anselm, where the best time in the Table 3 (299.6 s with 256 processing elements and aggregation
9×9×27) was surpassed by an experiment with the coarser aggregation 15×15×31. The overall
best GEOC2l solution time of 249.8 s was achieved after 910 iterations on #Sd=512 subdomains
(32 compute nodes employed).

A bit surprising decrease of the number of iterations with increasing number of subdomains
(processors) as reported in the above Tables, especially for DD-CG, can be explained by the fact
that smaller subdomain problems are solved more accurately in our implementation.
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