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Abstract:

The main goal of this work is to model flood waves based on runoff and precipitation data. We utilize data
from the Smeda rivera catchment provided by the CHMI in order to build several models of flood episodes.
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Chapter 1

Introduction

Discovering the patterns in data usually requires deeper understanding of
both the data and the data mining methods, in order to be able to use them
with satisfactory results. It should therefore be the next goal of artificial
intelligence research to develop meta learning systems, which would learn
from their previous experience, and which would be able to give advice on
what methods to use in particular situations.

The main goal of this work is to improve real time flood warning system
operated by the Czech Hydrometeorological Institute (CHMI) in a very sen-
sitive part of Northern Bohemia, the Smeda River basin. This area has been
subject to several flash floods during last decade, and thus it is important
to model and predict the dynamics of the flood wave. Following the opera-
tional reality we reformulated the traditional time series prediction problem
as either a runoff regression problem, or a classification of water level val-
ues into predefined decisive water level thresholds. Moreover, in contrast to
our previous work, the modelled system utilizes data from three subsequent
runoff gauges, namely Bily Potok, Frydlant and Visnova. The distance be-
tween them is 15 km and 12 km, respectively. The watershed area is 180
km2. Together with flood wave time series we utilized relevant precipitation
totals from Hejnice rain gauge.

While it is difficult to forecast the time of occurrence and the extent of
floods, it is possible to predict fairly accurately the movement of the flood
wave along a river. Several methods are available for the flood wave prop-
agation forecasting in general. Two simple hydrometric methods based on
the extrapolation of the discharge difference and discharge-travel time are in
use in CHMI. On a similar base, the neural model is created whose inputs
are historical runoff values in the first two gauges, and an output is a clas-
sification of predicted water level (or runoff prediction) in the third gauge.
Number of previous runoff values depends on the shape of a flood wave.

4



Figure 1.1: Two examples of computational MAS — the simplest one (left),
and the more complicated one (right) containing a neural network trained
by an evolutionary algorithm.

Figure 1.2: Map of the Smeda river catchment (Czech Hydrological Insti-
tute).
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It has been shown that during the training phase of neural models that
setting of proper configuration of the model is important for successful predic-
tion, while the common practice is to set these parameters (type of network,
number of hidden units or layers, learning rate, kernel function type) empir-
ically. Moreover, the problem is data-dependent, thus it makes sense to use
some meta-learning search heuristics to set the parameters with respect to
particular data set at hand. In our research we utilized the evolutionary algo-
rithms and local hill climbing techniques to efficiently search the parameter
space in order to improve the quality of the model. While the procedure itself
is computationally exacting, it provides improvement in terms of prediction
quality of flood wave predictors.

An approach taking fuzzy systems into account to create a human-under-
standable models is also described in this report. In both neural and fuzzy
models we model some relation of interest. Here it is the mapping of selected
predictors on the predicted water level. However, in a neural network the
function of interest is coded mainly in weights of the network an any insight
on the importance and composition of the predictors can hardly be done.
That is why neural networks are commonly seen as black box models.

Contrary to neural networks, in fuzzy systems, the relation of interest
is created establishing the relation between fuzzy sets composing IF-THEN
rules of the system. The lingustic description of fuzzy sets is generally more
understable than representation of the relation in terms of weights. In the
report we present a fuzzy model for water level prediction. The model is built
as a radial implicative fuzzy system with S-shaped fuzzy sets allowed to be
used in the model. This type of systems was studied recently, and brings
an enhancement with respect to the purely radial systems. The model is
presented both theoretically and practically in the form of a MATLAB code.

The neural and fuzzy modelling approaches are compared with the model
which is currently in the use at CHMI (it is called Kinfill). Using real data
it is shown that both approaches are capable to improve the current model.
The experimental part of the report presents the details.
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Chapter 2

Neuro-evolutionary systems

In this chapter we present the Pikater multi-agent system that embeds dif-
ferent data mining methods. The system not only provides an user-friendly
environment for experimenting with different data mining methods (and is
capable of figuring out their best settings), but it also learns with every task
it solves, so that it is eventually capable of giving advice on choosing the
appropriate data mining method.

The multi-agent-based approach brings in many advantages to the com-
plex task of meta learning when compared to non-agent solutions (such as
WekaMetal extension of Weka data mining tool [9]). The main contribution
of the multi-agent-based approach lies in its distributed nature (the system
can spread over the Internet and be accessed by many users that — only by
using the system and running their experiments — provide the data needed
for meta learning algorithms) and the easy extensibility of multi-agent sys-
tem (MAS), which enables the researchers to add their own components (such
as data mining or parameter space searching methods) to the system. The
extensibility of our system is assured by the use of the structured ontology
language and following the international standards of agents’ communication.

The paper has the following structure. First we introduce the meta-
learning scenario with parts devoted to parameter search, data description
and recommendations, and we show a sound formal model of roles to deal
with description, composition and communication of agents. Then, a sys-
tem architecture is presented in the implementation section, and an example
problem solution is described.
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Figure 2.1: Scenario of meta learing in computational MAS

2.1 Meta learning

2.1.1 Overall scheme

One of the unique features of our system is its ability to meta learn over the
results of the previous tasks and finding the best possible method even for
the new datasets based on the ontological compatibility of the datasets. The
system thus can in a way replace a human expert.

For a general view on the meta learning scenario in computational MAS,
where the suitable computational method’s parameters are chosen accord-
ing to the metadata, see Figure 2.1. The metadata contain the information
about the data-set (e.g. number of instances and attributes, data types,
default task, or whether it contains missing values). These descriptions of
computational methods correspond to physical implementation of computa-
tional agents employing the JADE agent platform and Weka data mining
library [14]. The task manager has specified training and testing data and
partially determined computational method with its options. It employs the
search algorithm which optimizes the option set according its evaluation,
i.e. error rate over the data. These evaluations are computed by means of
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the computational agent (implementing multi-layer perceptron) and the data
source agent. The optimal solution together with the corresponding meta-
data is stored in the persistent database. These results are later exploited
to find the suitable configurations for unknown data according to metadata
metric [11]. The MAS-based solution of meta learning allows a flexibility
in choice of the parameter space search algorithms, e.g. general tabulation,
random search, hill-climbing, simulated annealing or parallel methods, such
as evolutionary algorithms. It is also capable of computational agents exe-
cution in parallel with various parameters during the execution of the search
process.

Figure 2.1.1 describes the above mentioned procedures in a pseudo-code,
thus providing a funtional poin of view on the meta learning problem. The
train procedure realizes a basic standard task - creating a model by applying
a computational intelligence method embodied in agent A on a data set
D (with a set of options O). A simple meta-train procedure employs a
search algorithm embodied in agent S in order to find an optimal options
set O by iterating through train procedure. Note, that the meta-train can
represent different search strategies, from simple tabelataion to evolutionary
search. The get-experience shows a pro-active agent behavior to learn its
performance on different data sets. The strategy of this background task
can again be fairly complex. Finally, the recommend procedure sketches the
task to recommend the best possible method for presented data based on the
previous experience.

