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Abstract:

A modification of the limited-memory variable metric BNS method for large scale uncon-
strained optimization is proposed, which consist in corrections (derived from the idea of
conjugate directions) of the used difference vectors for better satisfaction of previous quasi-
Newton conditions. In comparison with [16], where a similar approach is used, correction
vectors from more previous iterations can be applied here. For quadratic objective functions,
the improvement of convergence is the best one in some sense, all stored corrected differ-
ence vectors are conjugate and the quasi-Newton conditions with these vectors are satisfied.
Global convergence of the algorithm is established for convex sufficiently smooth functions.
Numerical experiments demonstrate the efficiency of the new method.
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1 Introduction

In this report we propose some modifications of the BNS method (see [2]) for large scale
unconstrained optimization

min f(x) : x ∈ RN ,

where it is assumed that the problem function f : RN →R is differentiable.
Similarly as in the multi-step quasi-Newton (QN) methods (see e.g. [13]), we utilize

information from previous iterations to correct the used difference vectors and change QN
conditions correspondingly. However, while the multi-step methods derive the corrections
of the difference vectors from various interpolation methods, our approach is based on
the idea of conjugate directions (see e.g. [5], [15]).

The BNS method belongs to the variable metric (VM) or QN line search iterative
methods, see [5], [10]. They start with an initial point x0 ∈ RN and generate iterations
xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where usually the direction
vector dk ∈ RN is dk = −Hkgk with a symmetric positive definite matrix Hk and stepsize
tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, k ≥ 0 (1.1)

(the Wolfe line search conditions, see e.g. [15]), where 0<ε1 <1/2, ε1 <ε2 < 1, fk =f(xk)
and gk =∇f(xk); typically H0 is a multiple of I and Hk+1 is obtained from Hk by a VM
update to satisfy the QN condition (secant equation)

Hk+1yk = sk (1.2)

(see [5], [10]), where yk = gk+1 − gk, k ≥ 0. For k ≥ 0 we denote

Bk = H−1
k , bk = sT

kyk, Vk = I − (1/bk)sky
T
k

(note that bk > 0 for gk 6= 0 by (1.1)). To simplify the notation we frequently omit index
k and replace index k + 1 by symbol + and index k − 1 by symbol −.

Among VM methods, the BFGS method, see [5], [10], [15], belongs to the most
efficient; the update formula preserves positive definite VM matrices and can be written
in the following quasi-product form

H+ = (1/b)ssT + V HV T . (1.3)

The BFGS method can be easily modified for large-scale optimization; the BNS and
L-BFGS (see [6], [14], [7] - subroutine PLIS) methods represent its well-known limited-
memory adaptations. In every iteration, we recurrently update matrix ζkI, ζk > 0,
(without forming an approximation of the inverse Hessian matrix explicitly) by the BFGS
method, using m̃ + 1 couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) successively, where

m̃ = min(k, m−1) (1.4)

and m>1 is a given parameter. In case of the BNS method, matrix H+ can be explicitly
expressed either in the form, see [2],

H+ = ζI +
[
S, ζY

] [
U−T (D + ζY T Y )U−1 −U−T

−U−1 0

] [
ST

ζY T

]
,
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where Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], Dk = diag[bk−m̃, . . . , bk], (Uk)i,j = (ST
k Yk)i,j

for i≤ j, (Uk)i,j = 0 otherwise (an upper triangular matrix), k≥ 0, or in the form, also
given in [2]

H+ = SU−TDU−1ST + ζ(I − SU−T Y T )(I − Y U−1ST ) , (1.5)

thus direction vector can be efficiently calculated (without computing of matrix H+) by

−H+g+ = −ζg+ − S
[
U−T

(
(D + ζY T Y )U−1STg+ − ζY Tg+

)]
+ Y

[
ζU−1STg+

]
, (1.6)

where in brackets we multiply by low-order matrices.
The concept of conjugacy plays an important role in optimization methods based

on quadratic models, see e.g. [5], [15]. It was shown in [16] that the conjugacy of
consecutive vectors s, s+ with respect to matrices B+ can be achieved by means of suitable
vector corrections, which can be understood as corrections for exact line searches, and
that this approach can improve efficiency of the L-BFGS method. The used corrected
difference vectors s̄k, ȳk, k ≥ 0, are defined by s̄0 = s0, ȳ0 = y0 and s̄k = sk − αks̄k−1,
ȳk = yk − βkȳk−1, k > 0, with suitable chosen parameters αk, βk ∈ R, i.e. one correction
vector from the previous iteration is used for each of difference vectors.

In this report we generalize this approach, using vectors from more previous iterations
to correct vectors s, y. Unlike [16], we use here the BNS concept to calculate the direction
vector, since then the increase in total number of required arithmetic operations can be
relatively small compared to the BNS or L-BFGS method. We use corrected quantities
s̃k, ỹk, b̃k, Ṽk and H̃k, k ≥ 0, defined by s̃0 = s0, ỹ0 = y0, b̃0 = b0, Ṽ0 = V0, H̃0 = I and

s̃k = sk + S̃ kσ̃k, ỹk = yk + Ỹ kη̃k, b̃k = s̃T
k ỹk, Ṽk = I − (1/b̃k)s̃kỹ

T
k , (1.7)

k > 0, where S̃ k = [s̃k−m̃, . . . , s̃k−1], Ỹ k = [ỹk−m̃, . . . , ỹk−1] and σ̃k, η̃k ∈ Rm̃ are chosen in
such a way that b̃k > 0. Positive definite matrix H̃k+1=H̃k+1

k+1 , k ≥ 0, is obtained by

H̃k+1
k−m̃ = ζkI, ζk = bk/y

T
k yk > 0, (1.8)

H̃k+1
i+1 = (1/b̃i)s̃is̃

T
i + ṼiH̃

k+1
i Ṽ T

i , k − m̃ ≤ i ≤ k , (1.9)

i.e. by the repeated BFGS updating of matrix ζkI with vectors (s̃k−m̃, ỹk−m̃), . . . , (s̃k, ỹk)
(columns of S̃k = [S̃ k , s̃k], Ỹk = [Ỹ k , ỹk] for k > 0). Matrix H̃k+1 and auxiliary matrices
{H̃k+1

i }k
i=k−m̃ have only the theoretical significance and are not formed explicitly.

We propose how to choose the parameters σ̃k, η̃k and show that VM matrices con-
structed by means of difference vectors corrected in this way have some positive prop-
erties. Numerical results indicate that additional correction vectors can improve results
significantly, although they can deteriorate stability, require extra arithmetic operations
and have no influence on s̃+, ỹ+ for quadratic functions and (the most frequent) unit
stepsizes, see Sections 3 and 4. Obviously, the choice of parameters σ̃k, η̃k can affect
properties of matrix H̃k+1 only within the last update in (1.9), i.e. for i = k.

