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Studetská 1768,708 00 Ostrava–Poruba

1 Introduction

The collapse of the original Tacoma suspension bridge has been studied in many papers. On 7
November 1940 around 10 a.m. the torsional oscillations appeared on the deck of the original
Tacoma bridge after the loosening of one midspan cable band, which resulted in the lateral
asymmetry of the construction. It seems that the loosening of the midspan cable band had a
significant impact on the behavior of the bridge and in the end it resulted in the collapse.

The model of the central span , depicted in Fig. 1,and the cable system studied in this paper is
described by two functions corresponding with vertical and torsional motions of the central span
and was formulated in [1]. The cable stays are modeled as a continuum. The model is based on
the equilibrium state given by the gravitational forces acting on the whole construction. The
two functions mentioned above describe the deflection from the equilibrium state. We analyze
the action of lateral wind on the center span. These forces are relatively small comparing to
the gravitational forces. The formulation describes the mutual reaction of the center span and
the cable system as well as the reaction of the diagonal ties on the midspan cable bands. Three
different types of evolution variational problems are formulated and analyzed.
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Fig. 1. Specification of center span

The equations formulated here describe the deflections from the equilibrium state due to the
forces induced by lateral wind. The analysis of the derived equations reveals that the action of
lateral wind can cause torsional oscillations if just one midspan cable band loosens.

2 Formulation of problems and main results

The analysis is based on the variational equations derived in [1]. Let us remind the parameters
of the deck and the cable system.

• The width of the deck is denoted 2D.
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• The length of the central span is L.

• The sag of the main cables is L1.

• The mass of the deck per unit length along the span is MD.

• The mass of the main cable per unit length is MC .

• The modulus of elasticity of the deck is ED.

• The moment of inertia of the deck cross section with respect to the horizontal line through
its centroid is ID.

• The polar mass moment of inertia of the deck is IP .

• The shear modulus of the deck is GD.

• The torsional constant of the deck is JD.

• The gravitational acceleration is g.

The formulation of the linearized model is based on the Hamilton principle. The starting point
is the equilibrium under gravitational forces. Then we look for a new equilibrium, which is
a stationary point of the functional defined below. The deflection of the center span from
the original equilibrium is described by functions u(x, t), θ(x, t), where u(x, t) corresponds to
vertical deformations and θ(x, t) corresponds to torsional deformations of the center span The
formulation of the linearized models is based on the following hypotheses formulated in [1]. Let
us define the bilinear form

ac(u, v) =

L

2
∫

−

L

2

H

(

1 +

(

dy

dx

)2
)

du

dx

dv

dx
dx.

Then the potential energy of the main cables can be expressed in the form

ac(u, u) +D2ac(θ, θ) .

Let us define another two bilinear forms

aver(u, v) =

L

2
∫

−

L

2

EDID
d2u

dx2
d2v

dx2
dx , ator(θ, ϕ) =

L

2
∫

−

L

2

GDJD
dθ

dx

dϕ

dx
dx ,

which are connected with the bending and torsional deformation energy of the deck. To simplify
our equations for the dynamic problems, we define the bilinear forms

mver(u, v) =

L

2
∫

−

L

2

Mveruvdx, mtor(θ, ϕ) =

L

2
∫

−

L

2

Mtorθϕdx,

where Mver,Mtor are functions on (−L/2, L/2) defined by

Mver(x) =2MC

(

1 +

(

dy

dx

)2
)

1

2

+MD ,

Mtor(x) =2D2MC

(

1 +

(

dy

dx

)2
)

1

2

+ IP .
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The equations for the dynamic problems will be derived from the Hamilton principle. The
variational equation reads

mver(ü, v) +mtor(θ̈, ϕ) + 2ac(u, v) + 2D2ac(θ, ϕ) + aver(u, v) + ator(θ, ϕ) =
L

2
∫

−

L

2

Fverv dx +

L

2
∫

−

L

2

Ftor ϕ dx

and holds for all sufficiently smooth functions v(x), ϕ(x) defined on (−L/2, L/2). In our models
we assume that the main span is hinged in its end points, so the functions u, θ satisfy the
boundary conditions

u (−L/2, t) = u (L/2, t) = θ (−L/2, t) = θ (L/2, t) = 0 .

So far we have not consider the fact that the main cables are inextensible and fixed at the end
points and fastened at the midspan cable bands. Let us suppose that the deck deforms and
the deformation transfers on the main cables via the inextensible suspenders. To simplify our
considerations, we define three linear forms

h(u) =

L

2
∫

−

L

2

dy

dx

du

dx
dx , hr(u) =

0
∫

−

L

2

dy

dx

du

dx
dx , hl(u) =

L

2
∫

0

dy

dx

du

dx
dx .

If both main cables are fixed in their end points, then u and θ satisfy the relations

h(u) = h(θ) = 0 .

In the case both main cables are fixed at the midspan cable bands as well, the following relations

hr(u) = hr(θ) = hl(u) = hl(θ) = 0

hold. In the end let us study the case, where both main cables are fixed at the end points and
only one main cable is fixed at the midspan cable band, then the relations

hr(u−Dθ) = hl(u−Dθ) = h(u+Dθ) = 0

Now we are going to formulate three dynamic problems connected with the way how the main
cables are fixed. The first dynamic problem describes oscillations of the center span if the main
cables are fixed at the end points. The functions u(t), θ(t) are a solution to D1 if these functions
satisfy the relations

h(u(t)) = h(θ(t)) = 0

for all t, and the variational equation. The variational equation holds for all v, ϕ which satisfy
the relations

h(v) = h(ϕ) = 0.

The initial conditions are compatible with D1, which is defined in [1].

The functions u(t), θ(t) are a solution to the dynamic problem D2 if these functions satisfy the
relations

hr(u(t)) = hr(θ(t)) = hl(u(t)) = hl(θ(t)) = 0
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for all t, the boundary conditions , and the variational equation. The variational equation holds
for all v, ϕ which satisfy the relations

hr(v) = hr(ϕ) = hl(v) = hl(ϕ) = 0

and the boundary conditions. The initial conditions are compatible with D2, which is defined
in [1].

The functions u(t), θ(t) are a solution to the third dynamic problem D3 if these functions satisfy
the relations

hr(u(t)−Dθ(t)) = hl(u(t)−Dθ(t)) = h(u(t) +Dθ(t)) = 0 ,

for all t, the boundary conditions, and the variational equation. The variational equation holds
for all v, ϕ which satisfy the relations

hr(v −Dϕ) = hl(v −Dϕ) = h(v +Dϕ) = 0

and the boundary conditions. The initial conditions are compatible with D3, which is defined
in [1].

The existence and continuous dependence on data is proved in [2].

3 Conclusion

The original Tacoma bridge exhibited relatively small vertical oscillations from the time that it
was opened. The bridge was stable with respect to torsional oscillations until one midspan cable
band loosened. This led to torsional oscillations which lasted for approximately one hour and
then the deck broke. The new evolution variational equations were derived. These equations
describe the behavior of the center span and main cables in the three different situations, where
the both main cables have the fastened midspan cable bands, only one cable has the fastened
midspan cable band, and the main cables have no fastened midspan cable bands. The analysis
revealed that the behavior of the center span depends on the direction of lateral wind and
vertical and torsional oscillations of the center span are connected if just one midspan cable
band loosens.
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