2.1.2 Roles description

In this section we employ the concept of role to model the organizational
aspects of our multi-agent system. Roles allow flexible composition of con-
crete MAS of more simple blocks — group structures. We employ the AGR
(Agent, Group and Role) model [7, 15]. In this model, the MAS consists of
groups, instances of group structures. The agent can enter a group only by
playing a role which is defined in the corresponding group structure. Two
agents interact by the communication protocol defined between two roles
they have assumed, where both agents have to be in the same group.

The scenario of meta learning consists of the following subproblems. The
first is administration of the computation, i.e. decomposition of user’s exper-
iments to tasks of concrete method with possibly unfilled slots in parameters
of methods, and then to pairs of method and its options. The second sub-
problem is computation, execution of computational task on train and test
data from a data source with concrete computing method. The parameter-
space search of method’s options is the third suproblem of meta learning. The

9



train(A,O,D) {

initialize agent A with options O;

train A on data D with results E;

return E

}

meta-train(A,D,S) {

// either error treshold or

// iteration count is met

i=0;

repeat

apply search algorithm S for option 0;

E = train(A,O,D);

i++;

until (E < eps_E) or (i=max_I)

return E;

}

get-experience (A) {

// D_1 ... D_n all data sets in the

// storage (or benchmark data sets)

for i=1,..n {

E = meta-train(A,D_i);

store (A,D_i,E) to persitent storage;

}

}

recommend (D) {

find D’ such that:

m(D,D’) = min { d(D,D_i); i=1..n };

find A’ such that:

E’ = test(A’,D’) = min { test(A,D’)

A is any comp.agent in the system }

return A’;

}

Figure 2.2: Pseudocode depiction of the important tasks performed by the
data-mining MAS.
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previous experiments’ results will be stored and possibly exploited for rec-
ommendation of configurations, the fourth subproblem, based on metadata
the new experiments. The last subproblem, the data management, provides
data of user in the local computing system.

These subproblems correspond to group structures of the organizational
structure. Thus, we can design the following group structure, which imple-
ments the subproblems:

• The administrative group structure contains the roles of user interface,
manager and options manager.

• In the computational group structure, there is a task manager deter-
mining the computational task, a data source providing the data and
a computing agent (e.g. RBF network) performing the task.

• The general search group structure consists of optimized agent, which
determines the pattern of search space and returns the evaluation of
concrete solutions, and of search agent implementing the search algo-
rithm.

• The recommendation group structure serves as a representation of pre-
vious experience of computation. In the recommendation group, roles
of experiment (...nebo tak neco...) and recommendation agent are en-
tering.

• The data management group structure contains roles of a data manager
and data provider. The data provider sends data to the data manager,
which stores to the local machine for data sources.

The concrete organization of MAS is composed of instances of these group
structures and agents which play the specific roles. In the Figure 2.1.2, there
is depicted such a concrete organization of Pikater. Some of the agents
play more roles in the same time. The manager in administrative group
is also experiment in the recommendation group and data provider in data
management group. The options manager is an optimized agent in the search
group and a task manager in computational group.

2.1.3 Data description

Along with the data themselves, the system stores metadata (described by the
ontology proposed in [16]), i.e. extra information about the training datasets,
in the database. Some of those information can be obtained directly from
the data, some of them need to be set by the user along with the data when
specifying the task. Metadata contain the following items:
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Figure 2.3: The role and group based organization of the data-mining MAS.
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• number of attributes that specify data characteristics,

• number of instances — number of records in a dataset,

• data type — refers to all values of all attributes in the dataset. Possible
values are integer, real, categorical, or multivariate,

• default task — type of a task that is connected with the data, currently
the system can solve classification and regression types of tasks,

• missing values.

2.1.4 Recommendations

We determine the most similar dataset to the dataset provided by user (we
use metadata metric proposed in [16] to determine the distance between the
datasets). Afterwards we search the database for the method that showed
the lowest error rate on the selected (closest) dataset.

The data stored in the database — both results of computations and
metadata about the datasets together with the proposed metric provide fun-
damentals for further experimenting with different learning techniques, such
as evolutionary algorithms, or application of classification methods for find-
ing similar datasets. Since both the metadata and results are defined by
ontologies, it is easy to add items (i.e. duration of the computation) and
experiment with different metrics. We also intend to further improve the
ontological description of tasks and data mining methods in order to provide
better specification of the compatible task-method couples, so that we would
be able to benefit from the strength of OWL-DL language and use automated
reasoning for choosing the valid couples.

2.2 System Architecture

Lets have a look at the typical task that the system should be able to solve
— a researcher usually wants to gain some knowledge from a dataset. They
either have decided to use a particular data mining method, or they want the
system to give advice on choosing the method for them. The whole solution
to the data mining task thus falls apart into four separate layers (see Figure
1) — user interface layer, computational layer, data layer, and administrative
layer.

At the user interface layer, the system handles all the communication
with user, i.e. all the inputs (the definition of the task system is to solve)
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and outputs of the system (the results of computations). The user defines
the task in a human understandable language via one of the user interface
agents which subsequently translate the problem into ontologies [16] and
communicate it to the system.

The computational layer contains the specific data mining methods, such
as Multilayer perceptron or RBF network (each of them embedded in an
computing agent).

The data layer contains reader agents capable of reading data from files
and data manager service that provides access to data stored in a database.

The most sophisticated part of the system is the administrative layer
which carries out several functions:

• It is in charge of the whole problem solving process. It connects the
user interface layer and the computational layer (agent manager).

• It is capable of meta learning over the methods (see ‘Meta learning’
section). (agent manager)

• It can search the parameter space of the data mining methods and
choose the best configuration (agent option manager).

• It gathers the task results and computes some statistic information
(agent manager).

The system is designed to easily add researchers’ own option managers.
So far the parameters values can be either chosen randomly, or the required
number of the values uniformly distributed over the specified interval is se-
lected.

To ensure the easy extensibility and re-use of the system, the general
communication issues are ruled by FIPA specifications, while the inner lan-
guage used in messages is specified by an OWL-DL ontology. Most of the
computing agents in our system embed Weka [9] data mining methods. We
use XML format to communicate the tasks to the system as well as for the
output, i.e. the results of the tasks. The Pikater multi-agent system is being
developed using JADE framework.
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Chapter 3

Fuzzy systems

This chapter introduces the class of S-shaped radial implicative fuzzy systems
along with related software implementations. The chapter consists of two
parts. In the first part, the classes of the radial and S-shaped radial fuzzy
systems are introduced theoretically. The presentation is mainly based on
the recent paper [4]. In the second part, there are presented MATLAB
implementations of the introduced systems and related routines, e.g., the
script for the coherence checking algorithm.