Note that matrix H̃+ satisfies the QN condition H̃+ỹ = s̃ and that direction vector
d̃+=−H̃+g+ and an auxiliary vector Ỹ TH+g+ can be calculated by analogy to (1.6) by

−H̃+g+= −ζg+ − S̃
[
Ũ−T

(
(D̃ + ζỸ T Ỹ )Ũ−1S̃Tg+−ζỸ Tg+

)]
+ Ỹ

[
ζŨ−1S̃Tg+

]
, (1.10)

Ỹ TH̃+g+= ζỸ Tg++Ỹ TS̃
[
Ũ−T

(
(D̃ + ζỸ TỸ )Ũ−1S̃Tg+−ζỸ Tg+

)]
−Ỹ TỸ

[
ζŨ−1S̃Tg+

]
, (1.11)
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where D̃k =diag[b̃k−m̃, . . . , b̃k], (Ũk)i,j =(S̃T
k Ỹk)i,j for i≤j, (Ũk)i,j =0 otherwise (an upper

triangular matrix), k≥0.
In Section 2 we investigate the last standard BFGS update in (1.9) with corrected

difference vectors s̃, ỹ in the more general form

Ḧ+ = (1/b̃)s̃s̃T + Ṽ ḦṼ T , (1.12)

where Ḧ is any symmetric positive definite matrix and discuss the choice of parameters
σ̃k, η̃k. In Section 3 we focus on quadratic functions and show optimality of our choice
of parameters and a role of unit stepsizes. Application to the corrected BNS method
and the corresponding algorithm are described in Section 4. Global convergence of the
algorithm is established in Section 5 and numerical results are reported in Section 6. We
will denote by ‖ · ‖F the Frobenius matrix norm and by ‖ · ‖ the spectral matrix norm.

2 Derivation of the method

Using another formulation of the conjugacy property, we give some variational and heredi-
tary properties of the corrected BFGS update for general functions which indicate that we
can expect an improvement of convergence properties also for functions near to quadratic.

If some columns of S̃, Ỹ are used as correction vectors in (1.7) (i.e. if some components
of vector σ̃ and corresponding components of η̃ are nonzero), we denote a matrix with
these selected columns of S̃, Ỹ by Ŝ, Ŷ , vectors with corresponding selected (nonzero)
components of σ̃, η̃ by σ̂, η̂ and Ŝ =[Ŝ , s̃], Ŷ =[Ŷ , ỹ], otherwise we define Ŝ = [s̃], Ŷ = [ỹ].
In this connection, we denote a set of indices i of vectors s̃i, ỹi which form matrices Ŝk, Ŷ k

by Ik and Ik = Ik ∪ {k}, k ≥ 0.
In Section 2.2 we present some conditions and a strategy for the choice of Ŝ, Ŷ .

2.1 The BFGS update with corrected vectors

Assuming set I to be non-empty, in this section we will investigate the influence of
the correction parameters σ̃, η̃ on properties of matrix Ḧ+, given by the BFGS update
(1.12) of any symmetric positive definite matrix Ḧ. For our purpose, the satisfaction of
the QN conditions Ḧ+Ŷ = Ŝ plays a crucial role (obviously, the QN condition Ḧ+ỹ =
s̃ is satisfied). In this connection we will suppose that the auxiliary QN conditions

ḦŶ = Ŝ are satisfied (therefore matrix Ŝ
T
Ŷ = Ŷ

T
ḦŶ is symmetric). A technique which

guarantees the satisfaction of these conditions for matrices H̃k+1
k , k > 0, will be presented

in Section 2.2. We denote B̈ = Ḧ−1, B̈+ = Ḧ−1
+ , ä = ỹTḦỹ, c̈ = s̃TB̈s̃ .

We will consider here only a case, when the possible extra components of σ̃, η̃ com-
pared to σ̂, η̂ are zero. In view of (1.7) we can then write

s̃ = s + S̃ σ̃ = s + Ŝ σ̂, ỹ = y + Ỹ η̃ = y + Ŷ η̂. (2.1)

The following lemma shows that, under some assumptions, conditions Ḧ+ỹi = s̃i, i∈I,
are equivalent to the conjugacy of vector s̃ with vectors s̃i with respect to matrices B̈, B̈+,
i.e. s̃TB̈s̃i = s̃T ỹi = 0, s̃TB̈+s̃i = s̃T

i ỹ = 0, i ∈ I, or

Ŝ
T
ỹ = Ŷ

T
s̃ = 0. (2.2)
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Besides, the lemma also gives an influence of corrections on the QN conditions.

Lemma 2.1. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ and
matrix Ḧ+ be given by update (1.12) of Ḧ with b̃ > 0. Then Ḧ+ is symmetric positive
definite and

b̃ (Ḧ+ỹi − s̃i)
T B̈+(Ḧ+ỹi − s̃i) = (s̃T

i ỹ − s̃Tỹi)
2 + (ä/b̃− b̃/c̈) (s̃Tỹi)

2, i ∈ I, (2.3)

where ä/b̃ ≥ b̃/c̈, with ä/b̃ = b̃/c̈ in and only in the case of dependency of vectors s̃, Ḧỹ.

Moreover, if Ŝ
T
ỹ = Ŷ

T
s̃ = 0, then the QN condition Ḧ+Ŷ = Ŝ is satisfied and

(Ḧ+y−s)TB̈+(Ḧ+y−s) = (σ̂−η̂)TŜ
T
Ŷ (σ̂−η̂) . (2.4)

Proof. (i) Since relation (1.12) is the standard BFGS update with s̃, ỹ instead of s, y,
matrix Ḧ+ is symmetric positive definite and it holds (see [5], [10])

Ḧ+ = Ḧ +
(
1 +

ä

b̃

)
s̃s̃T

b̃
− Ḧỹs̃T + s̃ỹTḦ

b̃
, B̈+ = B̈ +

ỹỹT

b̃
− B̈s̃s̃T B̈

c̈
, (2.5)

which for i ∈ I yields

ỹT
i Ḧ+ỹi = b̃i + [ (1 + ä/b̃)/b̃ ](s̃Tỹi)

2 − 2 s̃T
i ỹ s̃Tỹi/b̃ , (2.6)

s̃T
i B̈+s̃i = b̃i + (s̃T

i ỹ)2/b̃− (s̃Tỹi)
2/c̈ (2.7)

by Ḧỹi = s̃i, i ∈ I. Setting it to (Ḧ+ỹi − s̃i)
T B̈+(Ḧ+ỹi − s̃i) = ỹT

i Ḧ+ỹi + s̃T
i B̈+s̃i − 2b̃i,

we obtain (2.3). The rest of the first part follows from the Schwarz inequality.

(ii) Let Ŝ
T
ỹ= Ŷ

T
s̃= 0. Then Ḧ+Ŷ = Ŝ by (2.3) and (1.12). From Ḧ+ỹ = s̃ we obtain

Ḧ+y − s = Ḧ+ỹ − s̃ + (s̃− s)− Ḧ+(ỹ − y) = Ŝσ̂ − Ḧ+Ŷ η̂ = Ŝ(σ̂ − η̂),

B̈+(Ḧ+y − s) = B̈+Ŝ(σ̂ − η̂) = Ŷ (σ̂ − η̂),

which gives (2.4). 2

In the sequel, we describe the solution to equations (2.2) and some its properties.