3.1 Radial implicative fuzzy systems

Radial implicative fuzzy systems are created by the combination of the con-
cepts of radial fuzzy systems and implicative fuzzy systems. The radial fuzzy
systems incorporate radial functions for representation of membership func-
tions of involved fuzzy sets. In implicative fuzzy systems, the IF and THEN
parts of IF-THEN rules are combined by residuated fuzzy implications.

A computational model of implicative fuzzy systems is generally compli-
cated due to the employment of (typically discontinuous) residuated impli-
cations, however, when the radial property, exhibited by the radial systems,
is taken into account, then the computational model starts to be tractable.
That is why the fusion of these two concepts is reasonable and advantageous.
Moreover, the restriction on the class of radial implicative fuzzy systems is
not so limiting because these systems exhibit the universal approximation
property; and the representation ability of radial systems is wide enough to
they can be used in real applications.

Finally, due to the tractability of the computational model the question of
coherence, that is the question of the non-contradictoriness of stored knowl-
edge, can be resolved effectively.
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3.1.1 Implicative fuzzy systems

In what follows, we will consider implicative fuzzy systems as the systems in
MISO (multiple-input, single-output) configuration of rules. This configura-
tion means that an individual IF-THEN rule represents a fuzzy relation on
an n × 1-dimensional input-output space. The input-output space is treated
as a subset of Rn+1, n ∈ N space. Let a rule base of the fuzzy system under
consideration consist of m ∈ N rules, for the j-th IF-THEN rule the relation
formally writes

Aj1(x1) ⋆ · · · ⋆ Ajn(xn) → Bj(y). (3.1)

In the formula, Aji, j = 1, . . . , m represent one-dimensional fuzzy sets
specified on individual subspaces Xi ⊆ R, i = 1, . . . , n of input space X1 ×
· · · × Xn ⊆ Rn. One-dimensional fuzzy sets are combined by a t-norm ⋆ to
produce the IF part of the rule which corresponds to a fuzzy relation Aj(x)
on Rn space, i.e., Aj(x) = Aj1(x1) ⋆ · · · ⋆ Ajn(xn), x = (x1, . . . , xn) ∈ Rn.
The THEN part of the j-th rule is represented by a fuzzy set Bj specified on
an output space Y ⊆ R.

Implicative fuzzy systems (I-FSs in short) employ residuated fuzzy impli-
cations [13, 8] for interconnection of IF and THEN parts of rules. In formula
(3.1), the implicative connection is indicated by the → symbol. Considering
the more compact form for (3.1), we write the formula Aj(x) → Bj(y) for the
j-th IF-THEN rule. It mathematically represents a fuzzy relation on Rn+1

space which we denote by Rj(x, y). Hence

Rj(x, y) = Aj(x) → Bj(y). (3.2)

As presented, we assume that rule base of the system consists of m ∈ N
rules. The individual rules combine into the rule base by a fuzzy intersection.
Mathematically, the fuzzy intersection operation corresponds to some t-norm,
which is the operation generalizing the Boolean conjunction [5, 13]. The
most common choice of the t-norm for combination of IF-THEN rules is the
minimum t-norm. The final representation of the rule base has then form

RB(x, y) =
∧

j

Rj(x, y) = min
j

{Aj(x) → Bj(y)}. (3.3)

The computation of the overall system is driven by the compositional
rule of inference accompanied by the singleton fuzzification and the mean
of maxima defuzzification method [5, 13, 17]. More details are presented
below when we discuss the computational model of radial implicative fuzzy
systems.
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3.1.2 Radial fuzzy systems

Radial fuzzy systems employ radial functions to represent membership func-
tions of incorporated fuzzy sets. Radial functions are well known from the
theory of radial basis functions neural networks (RBF networks) [10]. A ra-
dial function is determined by its central point a ∈ Rn and a shape mod-
ification function act (so-called activation function in the theory of neural
networks) which is applied on a norm of distance from the central point.
In our context, the shape function act : [0, ∞) → [0, 1] is non-increasing,
act(0) = 1 and limz→∞ act(z) = 0.

Formally, a radial function has the form

act(|x − a|/b) or act(||x − a||b) (3.4)

for one-dimensional or multi-dimensional case, respectively.
In the above specifications, b > 0 is the scaling parameter in the one-

dimensional case. In the multi-dimensional case, instead of the absolute
value we work with scaled norms on Rn space. Especially, we are aimed at
the scaled ℓp norms defined for p ∈ [1, ∞) and u ∈ Rn as

||u||b =

(

∑

i

|ui|
p

bp
i

)1/p

. (3.5)

The limit case of p = ∞ yields the scaled cubic norm specified as ||u||Cb
=

maxi{|ui|/bi}. The scaling vector b reads as b = (b1, . . . , bn), with bi > 0.
In the context of radial fuzzy systems, the most prominent examples of

radial fuzzy sets are (for the j-th rule, say) the one-dimensional Gaussian

Aj(x) = exp

[

−
(x − aji)

2

b2
ji

]

(3.6)

and triangular fuzzy sets

Aj(x) = max

{

0, 1 −
|x − aji|

bji

}

, (3.7)

with aji ∈ R, bji > 0 being the central point and the scaling parameter in
the i-th dimension, respectively.

Concerning consequent fuzzy sets, we introduce trapezoidal versions of
radial fuzzy sets which allows kernels of output fuzzy sets to be controlled.
Formally, the membership functions of trapezoidal Gaussian and triangular
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fuzzy sets write as

Bj(y) = exp

[

−
max{0, |y − cj| − sj}

2

d2
j

]

, (3.8)

Bj(y) = max

{

0, 1 −
max{0, |y − cj| − sj}

dj

}

, (3.9)

with cj ∈ R being the central point and dj > 0 the scaling parameter.
The meaning of parameters is best demonstrated on graphs of member-

ship functions presented in Figs. 3.1 and 3.2.

Figure 3.1: An example of Gaussian radial fuzzy sets; (a) an antecedent fuzzy
set; (b) a consequent trapezoidal fuzzy set.

Figure 3.2: An example of triangular radial fuzzy sets; (a) an antecedent
fuzzy set; (b) a consequent trapezoidal fuzzy set.
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3.1.3 Radial implicative fuzzy systems

Radial implicative fuzzy systems are created by the fusion of introduced con-
cepts of implicative and radial fuzzy systems. The combination is not totally
free, but it has a certain structure which gives the birth to the effectiveness
of the related computational model.

Let us start with the well known example of combination of Gaussian
fuzzy sets by the product t-norm. As it is well known, we again get a Gaussian
fuzzy set, but defined on a multi-dimensional space. In other words, by the
specific t-norm combination we move from one-dimensional spaces to a multi-
dimensional one, but the shape of the set is preserved. This fact substantially
simplifies a subsequent mathematical analysis.

The idea of the shape-preservation lies behind the study of conditions
under which the combination of one-dimensional fuzzy sets by a given t-norm
is invariant with respect to a general act function. Formally, for a given
t-norm ⋆, what the shape act of a radial fuzzy set is allowed in order to the
following functional equation hold (for the case of the j-th rule):

act

(

|xi − aji|

bj1

)

⋆ · · · ⋆ act

(

|xn − ajn|

bjn

)

= act(||x − aj||bj
), (3.10)

where || · ||bj
is an scaled ℓp norm defined by formula (3.5)?