Lemma 2.2. Let matrix Ŝ
T
Ŷ be nonsingular and let

σ∗ = −
(
Ŷ

T
Ŝ

)−1

Ŷ
T
s, η∗ = −

(
Ŝ

T
Ŷ

)−1

Ŝ
T
y. (2.8)

Then the unique solution (σ̂, η̂) to (2.2) is (σ∗, η∗). Moreover, for any σ̂, η̂ it holds

b̃ = (σ̂ − σ∗)T Ŝ
T
Ŷ (η̂ − η∗) + b∗, b∗= (s∗)Ty∗ = b− sT Ŷ

(
Ŝ

T
Ŷ

)−1

Ŝ
T
y, (2.9)

where s∗, y∗ are vectors s̃, ỹ for σ̂= σ∗, η̂ = η∗.

Proof. From (2.8) we have Ŷ
T
Ŝ σ∗ = −Ŷ

T
s and Ŝ

T
Ŷ η∗ = −Ŝ

T
y. This yields firstly

Ŷ
T
Ŝ(σ̂−σ∗)= Ŷ

T
(Ŝσ̂ + s)= Ŷ

T
s̃ and Ŝ

T
Ŷ (η̂− η∗)= Ŝ

T
(Ŷ η̂+y)= Ŝ

T
ỹ by (2.1), which gives

the first part, and secondly

(σ̂ − σ∗)T Ŝ
T
Ŷ (η̂ − η∗) = σ̂TŜ

T
Ŷ η̂ − σ̂T

(
Ŝ

T
Ŷ η∗

)
−

(
(σ∗)T Ŝ

T
Ŷ

)
η̂ +

(
(σ∗)T Ŝ

T
Ŷ

)
η∗

=
(
σ̂TŜ

T
Ŷ η̂ + σ̂TŜ

T
y + sT Ŷ η̂

)
+ sT Ŷ (Ŝ

T
Ŷ )−1Ŝ

T
y ,
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which yields

b̃ = (Ŝσ̂+s)T (Ŷ η̂+y) =
(
σ̂TŜ

T
Ŷ η̂ + σ̂TŜ

T
y + sT Ŷ η̂

)
+ b

= (σ̂ − σ∗)T Ŝ
T
Ŷ (η̂ − η∗) + b− sT Ŷ (Ŝ

T
Ŷ )−1Ŝ

T
y

and concludes the proof. 2

Since we intend to satisfy the QN condition Ḧ+Ŷ= Ŝ (this condition holds for ḦŶ= Ŝ

and Ŝ
T
ỹ = Ŷ

T
s̃ = 0 by Lemma 2.1), which obviously implies the symmetry of matrix

ŜT Ŷ =
[

Ŝ
T
Ŷ Ŝ

T
ỹ

s̃T Ŷ s̃Tỹ

]
,

for given Ŝ, Ŷ we define the set S(Ŝ, Ŷ ) = {(σ̂, η̂) : Ŝ
T
ỹ = Ŷ

T
s̃ }. Obviously, we have

(σ∗, η∗) ∈ S(Ŝ, Ŷ ) by Lemma 2.2 and (2.2). The following lemmas describe some basic
properties of S(Ŝ, Ŷ ).

Lemma 2.3. Let matrix Ŝ
T
Ŷ be symmetric nonsingular and (σ̂, η̂) ∈ S(Ŝ, Ŷ ). Then

Ŝ
T
Ŷ (σ̂ − η̂) = Ŝ

T
y−Ŷ

T
s, (2.10)

thus the difference σ̂−η̂ is firmly determined by matrices Ŝ, Ŷ and vectors s, y. Moreover, if

Ŝ
T
Ŷ is positive definite, value b̃ is minimized by the choice σ̂=σ∗, η̂=η∗ , given by (2.8).

Proof. From (σ̂, η̂) ∈ S(Ŝ, Ŷ ) and (2.1) we get Ŝ
T
(y + Ŷ η̂) = Ŷ

T
(s + Ŝ σ̂), i.e. (2.10),

which gives the first assertion. Further, this implies σ̂−η̂ = σ∗−η∗, i.e. σ̂−σ∗ = η̂−η∗.
Thus for Ŝ

T
Ŷ positive definite we get the second assertion by the first relation in (2.9). 2

Lemma 2.4. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ, matrix

Ŝ
T
Ŷ be nonsingular and (σ̂, η̂) ∈ S(Ŝ, Ŷ ). Then

(a) Ŝ
T
Ŷ is symmetric positive definite,

(b) the differences s̃ − Ḧỹ, B̈s̃ − ỹ, b̃ − ä, c̈ − b̃ are firmly determined by matrices
Ŝ, Ŷ , Ḧ plus vectors s, y,

(c) values ä, c̈ are minimized by the choice σ̂=σ∗, η̂=η∗ , given by (2.8).

Proof. Matrix Ŝ
T
Ŷ is symmetric positive definite by its nonsingularity and by ḦŶ = Ŝ,

i.e. (a) holds. Using (2.1) and ḦŶ = Ŝ, we can write

b̃− ä = ỹT(s̃−Ḧỹ) = yT(s̃−Ḧỹ) + η̂T Ŷ
T
(s̃−Ḧỹ) = yT(s̃−Ḧỹ) + η̂T(Ŷ

T
s̃− Ŝ

T
ỹ),

c̈− b̃ = s̃T(B̈s̃−ỹ) = sT(B̈s̃− ỹ) + σ̂TŜ
T
(B̈s̃− ỹ) = sT(B̈s̃−ỹ) + σ̂T(Ŷ

T
s̃−Ŝ

T
ỹ).

Observing that s̃ − Ḧỹ = s − Ḧy + Ŝ(σ̂− η̂) by ḦŶ = Ŝ , B̈s̃ − ỹ = B̈(s̃ − Ḧỹ) and
using Lemma 2.3, we get (b) by (σ̂, η̂) ∈ S(Ŝ, Ŷ ). From (a), Lemma 2.3, ä = b̃− (b̃−ä),
c̈ = b̃ + (c̈−b̃) and (b) we obtain (c). 2

Note that this lemma has an interesting implication. Since the SR1 VM method with
s̃, ỹ instead of s, y adds to Ḧ a symmetric rank one matrix which contains only expressions
s̃ − Ḧỹ, b̃ − ä, see [5], [15], matrix Ḧ+ is independent of the choice (σ̂, η̂) ∈ S(Ŝ, Ŷ ) for
the corrected SR1 method.
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Although variational characterizations of the choice σ̂ = σ∗, η̂ = η∗ are significant
mainly for quadratic functions, see Section 3, the following theorem indicates that we can
expect good convergence properties of this choice also for functions near to quadratic.

Theorem 2.1. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ,

matrix Ḧ+ be given by update (1.12) of Ḧ, matrix Ŝ
T
Ŷ be nonsingular and b∗ > 0. Then

b̃ > 0 for any (σ̂, η̂) ∈ S(Ŝ, Ŷ ). Moreover, if we have a symmetric positive definite matrix
G̈ such that G̈Ŝ = Ŷ and G̈(s + Ŝσ̈)=y + Ŷ η̈ for some (σ̈, η̈)∈S(Ŝ, Ŷ ), then

(a) G̈s̃ = ỹ for all (σ̂, η̂) ∈ S(Ŝ, Ŷ ),
(b) within (σ̂, η̂) ∈ S(Ŝ, Ŷ ) it holds

‖G̈1/2Ḧ+G̈1/2−I‖2
F = (b̃− ä)2/ b̃2−2

∣∣∣G̈1/2(s̃−Ḧỹ)
∣∣∣
2
/ b̃+‖G̈1/2ḦG̈1/2−I‖2

F , (2.11)

(c) value (2.11) is minimized by the choice σ̂= σ∗, η̂ = η∗, given by (2.8).

Proof. (i) Let (σ̂, η̂)∈S(Ŝ, Ŷ ). In view of Lemma 2.4, matrix Ŝ
T
Ŷ is symmetric positive

definite and we can use Lemma 2.3 and assumption b∗ > 0 to obtain b̃ ≥ b∗ > 0.
(ii) Let G̈(s + Ŝσ̈) = y + Ŷ η̈. Using Lemma 2.4 with G̈−1 instead of Ḧ, we see

that the difference G̈s̃ − ỹ is independent of (σ̂, η̂) ∈ S(Ŝ, Ŷ ), thus equal to zero for
(σ̂, η̂) ∈ S(Ŝ, Ŷ ) by G̈(s + Ŝσ̈) = y + Ŷ η̈, i.e. (a) holds.

Denoting w = G̈1/2s̃, w∗ = G̈1/2s∗, W = G̈1/2ḦG̈1/2, W+ = G̈1/2Ḧ+G̈1/2 and M =
I−W , we have |w|2 = b̃ ≥ b∗= |w∗|2 > 0 and (1.12) can be written in the form

W+ = (1/|w|2)wwT + PWP = I − PMP, P = I − (1/|w|2)wwT , (2.12)

by G̈s̃ = ỹ and P 2 = P . In view of the fact that the trace of a product of two square
matrices is independent of the order of the multiplication, from (2.12) we obtain

‖I −W+‖2
F = ‖PMP‖2

F = Tr(PMPM) = Tr
([

M−(1/|w|2)wwTM
]2 )

= ‖M‖2
F − Tr

(
wwTM2+MwwTM−

[
wTMw/|w|2

]
wwTM

)
/|w|2

= ‖M‖2
F − 2|Mw|2/|w|2 + (wTMw)2/|w|4,

i.e. (b) by Mw = G̈1/2(s̃− Ḧỹ) and wTMw = b̃− ä. Function

ϕ(ξ) = (wT
∗Mw∗)2/|w∗|4ξ2 − 2|Mw∗|2/|w∗|2ξ + ‖M‖2

F (2.13)

is nonincreasing on [0, 1], since ϕ′(ξ) = 2[(wT
∗Mw∗)2/|w∗|4ξ − |Mw∗|2/|w∗|2] ≤ 0 for

ξ ∈ [0, 1] by the Schwarz inequality. Using Lemma 2.4, we can write ‖I − W+‖2
F =

ϕ(|w∗|2/|w|2) and this value is minimized for such (σ̂, η̂) which maximizes |w∗|/|w|, i.e.
for σ̂= σ∗, η̂ = η∗, thus (c) holds. 2

2.2 The choice of correction difference vectors

Applying theory from Section 2.1 to matrices H̃k+1, H̃k+1
k , k > 0, in the last update (1.9),

assumptions of Theorem2.2 give a simple strategy for choosing matrices Ŝ, Ŷ which
guarantees the satisfaction of the QN conditions H̃k+1Ŷk = Ŝk and the auxiliary QN
conditions H̃k+1

k Ŷ k = Ŝk (Ḧ+Ŷ = Ŝ and ḦŶ = Ŝ in Section 2.1) in all iterations. Note
that assertion (a) of the following theorem implies that matrices ŜT

k Ŷk are diagonal, k>0.
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Theorem 2.2. Suppose that each set Ik, k > 0, is chosen in such a way that Ik ⊂ Ik−1,

b̃k > 0 and Ŝ
T

kỹk = Ŷ
T

ks̃k = 0 in case that Ik 6= ∅. Then for k > 0
(a) s̃T

i ỹj = ỹT
i s̃j = 0 for i ∈ Ik, i < j ≤ k,

(b) the QN conditions H̃k+1Ŷk = Ŝk are satisfied,
(c) the auxiliary QN conditions H̃k+1

k Ŷ k = Ŝk are satisfied for Ik 6= ∅.
Here matrices H̃k+1 = H̃k+1

k+1 , H̃k+1
k are defined by the repeated BFGS updating (1.9) of

matrix H̃k+1
k−m̃ = ζkI, ζk > 0, with columns of S̃k, Ỹk.

Proof. Let k > 0. (i) Suppose that i ∈ Ik, i < j ≤ k. For j = k we have i ∈ Ij,
otherwise we obtain i ∈ Ik ⊂ Ik−1 = Ik−1 ∪ {k − 1} ⊂ . . . ⊂ Ij ∪ {j, . . . , k − 1} by

assumption, thus again i ∈ Ij by i < j. This implies Ŝ
T

j ỹj = Ŷ
T

j s̃j = 0 by assumption,
therefore s̃T

i ỹj = ỹT
i s̃j = 0, i.e. (a) holds.

(ii) Let i ∈ Ik. We will prove

H̃k+1
j ỹi = s̃i, i < j ≤ k + 1, (2.14)

hence (b) for j =k+1 and (c) for j =k, i<k. For j = i+1 we have H̃k+1
j ỹi = s̃i by (1.9).

By induction, let
H̃k+1

j ỹi = s̃i (2.15)

for some j, i < j ≤ k. By (1.7) and (a) we get Ṽ T
j ỹi = ỹi and Ṽj s̃i = s̃i, which yields

H̃k+1
j+1 ỹi = ṼjH̃

k+1
j ỹi = s̃i by (1.9), (2.15) and (a), i.e. (2.15) with j+1 instead of j. 2

If matrix Ŝ
T
Ŷ is diagonal, many results can be simplified. E.g. components of vectors

σ∗, η∗ in (2.8) are numbers −sTỹi/b̃i,−s̃T
i y/b̃i, i ∈ I, thus relation (2.4) and formula (2.9)

for b∗ can be written in the form

(Ḧ+y−s)TB̈+(Ḧ+y−s) = b
∑

i∈I(s̃
T
i y − sTỹi)

2/(bb̃i), (2.16)

b∗ = b−∑
i∈I sTỹi s̃

T
i y/b̃i. (2.17)

These representations are advantageous when we select columns of Ŝ, Ŷ , since an
influence of particular columns of S̃, Ỹ can be considered separately for each i ∈ I.
Therefore, if value (Ḧ+y−s)TB̈+(Ḧ+y−s) is too great, i.e. if the QN condition with
corrected difference vectors is not a good substitute for the QN condition with non-
corrected vectors or if value b∗ is too small or negative, we should exclude a suitable
index from I (see Section 4 for details).