The answer to this question is given by the following theorem proved
in [2].

Theorem 1. Let the t-norm ⋆, which is used to represent IF-THEN rules of
a fuzzy system, be continuous Archimedean. Then the radial property (3.10)
holds if and only if the act function has form act(z) = t(−1)(qzp), where t(−1)

is the pseudo-inverse of the additive generator of t-norm ⋆ and q > 0, p ≥ 1
are parameters.

The theorem tell us how to combine the shape of a radial fuzzy set (in fact
how to choose the act function) and the corresponding t-norm. We easily find
that Gaussian radial functions corresponds to the product t-norm, with the
pseudo-inverse [12] of the generator written as t(−1) = exp(−z), and choosing
p = 2, q = 1. For triangular fuzzy sets the Łukasiewicz t-norm fits, with the
pseudo-inverse written as t(−1) = max{0, 1 − z} and choosing p = q = 1.

In applications, the employment of the minimum t-norm is quite common.
The minimum t-norm is not Archimedean so the above theorem does not
apply in this case, but we have the radial property still retained as it is
shown in the following theorem proved in [1].
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Theorem 2. Let an I-FS consisting of m rules be specified as follows:

1) The employed t-norm is the minimum t-norm.

2) The act function is any non-increasing function from [0, +∞) to [0, 1].

3) Fuzzy sets forming antecedents are radial, i.e., they are constituted as
Aji(xi) = act(|xi − aji|/bji).

Then the I-FS is radial.

The proof of the theorem is based on the fact that as the act function is
non-increasing, we have for any ui ∈ [0, +∞),

min{act(u1), . . . , act(un)} = act(max{u1, . . . , un}). (3.11)

Therefore, if we employ the minimum t-norm for an I-FS specification, then
we obtain its antecedents in form

Aj(x) = min
i

{

act

(

|xi − aji|

bji

)}

= act

(

max
i

{

|xi − aji|

bji

})

. (3.12)

Since bji > 0 for every j and i, employing the scaled cubic norm ||u||Cb
=

maxi{|ui/bi|}, u ∈ Rn, the above can be written as Aj(x) = act( ||x −
aj||Cbj

), which validates the radial property.

On the basis of this theorem we can see that by employing the minimum
t-norm for an I-FS specification, we can assure the validity of the radial
property by a suitable, but a very non-restrictive choice of an act function.

3.1.4 Computational model

The representation of individual rules and composition of rules in implicative
and radial fuzzy systems have been presented in Sections 3.1.1 and 3.1.2. Here
we are going to present the computational model of radial I-FSs in details.
In order to do this we will review residuated fuzzy implications and their
properties.

The residuated fuzzy implications are generalization of the Boolean im-
plication with evaluation extended to the unit interval [8, 13]. Formally,
they are operations on the unit square, i.e., x → y : [0, 1]2 → [0, 1], that are
derived from corresponding t-norms by the operation of residuation {(x →
y) = sup{z | z ⋆ x ≤ y}. In this form, the residuated implications together
with the corresponding t-norms (generalizations of the Boolean conjunction)
form the basis of the fuzzy logic in the narrow sense [8].

The most prominent examples of residuated implications are those derived
from the product and the minimum t-norms. They are called the Goguen →P
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and Gödel →M fuzzy implications, respectively, and they are specified by the
following explicit formulas

(x →P y) = 1 for x ≤ y; (x →P y) = y/x for x > y,

(x →M y) = 1 for x ≤ y; (x →M y) = for x > y.

An important fact here is that if x ≤ y, then both implication are eval-
uated by 1, i.e., they are true in the degree one. This is the property of all
residuated implications as it can be verified by the inspection of the resid-
uation formula taking into account the boundary condition 1 ⋆ z = z and
monotonicity of t-norms.

Let x
∗ ∈ Rn be an input to the radial I-FS. The singleton fuzzification to-

gether with the application of compositional rule of inference [5, 13] produces
the system’s output fuzzy set in the form of

B(y) = RB(x∗, y) = maxm
j=1{Aj(x

∗) → Bj(y)}. (3.13)

This output fuzzy sets is composed from m modified consequents fuzzy
sets Bj(y), namely from the sets B∗

j (y) = Aj(x
∗) → Bj(y). If we are search-

ing for the kernel of B(y), i.e., for those ys for which B(y) = 1, then, due to
the combination by maximum, we find that these are the ys which lie in the
intersection of kernels of B∗

j (y). For the elements (outputs) in this intersec-
tion we have - under the knowledge stored in the rule base of the system -
the perfect, in degree 1, compatibility with the presented input x

∗.
Let us now search for compatible ys for the j-th rule. From the properties

of residuated implications we have the evaluation 1 iff Aj(x
∗) ≤ Bj(y). In

a radial I-FS, due to the radial property, the shape of the antecedent Aj(x)
is the same as the shape of the consequent Bj and due to the monotonic
character of act function we obtain the explicit solution of Aj(x

∗) ≤ Bj(y)
inequality in the form of interval

Ij(x
∗) = [cj − dj||x

∗ − aj||bj
− sj, cj + dj||x

∗ − aj||bj
+ sj]. (3.14)

That is, for y ∈ Ij(x
∗) we have Aj(x

∗) ≤ Bj(y) and consequently B∗
j (y) = 1.

The derivation of this result is presented in [1].
Denoting the left and the right limit point of Ij(x

∗) by L(Ij(x
∗)) and

R(Ij(x
∗)), respectively, we obtain the intersection of Ij(x

∗) intervals explic-
itly expressed as interval

I(x∗) =
m
⋂

j=1

Ij(x
∗) = [maxj{L(Ij(x

∗))}, minj{R(Ij(x
∗))}], (3.15)

under the condition maxj{L(Ij(x
∗))} ≤ minj{R(Ij(x

∗))}, otherwise we have
I(x∗) = ∅.

21



If I(x∗) 6= ∅, we have for y ∈ I(x∗) the degree-1 compatibility with the
input x

∗ ∈ Rn and all those ys are good candidates for a single-point output
of the system. The most prominent choice for this output is the middle
point of I(x∗) interval, which corresponds to the application of the mean-of-
maxima (MOM) defuzzification method [13, 17]. Under the MOM method
we identify the single-point output y∗ ∈ I(x∗) as

y∗ =
L(I(x∗)) + R(I(x∗))

2
. (3.16)

The question for when the interval I(x∗) (actually the kernel of B(y) set
in (3.13)) is non-empty for all possible inputs x

∗ ∈ Rn is the question for the
coherence of the system [3, 6]. That is, we would like to be assured that for
all possible inputs to the system there is at least one perfectly compatible
output. This turns out to the requirement that for any possible input the
rules composing the rule base of the system are non-contradictory.

3.1.5 Coherence

As stated, the question of coherence is the question for the non-contradicto-
riness of rules in the rule base. More specifically, we say that a fuzzy system
is incoherent if there exists an input x

∗ ⊆ Rn to the system such that
the output fuzzy set is not normal, i.e., for any y in the output space the
membership degree to B∗(y) is strictly less than 1. An example of incoherent
computation is presented in Fig. 3.3.

Testing for coherence is generally a difficult problem because we actually
have to test the character of the output fuzzy set for all possible inputs
x ∈ Rn to the system. However, in the case of radial I-FSs, due to their
computational model, it can be shown that 1) the testing can be reduced to
tests on pairs of rules and 2) a sufficient condition can be stated on the basis
of checking the intersection of output intervals Ij(x

∗). The relevant theorem
presented in [3] reads as follows:

Theorem 3. Let a radial I-FS consist of m rules. Let αj = 1/ maxi{bji},
αk = 1/ maxi{bki} for = 1, . . . , m. If for any pair of rules j, k ∈ {1, . . . , m}
the following holds:

|cj − ck| − (sj + sk) ≤ min{djαj, dkαk} · ||aj − ak||, (3.17)

then the radial I-FS is coherent.

In words, the theorem says that a sufficient condition to a radial I-FS
be coherent is that the difference between the central points of consequent
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Figure 3.3: An example of incoherent rules in a radial implicative fuzzy
system. In the picture, there are presented kernels I1(x

∗) and I2(x
∗) of

output fuzzy sets for input x
∗ = (2, 7).

fuzzy sets is less than the difference between the central points of antecedent
fuzzy sets. The antecedent fuzzy sets’ width parameters are incorporated
into the alpha constants, and this must hold for each pair of rules in the rule
base. An intuitive meaning of the incoherence is that rules having similar
preconditions state contrary conclusions [5], and this is impossible to happen
under the validity of (3.17) inequalities.

3.1.6 Examples of radial I-FSs

Here we introduce two main important examples of radial implicative fuzzy
systems. These are the Gaussian and Mamdani radial I-FSs. We introduce
these systems only briefly here, for more details see [1].

23



Gaussian radial I-FS

The Gaussian radial I-FS is determined by the product t-norm and the corre-
sponding Goguen residuated implication (if x ≤ y, then x →P y = 1; if x > y,
then x →P y = y/x). The act function is derived from the pseudo-inverse of
the additive generator of the product t-norm according to Theorem 1 using
parameters p = 2 and q = 1. That is, act(z) = exp(−z2). In order to the
system be radial, the employed fuzzy sets are selected to be Gaussians. The
membership functions are specified by (3.6) for antecedents and by (3.8) for
consequents fuzzy sets. The scaled ℓp norm occuring on the right hand side
of the radial property definition formula (3.10) is the scaled Euclidean norm,
i.e., ||u||b = (

∑

i(ui/bi)
2)1/2.

The computational model is given by formulas (3.14), (3.15) and (3.16),
determining the output intervals Ij(x

∗) from individual rules, their intersec-
tion I(x∗) and the final output y∗ from the system, under the assumption
that the system is coherent, i.e., that I(x∗) 6= ∅.

Mamdani radial I-FS

The Mamdani radial I-FS is determined by the minimum t-norm, the Gödel
residuated implication (if x ≤ y, then x →M y = 1, x →M y = y otherwise)
and the act function given as act(z) = max{0, 1 − z}. The employed fuzzy
sets are these of (3.7) and (3.9). That is, the triangular ones for antecedents
and their trapezoidal versions for consequents.

Such an implicative fuzzy system is radial. The norm on the right hand
side of (3.10) is the cubic norm ||u||Cb

= maxi{|ui|/bi}. This norm is the
limit case of the scaled ℓp norms for p → ∞. The radial property (3.10) then
writes as min{Aj1(x1), . . . , Ajn(xn)} = max{0, 1 − ||x − aj||Cbj

}.

Because the support of triangular fuzzy sets is not the whole real line, it
may happen that for a given input x

∗ ∈ Rn the membership degree to an
antecedent of a rule is zero, i.e., Aj(x

∗) = 0. In this case, the output interval
of (3.14) is Ij(x) = (−∞, +∞) due to the fact that 0 →G Bj(y) = 1 for any
y ∈ R. In real implementations we set Ij(x) = [−BigNumber, +BigNumber].
Where BigNumber > 0 is a selected constant, e.g., we use BigNumber=106

in our MATLAB implementation, see Section 3.3.
If the intersection of individual rules is non-empty, i.e., if the system

is coherent, then the output from the Mamdani system is determined by
(3.16). Theoretically, it again may happen that I(x) = (−∞, +∞) (all rules
are non-informative). In this case we set by definition that the output is
zero. Practically, using the BigNumber approximation, we obtain the same
result, i.e., that y∗ = 0.
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3.2 S-shaped radial implicative fuzzy systems

In this section we introduce an enhancement of the class of radial implicative
fuzzy systems. The enhancement is made by allowing not only purely radial
fuzzy sets to be presented in the rules of the system, but also their S-shaped
versions. The reason for the enhancement is that S-shaped fuzzy sets are
commonly used in applications.

3.2.1 S-shaped radial fuzzy sets

S-shaped radial fuzzy sets can be described in words as half-split radial fuzzy
sets composed of a radial part and the constant degree-1 part. In our ap-
proach these sets are derived from an original radial function taking into
account the sign of the difference from the central point. In what follows
we will consider the one-dimensional case. If the difference is positive, then
an S-shaped fuzzy set looks like the original radial one. If the difference is
negative, then the distance is cut to zero, which turns out into the overall
S-shape of the set. In fact, this gives what we call the right S-shaped fuzzy
set (the degree-1 constant part is on the right, radial part is on the left and
the graph of the membership function looks like the proper (right oriented)
letter S).

If we reduce the positive difference to zero and apply an act function on
the negative distance turned to the positive one, we obtain the left S-shaped
fuzzy set (the degree-1 constant part is on the left, the radial part on the
right, and the membership function looks like the Z letter (the left-mirrored
S letter)).

The counterpart of one-dimensional formula (3.4) reads as

act

(

max{0, x − a}

b

)

and act

(

max{0, a − x}

b

)

, (3.18)

where the first formula corresponds to the left S-shaped set and the other to
the right S-shaped set.

Turning out to our examples of Gaussian and triangular radial fuzzy sets,
we get the following formulas (first in the left version and the other in the
right version)

Aji(xi) = exp

[

−
max{0, xi − aji}

2

b2
ji

]

, (3.19)

Aji(xi) = max

{

0, 1 −
max{0, aji − xi}

bji

}

. (3.20)
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Figure 3.4: An example of S-shaped radial fuzzy sets; (a) a Gaussian left
S-shaped fuzzy set (the Z letter); (b) a triangular right S-shaped fuzzy set
(the S letter).