Theorem 2.2 also enables us to express s̃, ỹ by means of a projection matrix as

s̃ = Ps, ỹ = P Ty, P 2 = P = I −∑
i∈I s̃i ỹ

T
i /b̃i =

∏
i∈I(I − s̃i ỹ

T
i /b̃i) (2.18)

by (2.1) and the simplified form of (2.8) mentioned above; these representations of s̃, ỹ
are used in Section 5 and further implies PkH̃

k+1
k = H̃k+1

k −∑
i∈Ik

s̃is̃
T
i /b̃i = PkH̃

k+1
k P T

k

after arrangement and P T
k B̃kPk = B̃k−∑

i∈Ik
ỹiỹ

T
i /b̃i, k > 0, which yields formulas

ỹT
k H̃k+1

k ỹk = yT
k PkH̃

k+1
k P Tyk = yT

k H̃k+1
k yk −

∑
i∈Ik

(s̃T
i yk)

2/b̃i , (2.19)

s̃T
k B̃ks̃k = sT

k B̃ksk −
∑

i∈Ik

(sT
k ỹi)

2/b̃i = −tks
T
k gk −

∑
i∈Ik

(sT
k ỹi)

2/b̃i , (2.20)

used in Section 4.
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3 Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive
definite matrix G and that η̃k = σ̃k, k > 0, which is a natural choice, enabling us to have
ỹk = Gs̃k (and thus Ỹ k = GS̃ k), k > 0, in view of (1.7), similarly as for non-corrected
vectors. Here we consider only G - conjugacy of vectors.

Condition b̃ > 0 related to (1.7) can be obviously satisfied by the choice σ̃ = η̃ = 0
due to b > 0. For linearly independent columns of [S̃ , s], the following lemma guarantees
that b̃ > 0 for any σ̃ = η̃ and that we can always calculate values σ∗ = η∗, which solve

equations Ŝ
T
ỹ= Ŝ

T
Gs̃= Ŷ

T
s̃=0, i.e. provide the conjugacy of vector s̃ with columns of Ŝ.

Lemma 3.1. Let f be a quadratic function f(x) = 1
2
(x − x̄)T G(x − x̄), x̄∈ RN , with a

symmetric positive definite matrix G and columns of [S̃ , s] be linearly independent. Then

for any selection of Ŝ, Ŷ from S̃, Ỹ , matrix Ŝ
T
Ŷ is symmetric positive definite, values

σ∗= η∗ are well defined by (2.8) and b̃ > 0 for any σ̂= η̂.

Proof. Since columns of [Ŝ , s] are linearly independent, matrix K = [Ŝ , s]T G[Ŝ , s] is

symmetric positive definite, therefore also submatrix Ŝ
T
GŜ = Ŝ

T
Ŷ has this property and

(uT ,−1)K(uT ,−1)T = uT Ŝ
T
Ŷ u− 2uT Ŝ

T
y + b > 0

for any vector u of the proper dimension. For the choice u = (Ŝ
T
Ŷ )−1Ŝ

T
y we obtain

b− yT Ŝ(Ŝ
T
Ŷ )−1Ŝ

T
y > 0, i.e. b∗>0 by (2.9) and Ŝ

T
y = Ŝ

T
Gs = Ŷ

T
s. Thus values σ∗=η∗

are well defined by (2.8) and b̃ >0 by (2.9). 2

The following theorem shows that for the choice σ̂=σ∗, also the QN condition Ḧ+y=s
with non-corrected difference vectors is satisfied and improvement of convergence is the
best in some sense for linearly independent direction vectors.

Theorem 3.1. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ and
suppose that σ̂= η̂ and that the assumptions of Lemma 3.1 are satisfied. Then b̃ > 0 and
the choice σ̂=σ∗, given by (2.8), implies Ḧ+y=s and minimizes value ‖G1/2Ḧ+G1/2−I‖F

as a function of σ̂, where matrix Ḧ+ is defined by update (1.12) of Ḧ.

Proof. Inequality b̃ > 0, established in Lemma 3.1 for any σ̂= η̂, justifies representation
(1.12) of Ḧ+ and thus satisfaction of the QN condition Ḧ+ỹ = s̃. The choice σ̂=σ∗ implies
(2.2) by Lemma 2.2, therefore Ḧ+Ŷ = Ŝ by Lemma 2.1, which yields s = Ḧ+ỹ − Ŝσ̂ =

Ḧ+y + Ḧ+Ŷ η̂ − Ŝη̂ = Ḧ+y by (1.7) and σ̂ = η̂. Since matrix Ŝ
T
Ŷ is symmetric positive

definite by Lemma 3.1, it suffices to use Theorem 2.1 with G̈ = G, σ̂ = η̂ and e.g.
σ̈ = η̈ = 0. 2

In view of Lemma 3.1 we can always set Ŝ = S̃, Ŷ = Ỹ and σ̂ = σ∗ for linearly
independent direction vectors. The following theorem describes a situation when such a
case occurs in all iterations of the corrected BNS method, proposed in Section 1.

Theorem 3.2. Let f be quadratic function f(x) = 1
2
(x − x̄)T G(x − x̄), x̄ ∈RN , with a

symmetric positive definite matrix G, columns of every matrix [S̃k, sk] be linearly inde-
pendent and we always choose Ŝk = S̃k, Ŷ k = Ỹ k, σ̃k = η̃k =σ∗k, k > 0. Then columns of S̃k
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are conjugate, i.e. matrices S̃T
k Ỹk = Ũk = D̃k are diagonal, k > 0, and all QN conditions

H̃k+1Ỹk = S̃k, H̃k+1
k Ỹ k = S̃k, k ≥ 0, are satisfied, where matrices H̃k+1, H̃k+1

k are defined
by the repeated BFGS updating (1.9) of matrix ζkI, ζk > 0, with columns of S̃k, Ỹk.

Proof. We have S̃
T

kỹk = Ỹ
T

ks̃k = 0, k > 0, by Lemma 2.2 and it suffices to use Theo-
rem 2.2 with Ik = {k − m̃, . . . , k} ⊃ Ik+1, k ≥ 0. 2

Comparing these results with those given by Theorem 3.2 in [16] for unit stepsizes,
we see that they are similar - all stored corrected vectors s̃k (s̄k in [16]) are conjugate
and m̃ previous QN conditions are preserved, although only one correction vector is used
for difference vectors in [16]. The following theorem gives an interesting explanation - if
we generate all matrices H̃ in accordance with Theorem 3.2 and t=1, then vector s+ is
conjugate with columns of S̃ , thus only correction vectors s̃, ỹ are useful to correct s+, y+,
while columns of S̃, Ỹ as additional correction vectors have no influence on s̃+, ỹ+:

Theorem 3.3. Let H̃, H̃+ be symmetric positive definite matrices satisfying H̃Ỹ− = S̃−,
H̃+Ỹ = S̃, d=−H̃g and d+=−H̃+g+, f be a quadratic function f(x)= 1

2
(x−x̄)TG(x−x̄),

x̄∈ RN , with a symmetric positive definite matrix G and suppose that t=1, i.e. s= d.