Here we do not consider the trapezoidal versions because they are actu-
ally incorporated. Figures again clear the concept. In Fig. 3.4. there are
delimited radial parts rad(Aji) of S-shaped fuzzy sets.

3.2.2 Radial property and S-shaped fuzzy sets

The notion of a radial fuzzy set relies on the notion of the scaled ℓp norm.
The radial property then represents the fact of the shape preservation in the
representation of antecedents of IF-THEN rules. In order to set up the radial
property for S-radial fuzzy sets we extend the scaled ℓp norms to the scaled
ℓp S-norms.

Let b = (b1, . . . , bn), bi > 0 be a vector of scaling parameters. Let
the symbol u(+−) denote either positive u+ = max{0, u} or negative u− =
max{0, −u} part of u ∈ R, or its absolute value |u|. By the scaled ℓp S-norm
of u ∈ Rn we denote every expression of form

||u||sb =





∑

i

|u(+−)
i |p

bp
i





1/p

, (3.21)

with parameter p ≥ 1. In (3.21), the meaning of u
(+−)
i is fixed in each

dimension, i.e., it is fixed whether u
(+−)
i means the positive or the negative

part, or the absolute value for each i = 1, . . . , n.
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The scaled ℓp S-norm ||u||sb satisfies the following properties:

1) ||u||sb ≥ 0, ||u||sb = 0 not only for x = 0,
2) ||cu||sb = c · ||u||sb for c ≥ 0,
3) ||u||sb + ||v||sb ≥ ||u + v||sb .

We show only the third property, i.e., the triangle inequality. Let ||u||b be
the scaled norm defined by (3.5). Let (u)s be u modified by the application

of corresponding functions u
(+−)
i of (3.21) on individual coordinates ui of u.

We have ||u||sb = ||(u)s||b. That is, the scaled ℓp S-norm || · ||sb is represented
using || · ||b norm. The triangular inequality for || · ||b gives ||u||sb + ||v||sb =
||(u)s||b + ||(v)s||b ≥ ||(u)s + (v)s||b ≥ ||(u + v)s||b = ||u + v||sb. The last
inequality is due to the fact that for all u, v ∈ R we have u+ +v+ ≥ (u+v)+.
Also u− + v− ≥ (u + v)−.

On the basis of the above properties we see that || · ||sb is not a norm nor
a semi-norm (the second property holds only for non-negative scalars), but
it retains the triangular inequality. Hence it has very similar properties to
the standard norm and we use it for the specification of the radial property
for S-shaped radial fuzzy sets.

In fact, we only extend the radial property specification formula (3.10) in
such a way that it admits also S-shaped radial fuzzy sets to be present. The
counterpart of (3.10) writes

act

(

(xi − aji)
(+−)

bj1

)

⋆ · · · ⋆ act

(

(xn − ajn)(+−)

bjn

)

= act(||x − aj||sbj
). (3.22)

If (3.22) holds, then we say that the j-th rule satisfies the radial property. If
it holds for all rules j = 1, . . . , m in a rule base, then we say that the fuzzy
system is radial.

To present an example of an S-shaped radial rule, let us consider the rule
with one left S-shaped, one purely radial and one right S-shaped set in the
antecedent. The radial property then writes as

act

(

max{0, x1 − a1}

b1

)

⋆ act

(

|x2 − a2|

b2

)

⋆

⋆ act

(

max{0, a3 − x3}

b3

)

= act(||x − a||sb), (3.23)

where for some p ≥ 1,

||x − a||psb
=

[(x1 − a1)
+]p

bp
1

+
|x2 − a2|

p

bp
2

+
[(x3 − a3)

−]p

bp
3

. (3.24)
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Inspecting the proof of the triangle inequality for || · ||sb, namely the
|| · ||sb = ||( · )s||b identity, we can see that if the standard radial property
(3.10) holds for a scaled ℓp norm || · ||b, then (3.22) holds for || · ||sb, assuming
that parameters p and b coincide.

Conversely, let (3.22) hold for a given scaled ℓp S-norm || · ||sb, then also
(3.10) holds for the coinciding ℓp norm ||·||b. Indeed, assume that there exists
an x

∗ such that (3.10) does not hold for || · ||b, then there exists the vector
u

∗ = (u∗
1, . . . , u∗

n), u∗
i ≥ 0, such that act(u∗

1/b1)⋆· · ·⋆act(u∗
n/bn) 6= act(||u∗||b).

Namely, u∗
i = |x∗

ji − aji|, i = 1, . . . , n. Now, whatever the value of u
∗ is, we

can always choose x
0 = (x0

1, . . . , x0
n) such that u∗

i = u∗
i (x

0
i ) = (x0

i − ai)
(+−),

where the meaning of (+−) is determined by || · ||sb in each dimension. But,
for this x

0, we get that act(u∗
1(x

0
i )/b1) ⋆ · · · ⋆ act(u∗

n(xn)/bn) 6= act(||u∗||sb),
which contradicts the assumption on the validity of (3.22) for all x ∈ Rn.

3.2.3 Multi-dimensional S-shaped radial fuzzy sets

The previous section presents the description of one-dimensional S-shaped
radial fuzzy sets. The section also show us the direction how to describe
multi-dimensional versions of these sets. In fact, they correspond to the
application of some act function on a scaled ℓp S-norm presented above.

Let us consider examples in R2. If we have two purely radial fuzzy sets,
then their combination under the radial property brings a two-dimensional
radial fuzzy set. For S-shaped radial fuzzy sets, let us present the following
two examples of Gaussian fuzzy sets.

In the first example, we have the fuzzy set determined by two S-shaped

sets given as Aj1(x1) = exp
[

−max{0,2−x1}2

15

]

and Aj2(x2) = exp
[

−max{0,1−x2}2

5

]

.
The product combination gives

Aj1 · Aj2 = exp

[

−

(

[(x1 − 2)−]2

15
+

[(x2 − 1)−]2

5

)]

= exp[ −||(x1 − 2)−, (x2 − 1)−||2
(
√

15,
√

5)
]. (3.25)

If only one of the sets is S-shaped and the other is purely radial, e.g.,

Aj1(x1) = exp
[

− |x1−2|2
15

]

(purely radial) and Aj2(x2) = exp
[

−max{0,2−x2}2

5

]

(S-shaped), we obtain by product

Aj1 · Aj2 = exp

[

−

(

|x1 − 2|2

15
+

[(x2 − 2)−]2

5

)]

= exp[ −|| |x1 − 2|, (x2 − 2)− ||2
(
√

15,
√

5)
]. (3.26)

Graphically, both sets are presented in Fig. 3.5.
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Figure 3.5: An example of two-dimensional S-shaped radial fuzzy sets; (a)
a combination of two S-shaped radial fuzzy sets; (b) a combination of one
purely radial and one S-shaped radial fuzzy set.

3.2.4 S-shaped radial implicative fuzzy systems

The S-shaped radial implicative fuzzy systems form an extension of purely
radial I-FSs which admits an employment of S-shaped radial fuzzy sets in
the antecedents of IF-THEN rules.

As we have seen, concerning the radial property when combining one-
dimensional fuzzy sets, the only difference with respect to the purely radial
systems is the change from the scaled ℓp norms to the scaled ℓp S-norms.

The other aspects of composition of rules in S-shaped radial I-FSs remain
the same. That is, we have in antecedents purely radial or S-shaped radial
fuzzy sets (in the left or the right version). These are combined by the
appropriate t-norm with respect to the shape function act so that the shape-
preservation radial property (3.22) holds.

Consequents of rules are set up by trapezoidal versions of purely radial
fuzzy sets using the given act function.

The combination of IF and THEN parts is performed by an appropriate
residuated fuzzy implication to obtain Rj(x, y) relation. The rule base rela-
tion RB(x, y) is determined by formula (3.3) and we assume that the radial
property (3.22) holds for all rules j = 1, . . . , m, m ∈ N forming the rule
base.

3.2.5 Computational model

Concerning the computational model of S-shaped radial implicative fuzzy
systems, the situation is very similar to the purely radial systems introduced
in Section 3.1.4. Again, the only difference is that the scaled ℓp norms are
replaced by the scaled ℓp S-norms. The formula for the j-th output interval
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has then form

Ij(x
∗) = [cj − dj||x

∗ − aj||sbj
− sj, cj + dj||x

∗ − aj||sbj
+ sj]. (3.27)

The corresponding intersection over all rules writes as

Is(x
∗) =

⋂

j
Ij(x

∗) = [maxj{L(Ij(x
∗))}, minj{R(Ij(x

∗))}]. (3.28)

If Is(x
∗) 6= ∅, then the MOM defuzzifiaction gives the output in the same

way as for a purely radial system, i.e.,

y∗
s =

L(Is(x
∗)) + R(Is(x

∗))

2
. (3.29)

However, conditions on coherence of S-shaped radial implicative fuzzy
systems differ from those for the purely radial ones.

3.2.6 Coherence

The statement of the coherence question for S-shaped radial systems is the
same as for the radial ones. We say that an S-shaped radial system is coherent
if for any input x

∗ ∈ Rn the output interval Is(x
∗) of (3.28) is non-empty,

i.e., Is(x
∗) 6= ∅. The sufficient condition for coherence of S-radial I-FSs was

presented in [4]. It reads as follows:

Theorem 4. Let an S-shaped radial I-FS consists of m rules. Let for a pair
of rules j, k, ADjk ⊆ {1, . . . , n} be the set of those dimensions i for which
Aji(aki) < 1 and Aki(aji) < 1 hold simultaneously - the set of admissible
dimensions. Let ||aj − ak||ADjk

be the related unscaled ℓp norm taken over
admissible dimensions. If ADjk = ∅, then we set ||aj − ak||∅ = 0. If for each
pair of rules j, k ∈ {1, . . . , m} the following holds

|cj − ck| − (sj + sk) ≤ min{djαj, dkαk} · ||aj − ak||ADjk
, (3.30)

where αj = 1/ maxi∈ADjk
{bji}, αk = 1/ maxi∈ADjk

{bki}, then the S-shaped
radial I-FS is coherent.

Let us comment on the theorem, especially on its difference from The-
orem 3. First of all, since ADjk is a subset of {1, . . . , n}, we have for any
unscaled ℓp norm ||aj − ak||ADjk

≤ ||aj − ak||. That is, if an S-shaped radial
I-FS is coherent then turning out its S-fuzzy sets into their proper radial ver-
sions we get the coherent (purely) radial I-FS. That is, the condition (3.30)
is stronger than the condition (3.17), i.e., it is harder to be satisfied.

This result is understandable, in view of the fact that S-shaped radial
fuzzy systems constitute the broader class of implicative systems than is the
class of the purely radial systems.
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3.2.7 Examples of S-shaped radial I-FSs

The description of the S-shaped counterparts of the Gaussian and the Mam-
dani radial implicative fuzzy systems is straightforward. The S-shaped ver-
sions differ only in the specification of antecedents fuzzy sets which can be
now also S-shaped. Namely, the fuzzy sets with membership functions of
(3.19) in the Gaussian case or (3.20) in the Mamdani case (or their respec-
tive right and left versions) are now allowed to be involved in the specification
of antecedents of rules of the system.

The computational models are identical to the models for radial systems
including the note on using the BigNumber approximation in the case of the
Mamdani system.

3.3 MATLAB implementations

In this section we present the software implementations of the introduced
S-shaped radial implicative fuzzy systems. Namely, we present four scripts.
These implement the computation of the Gaussian and Mamdani systems,
the coherence check and computation of the scaled ℓp norm. The scripts were
implemented in the language of the MATLAB computational environment.
For details about this environment see http://www.mathworks.com.

3.3.1 lpbnorm.m

lpbnorm.m computes the scaled ℓp norms of a group of column vectors. The
script is called

[nU]=lpbnorm(U,B,p).

Inputs:

• U - is the (n, N) matrix consisting of column vectors for which the
scaled ℓp norm are computed, e.g., for xk ∈ Rn, k = 1, . . . , N we have
U = [xT

1 , . . . , x
T
N ].

• B - is the matrix of the same type as U containing scaling vectors. They
are stored as column vectors, e.g., for bk ∈ Rn, k = 1, . . . , N we have
B = [bT

1 , . . . , b
T
N ].

• p - is the scalar which determines the value of parameter p of used ℓp

norm, i.e., p ∈ [1, +∞]. The cubic norm is computed for p = ∞.
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Output:

• nU - is the (1, N) row vector consisting of scaled ℓp norms of vectors of
X, i.e., X = [ ||x1||b1

, . . . , ||xN ||bN
] for k = 1, . . . , N .

Source code: Section A.1.

3.3.2 sgauss.m

The sgauss.m script implements the computation of the Gaussian S-shaped
radial I-FS. The script checks the coherence using the scohcheck.m script
which is presented below. If the system is not assured to be coherent, then
an error message is released and the script is terminated, otherwise the com-
putation is performed following the introduced computational model. The
interface of the script is

[L,R,Y]=sgauss(A,s,B,C,D,S,X).

Inputs:

• A,B,C,D,S - are matrices of parameters of the Gaussian S-shaped ra-
dial I-FS. Having the system consisting of m rules and its input space
corresponding to Rn, the composition of the matrices is the follow-
ing: A is the (n, m) matrix containing in columns the transposed vec-
tors aj, i.e., A = [aT

1 , . . . , a
T
m]. Similarly, B is the (n, m) matrix of

form B = [bT
1 , . . . , b

T
m]. The parameters cj, dj, sj are stored in the row

vectors C,D,S, C = [c1, . . . , cm], D = [d1, . . . , dm], S = [s1, . . . , sm].

• s - is the (n, m) matrix of elements from the set {−1, 0, 1}. Each
column corresponds to an individual rule. In the j-th column and the
i-th row, the number indicates the representation of u

(+−)
i symbol in

the antecedent of the j-th rule: -1 represents the negative part, 0 the
absolute value and 1 the positive part.