Then S̃
T
y+= Ỹ

T
s+=0, i.e. columns of S̃ are conjugate with non-corrected vector s+.

Proof. Since assumption H̃Ỹ− = S̃− implies H̃Ỹ = S̃, we can use other assumptions

and S̃
T
y= S̃

T
Gs= Ỹ

T
s to obtain

−Ỹ
T
d+ = −S̃

T
B̃+d+ = S̃

T
g+ = S̃

T
(y + g) = Ỹ

T
s + S̃

T
g = Ỹ

T
(s + H̃g) = 0,

which immediately gives Ỹ
T
s+ = S̃

T
Gs+ = S̃

T
y+ = 0. 2

4 Implementation

From theory in Section 3 we could deduce that to improve convergence properties of
the BNS method, we should use the corrected difference vectors whenever an objective
function is close to a quadratic function (e.g. near to a local minimum), see below. On the
other hand, Theorem 3.3 indicate that a influence of more correction vectors than one can
be negligible in such situation, corrections can deteriorate stability and the computation
of vectors s̃, ỹ according to (2.1) requires additional arithmetic operations in comparison
with the non-corrected BNS method, proportionally to the number of currently used
correction vectors. Thus we should not correct if a benefit of corrections is negligible.

It follows from the proof of Theorem 2.1 that ‖G̈1/2Ḧ+G̈1/2−I‖2
F = ϕ(ξ) ≥ ϕ(1),

ξ = b∗/b̃ ∈ (0, 1], where convex function ϕ, nonincreasing on [0, 1], is given by quadratic
function (2.13), with all coefficients independent of (σ̂, η̂) ∈ S(Ŝ, Ŷ ) by Lemma 2.4.
Numerical experiments indicate that the ratio b/b̃ and the decrease of ϕ on [b̃/b, 1] are
good indicators of the benefit of corrections, in spite of the fact that (0, 0) 6∈ S(Ŝ, Ŷ ) for
non-quadratic functions generally. Although we cannot calculate either ϕ(ξ) or ϕ′(ξ), we
can utilize value ϕ′′/2 = (1− ä/b̃)2 and the length of interval [b̃/b, 1], see below.

As a measure of the deviation from a quadratic function in points xk−m̃, . . . , xk, k>0,
e.g. values (zero for quadratic functions) ∆k

i =(sT
i yk−sT

kyi)
2/(bkbi), i∈{k−m̃, . . . , k−1},
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could serve. We use values ∆̃k
i = (s̃T

i yk − sT
k ỹi)

2/(bkb̃i), see (2.16), which utilize stored
corrected difference vectors and give a damage of the QN condition for non-corrected
vectors s, y caused by these corrections, see (2.16). Principally, we do not use vectors
s̃i, ỹi, i ∈ {k−m̃, . . . , k−1}, for correction process (i.e. we decide that i 6∈ Ik) if b̃ < δ1b,
δ1 <1, if ∆̃k

i >δ2, δ2 <1, or if i 6∈Ik−1, in view of our strategy described in Section 2.2.
For i∈Ik−1, we also take into consideration if the benefit of corrections is great enough,

see above. We do not correct if ∆̃k
i > δ3, δ3 < δ2 together with (b/b̃)

√
ϕ′′/2(1− b̃/b) =

|1 − ä/b̃|(b/b̃ − 1) < 1, or if ∆̃k
i > min[δ2, δ3 + (1 − b̃/b)4/2], k > 0 (these formulas were

found empirically). Besides, we do not use s̃i, ỹi as correction vectors if the influence of
these vectors is too small, i.e. if [(s̃T

i yk)
2+(sT

kỹi)
2]/(bkb̃i) < δ4, δ4 < 1, k > 0, to increase

the efficiency of our method (see the beginning of this section).
To calculate number ä= ỹTḦỹ for Ḧ =H̃k+1

k , k>0, we can use formula (2.19), where
value yTḦy can be efficiently calculated by

yTḦy = ζ|y|2 + yTS̃ Ũ
−T [

D̃ + ζỸ
T
Ỹ

]
Ũ
−1

S̃
T
y − 2 ζyTS̃ Ũ

−T
Ỹ

T
y, (4.1)

where D̃ = diag[D̃k, b̃k], (Ũ)i,j = (S̃
T
Ỹ )i,j for i≤ j, (Ũ)i,j = 0 otherwise, which can be

derived from the following analogy of (1.5) for corrected matrix Ḧ =H̃k+1
k , k>0,

Ḧ = S̃ Ũ
−T

D̃ Ũ
−1

S̃
T

+ ζ(I − S̃ Ũ
−T

Ỹ
T
)(I − Ỹ Ũ

−1
S̃

T
) . (4.2)

To increase stability, we also do not use s̃i, ỹi, i∈{k−m̃, . . . , k−1}, k>0, for corrections,
if numbers ä or s̃TB̃s̃, see (2.20), are too small with respect to b, i.e. ä <δ5b or s̃TB̃s̃ <δ6b,
and moreover, in order to prove global convergence, if |s̃i|>∆|si| or |ỹi|>∆|yi|, ∆ > 1.
Note that in our numerical experiments with N = 5000, values |ỹ|/|y|, |s̃|/|s| were rarely
greater than 50.

First we give a procedure for updating of basic low-order matrices S̃T Ỹ , Ỹ T Ỹ , similar
to the algorithm given in [2] for updating of matrices D, U , Y T Y in (1.6). We present
the whole procedure for completeness, although parts of steps (ii), (iii) are contained in
Step 1 of Algorithm 4.2. Note that number of arithmetic operations is approximately
the same as for the corresponding algorithm in [2], although we use additional vector

Ỹ
T
s = −tỸ

T
H̃g, see Algorithm 4.2.

Procedure 4.1 (Matrix Updating)

Given: t > 0, matrices S̃, Ỹ , S̃
T
Ỹ , Ỹ

T
Ỹ and vectors s, y, g+, s̃, ỹ, S̃

T
g, Ỹ

T
g, Ỹ

T
H̃g, σ̃, η̃.

(i): Set S̃ = [S̃, s̃], Ỹ = [Ỹ , ỹ].

(ii): Compute S̃Tg+ = [S̃
T
g+, s̃Tg+], Ỹ Tg+ = [Ỹ

T
g+, ỹTg+], Ỹ

T
s = −tỸ

T
H̃g.

(iii): Compute S̃
T
y = S̃

T
g+−S̃

T
g, Ỹ

T
y = Ỹ

T
g+−Ỹ

T
g, ỹTỹ = yTy+2η̃TỸ

T
y+η̃T(Ỹ

T
Ỹ )η̃.

(iv): Compute S̃
T
ỹ = S̃

T
y + (S̃

T
Ỹ )η̃, Ỹ

T
s̃ = Ỹ

T
s + (Ỹ

T
S̃ )σ̃, Ỹ

T
ỹ = Ỹ

T
y + (Ỹ

T
Ỹ )η̃.

(v): Set S̃T Ỹ =
[

S̃
T
Ỹ S̃

T
ỹ

s̃T Ỹ s̃Tỹ

]
, Ỹ T Ỹ =

[
Ỹ

T
Ỹ Ỹ

T
ỹ

ỹT Ỹ ỹTỹ

]
and return.
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We now state the method in details. For simplicity, we omit stopping criteria and
contingent restarts when some computed direction vector is not descent.

Algorithm 4.2

Data: A number m > 1 of VM updates per iteration, line search parameters ε1, ε2,
0<ε1 <1/2, ε1 <ε2 <1, correction parameters δ1, δ2, δ3, δ4, δ5, δ6, ∆, 0<δi <1<∆,
i∈{1, ..., 6}, δ2 <δ3, and a maximum number of correction vectors n∈ [0, m−1].

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̃0 = I and
direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1.1), gk+1 = ∇f(xk+1),
sk = tkdk, yk =gk+1−gk, bk =sT

k yk, ζk =bk/y
T
k yk and set m̃ = min(k, m−1). If k = 0

set s̃k = sk, ỹk = yk, b̃k = s̃T
k ỹk, Ik = {0}, S̃k = [s̃k], Ỹk = [ỹk], S̃T

k Ỹk = [s̃T
k ỹk],

Ỹ T
k Ỹk = [ỹT

k ỹk], compute S̃T
k gk+1, Ỹ T

k gk+1 and go to Step 9, otherwise compute

S̃
T

kgk+1, Ỹ
T

kgk+1, Ỹ
T

ksk = −tkỸ
T

kH̃kgk, S̃
T

kyk = S̃
T

kgk+1−S̃
T

kgk, Ỹ
T

kyk = Ỹ
T

kgk+1−Ỹ
T

k gk.

Step 2: Preparation. Set Ik = {i∈Ik−1 : i≥ k−n}. If Ik= ∅ go to Step 7, otherwise set
i=k−1, b̃k

i = bk and compute äk
i = yT

k H̃kyk by (4.1) and c̃k
i = −tk sT

kgk.

Step 3: General elimination of indices. If i 6∈ Ik go to Step 6. Compute ∆̃k
i = (s̃T

i yk−
sT

kỹi)
2/(bkb̃i). If b̃k

i−s̃T
i yk sT

kỹi/b̃i <δ1b or äk
i−(s̃T

i yk)
2/b̃i <δ5bk or c̃k

i−(sT
kỹi)

2/b̃i <δ6bk

or |s̃i|>∆|si| or |ỹi|>∆|yi| or ∆̃k
i >δ2 set Ik := Ik\{i}. If i=k−1 go to Step 5.

Step 4: Additional elimination of indices. If ∆̃k
i >δ3 and |1− äk

i /b̃
k
i |(bk/b̃

k
i − 1) < 1 then

set Ik := Ik\ {i}. If ∆̃k
i > min[δ2, δ3 + (1− b̃k

i /bk)
4/2] set Ik := Ik\ {i}.

Step 5: Update of auxiliary quantities. If i ∈ Ik set b̃k
i := b̃k

i − s̃T
i yk sT

kỹi/b̃i, äk
i := äk

i −
(s̃T

i yk)
2/b̃i and c̃k

i := c̃k
i − (sT

kỹi)
2/b̃i.

Step 6: Loop. Set i := i− 1. If i ≥ k − m̃ go to Step 3.

Step 7: Correction. Compute (σ̃k)i = −sT
k ỹi/b̃i, (η̃k)i = −s̃T

i yk/b̃i for i ∈ Ik, (σ̃k)i = 0,
(η̃k)i = 0 for i 6∈ Ik, s̃k, ỹk by (2.1) and b̃k = s̃T

k ỹk. If b̃k < b̃k
i /2 set b̃k = b̃k

i . Set
Ik = Ik ∪ {k}.

Step 8: Matrix updating. Using Procedure 4.1, form matrices S̃k, Ỹk, S̃T
k Ỹk, Ỹ T

k Ỹk.

Step 9: Direction vector. Set D̃k = diag[b̃k−m̃, . . . , b̃k] and (Ũk)i,j = (S̃T
k Ỹk)i,j for i ≤ j,

(Ũk)i,j = 0 otherwise. Compute dk+1 = −H̃k+1gk+1 by (1.10) and an auxiliary
vector ỸkH̃k+1gk+1 by (1.11), where matrix H̃k+1 is defined by the analogy of
(1.5) with corrected quantities. Set k := k + 1. If k ≥ m delete the first column
of S̃k−1, Ỹk−1 and the first row and column of S̃T

k−1Ỹk−1, Ỹ T
k−1Ỹk−1, to form matrices

S̃k, Ỹ k, S̃
T

k Ỹ k, Ỹ
T

k Ỹ k. Go to Step 1.

5 Global convergence

In this section, we establish global convergence of Algorithm 4.2. The following assump-
tion and lemma are presented in [16].

Assumption 5.1. The objective function f : RN → R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤
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G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matrix G(x)).

Lemma 5.1. Let objective function f satisfy Assumption 5.1. Then G ≤ |y|2/b ≤ G and
b/|s|2 ≥ G.

Theorem 5.1. Let objective function f satisfy Assumption 5.1. Then,Algorithm4.2 gen-
erates a sequence {gk} that either satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for some k.

Proof. All updates in (1.9) are the standard BFGS updates with vectors s̃i, ỹi instead
of si, yi, therefore we have (see [15])

Tr(B̃k+1
i+1 ) = Tr(B̃k+1

i ) + |ỹi|2/b̃i − |B̃k+1
i s̃i|2/c̃k+1

i , (5.1)

det(B̃k+1
i+1 ) = det(B̃k+1

i ) b̃i/c̃
k+1
i , (5.2)

k − m̃ ≤ i ≤ k , where B̃k+1
j = (H̃k+1

j )−1, c̃k+1
j = s̃T

j B̃k+1
j s̃j, j = k − m̃, . . . , k + 1, k ≥ 0.

(i) Since B̃k+1
k−m̃ = (|yk|2/bk)I by (1.8), Lemma 5.1 gives

Tr(B̃k+1
k−m̃) = (|yk|2/bk) Tr(I) ≤ NG, det(B̃k+1

k−m̃) = (|yk|2/bk)
N≥ GN . (5.3)

(ii) The safeguarding technique in Step 3 of Algorithm 4.2 guarantees

b̃k ≥ δ1bk, |s̃i| ≤ ∆|si|, |ỹi| ≤ ∆|yi|, i ∈ Ik, (5.4)

therefore for Ik 6= ∅ and k > 0 from (2.18) we get

|s̃k| ≤
∥∥∥∥

∏
i∈Ik

(
I− s̃i ỹ

T
i

b̃i

)∥∥∥∥ |sk| ≤ |sk|
∏

i∈Ik

|s̃i| |ỹi|
b̃i

≤ ∆2m̃

δm̃
1

|si| |yi|
bi

|sk| ≤ C0|sk|, (5.5)

with C0 = (∆2/δ1)
m̃

√
G/G by Lemma 5.1. Similarly we obtain |ỹk| ≤ C0|yk| for Ik 6= ∅

and k > 0, which together with (5.5) gives

|s̃k|2/b̃k ≤ (C2
0/δ1)|sk|2/bk ≤ (C2

0/δ1)/G
∆
= C1, (5.6)

|ỹk|2/b̃k ≤ (C2
0/δ1)|yk|2/bk ≤ (C2

0/δ1)G
∆
= C2 (5.7)

for all k ≥ 0 by Lemma 5.1 and C2
0/δ1 > 1.

(iii) From (5.1), (5.3) and (5.7) we have

Tr(B̃k+1
i+1 ) ≤ NG + mC2

∆
= C3, k − m̃− 1 ≤ i ≤ k, k > 0, (5.8)

which yields
Tr(B̃k+1) = Tr(B̃k+1

k+1) ≤ C3, k > 0. (5.9)

(iv) Using (5.2), (5.6) and (5.8), we obtain

det(B̃k+1
i+1 )/ det(B̃k+1

i ) = (b̃i/|s̃i|2)(|s̃i|2/s̃T
i B̃k+1

i s̃i) ≥ 1/(C1C3),

k − m̃ ≤ i ≤ k . From this and (5.3) we get

det(B̃k+1) = det(B̃k+1
k+1) ≥ GN/(C1C3)

m ∆
= C4, k > 0. (5.10)

(v) The lowest eigenvalue λ(B̃k) of matrix B̃k satisfies λ(B̃k) ≥ det(B̃k)/Tr(B̃k)
N−1,

k ≥ 0. Setting qk = B̃
1/2
k sk, from (5.9) and (5.10) we conclude

(sT
k B̃ksk)

2

|sk|2|B̃ksk|2
=

sT
k B̃ksk

sT
k sk

qT
k qk

qT
k B̃kqk

≥ det(B̃k)

Tr(B̃k)N−1

1

Tr(B̃k)
≥ C4

CN
3

, k > 1,

which implies lim
k→∞

|gk|= 0, see Theorem 3.2 and relations (3.17)-(3.18) in [15]. 2
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6 Numerical experiments

In this section, we demonstrate the influence of vector corrections on the number of
evaluations and computational time, using the following collections of test problems:

• Test 11 from [9] (55 chosen problems, computed repeatedly ten times for better
comparison), which are modified problems from CUTE collection [3]; used N are
given in Table 1, where problems, modified in some way, are marked with ’*’,

• test from [1], termed Test 12 here, 73 problems, N = 10000,

• Test 25 from [8] (68 chosen problems), N =10000.

The source texts and reports can be downloaded from camo.ici.ro/neculai/ansoft.htm

(Test 12) and from www.cs.cas.cz/luksan/test.html (Test 11 and Test 25).

Problem N Problem N Problem N Problem N
ARWHEAD 5000 DIXMAANI 3000 EXTROSNB 1000 NONDIA 5000
BDQRTIC 5000 DIXMAANJ 3000 FLETCBV3* 1000 NONDQUAR 5000
BROYDN7D 2000 DIXMAANK 3000 FLETCBV2 1000 PENALTY3 1000
BRYBND 5000 DIXMAANL 3000 FLETCHCR 1000 POWELLSG 5000
CHAINWOO 1000 DIXMAANM 3000 FMINSRF2 5625 SCHMVETT 5000
COSINE 5000 DIXMAANN 3000 FREUROTH 5000 SINQUAD 5000
CRAGGLVY 5000 DIXMAANO 3000 GENHUMPS 1000 SPARSINE 1000
CURLY10 1000 DIXMAANP 3000 GENROSE 1000 SPARSQUR 1000
CURLY20 1000 DQRTIC 5000 INDEF* 1000 SPMSRTLS 4999
CURLY30 1000 EDENSCH 5000 LIARWHD 5000 SROSENBR 5000
DIXMAANE 3000 EG2 1000 MOREBV* 5000 TOINTGSS 5000
DIXMAANF 3000 ENGVAL1 5000 NCB20* 1010 TQUARTIC* 5000
DIXMAANG 3000 CHNROSNB* 1000 NCB20B* 1000 WOODS 4000
DIXMAANH 3000 ERRINROS* 1000 NONCVXU2 1000

Table 6.1: Dimensions for Test 11 – modified CUTE collection.

For comparison, Table 2 contains the total number of function and also gradient evalu-
ations (NFV) and the total computational time (Time) for the following limited-memory
methods: L-BFGS – the Nocedal method based on the Strang formula, see [14], method
from [16] (Algorithm4.1), see Section 1, and new Algorithm 4.2 for n = 2, 4. All methods
are implemented in the optimization software system UFO, described in [11] and intro-
duced in www.cs.cas.cz/luksan/ufo.html. We have used m= 5, δ1 = 10−4, δ2 = 10−2,
δ3 = δ5 =10−5, δ4 =10−10, δ6 =10−3, ∆=1000, ε1=10−4, ε2 = 0.8 and the final precision
‖g(x?)‖∞ ≤ 10−6.

Test 11 Test 12 Test 25
Method NFV Time NFV Time NFV Time
L-BFGS 80539 10.361 119338 50.88 502966 429.01

Alg. 4.1 in [16] 64395 9.614 67619 32.61 325441 318.71
Alg. 4.2, n=2 62770 8.795 67372 31.06 302908 302.62
Alg. 4.2, n=4 64127 8.977 66403 30.77 308847 298.05

Table 6.2: Comparison of the selected methods.
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For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [4]. The per-
formance profile ρM(τ) is defined by the formula

ρM(τ) =
number of problems where log2(τP,M) ≤ τ

total number of problems

with τ ≥ 0, where τP,M is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P . The ratio τP,M is set to infinity
(or some large number) if method M fails to solve problem P .

The value of ρM(τ) at τ = 0 gives the percentage of test problems for which the
method M is the best and the value for τ large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can be
directly seen from the performance profiles: the higher is the particular curve, the better
is the corresponding method. The following figures, based on results in Table 2, reveal
the performance profiles for tested methods graphically.
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Figure 6.1: Comparison of ρM(τ) for Test 11 and various methods.
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Figure 6.2: Comparison of ρM(τ) for Test 12 and various methods.

7 Conclusions

In this contribution, we propose some modifications of the BNS method based on the idea
of conjugate directions consisting in such corrections of difference vectors which provide
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Figure 6.3: Comparison of ρM(τ) for Test 25 and various methods.
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Figure 6.4: Comparison of ρM(τ) for Test 25 and various n.

conjugacy of all stored corrected vectors for quadratic objective functions. In comparison
with [16], where a similar approach is used, more correction vectors can be applied here.

We show that the update VM matrices constructed by means of these vectors have
some positive properties and that this approach can improve unconstrained large-scale
minimization results significantly compared with the frequently used L-BFGS method
(the BNS and the L-BFGS methods give very similar results) and the method from [16].

Our limited experiments also indicate that numerical results for 1, 2, 3 or 4 correction
vectors are not too different and that two correction vectors can mostly be recommended.
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UFO2013. Interactive System for Universal Functional Optimization, Report V-1191,
Prague, ICS AS CR, 2013.
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