• X - is the (n, N) matrix consisting of transposed inputs to the Gaussian
S-shaped radial I-FS, i.e., X = [xT

1 , . . . , x
T
N ].

Outputs:

• L,R - are both (1, N) vectors of the left and right limit points of output
interval Is(x

∗
k) which is determined according to intersection (3.28) for

k = 1, . . . , N .

• Y - is the (1, N) vector specified as Y=0.5*(L+R). It actually corresponds
to the values of y∗(xk) for k = 1, . . . , N .

Source code: Section A.2.
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3.3.3 smamd.m

The script is the analogy of the sgauss.m script for the Mamdani S-shaped
radial I-FS. Again, the script checks the system for coherence employing
scohcheck.m. If the system is not assured to be coherent, then an error
message is released and the script is terminated, otherwise it performs com-
putation according to the related computational model. The interface of the
script is

[L,R,Y]=smamd(A,s,B,C,D,S,X).

Inputs:

• A,s,B,C,D,S,X - are the same as above for sgauss.m.

Outputs:

• L,R,Y - are the same as above but determined by the computational
model of the Mamdani S-shaped radial I-FS.

Source code: Section A.3

3.3.4 scohcheck.m

This script performs the coherence checking algorithm for the Gaussian and
Mamdani S-shaped radial I-FSs. Inputs into the script are parameters of the
systems and the output is the Boolean parameter specifying if the system is
coherent or possibly incoherent. The script is called

[STATUS]=scohcheck(A,s,B,C,D,S,p).

Inputs:

• A,s,B,C,D,S - are the parameters of respective S-shaped radial I-FS.

• p - is the parameter determining the scaled ℓp norm. Two values are
allowed: p=2 delimiting the Gaussian system or p=Inf delimiting the
Mamdani S-shaped radial I-FS.

Outputs:

• STATUS - is a Boolean scalar. If STATUS=1, then the respective S-
shaped radial I-FS is coherent. If STATUS=0, then the system is possibly
incoherent (the sufficient condition).

Source code: Section A.4.
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Chapter 4

Experiments

4.1 Traditional models

The modelling was based on determining several critical episodes in the runoff
historical data by experts. The same data sets were used in all of our experi-
ments. First we present results obtained by traditional Kinfill model showing
rather good performance on the episodes (cf. figures 4.1 and 4.2). It should
be noted that for this model a rather detailed additional information about
the physical reality of the catchment is needed, while our approaches deal
with the time series of runoff and precipitation values.

4.2 Neuro-evolutionary models

Neuro-evolutionary modelling utilized one-layer perceptron networks and
local-unit networks trained by the meta-learning procedure described ear-
lier. The results show that it is relatively easy to obtain better results on
individual episodes in comparison to the Kinfill model (cf. fig 4.2).

The main problem seems to be able to predict when the model of individ-
ual episodes starts to over-train. This will not only decrease the modelling
time but also should improve the generalization capabilities. This behavior
is demonstrated on the third graph of the fig 4.2, where a model trained on
episode 5 is applied to episode 1 data with much worse results. The bal-
lance between generalization capability and over-training seems to be the
important factor for proper training in this case.
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Figure 4.1: Results by the Kinfill model.
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Figure 4.2: Results by the Kinfill model.
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Figure 4.3: Results by the neuro-evolutionary model.
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4.3 Fuzzy models

Here we present the results of fuzzy modelling of hydrological environmental
data. The data consists of the 6 flood wave episodes on small river Smědá
located in Jizera Mountains in Bohemia.

Each episode consists of hourly record of current rainfall called ’excess-
Rain’ (eR) and current flow denoted ’dischargeObs’ (dO). The task is to
predict this actuall flow on the basis of past information, that is on the past
values of ’ExcessRain’ and past values of ’DischargeObs’. An Example of
data is presented in Tab. 4.1.

no. eR-2 eR-1 ∆eR-12 dO-1 dO-2 ∆dO-12 dischargeObs

1. 0.01 0.08 0.07 0.481 0.511 0.030 0.572
2. 0.08 0.07 -0.01 0.511 0.572 0.061 0.691
3. 0.07 0.19 0.12 0.572 0.691 0.119 0.755
4. 0.19 0.27 0.08 0.691 0.755 0.064 0.876
...

...
...

...
...

...
...

...

Table 4.1: An excerpt from flood waves data.

The columns presented in the table have the following meaning: eR-2
is the value of ’excessRain’ variable prior two hours; eR-1 is the value of
’excessRain’ variable prior one hour. ∆eR-12 is the difference of eR-1 and
eR-2. Similarly for dO-1, dO-2 and ∆dO-12. The last column contains the
values of the actual flow which is to be predicted on the basis of values in
other columns.

The distribution of data over individual episodes is summarized in Ta-
ble 4.2. Graphically, the episodes are presented in Fig. 4.4.

episode 1 2 3 4 5 6
#data (154) 41 13 28 23 38 11

Table 4.2: The data distribution into individual episodes.

In order to build up a predictive fuzzy inference system we have employed
the introduced Gaussian and Mamdani S-shaped radial I-FSs. Practically,
the developed MATLAB sripts have been used to perform the related com-
putations. In both cases, 5 rules were identified as providing the good level
of prediction ability with simplicity retained. The obtained results are pre-
sented in the following sections.
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4.4 Gaussian and Mamdani fuzzy systems

In the first group of experiments, we employed the Gaussian system with
6 inputs (eR-1, eR-2, ∆eR-12, dO-1, dO-2 and ∆dO-12). For each of the
flood episodes we built up the fuzzy system with a different number of rules
m = 2, 3, 4, 5, 6, 7, 8, 9. Predicted values of the flow were compared with the
observed values, and the mean squared error (MSE) was computed according
to formula 1

n

∑

(dOpredicted − dOobserved)2, where n is the number of hours
constituting the episode.

MSE - G/episode 1 2 3 4 5 6
2-MSE (82.59) 2.37 2.76 4.17 7.27 322.89 2.93
3-MSE (20.23) 2.47 2.33 4.98 7.13 68.78 6.17
4-MSE (52.67) 0.17 0.31 0.38 0.71 211.68 2.72
5-MSE (17.48) 0.84 0.18 0.66 5.80 64.63 4.30
6-MSE (16.95) 0.69 1.11 0.82 2.10 64.39 4.50
7-MSE (15.83) 1.07 2.61 1.70 4.38 55.90 7.92
8-MSE (19.22) 0.73 0.55 0.94 2.72 73.35 4.25
9-MSE (20.03) 2.72 2.30 6.53 9.27 65.17 6.41

Table 4.3: The MSE for the Gaussian fuzzy system.

In Table 4.3, there are presented the obtained results for the Gaussian
system. Each row of the table corresponds to the particular number of rules
m = 2, . . . , 9. In the first column, in brackets, there is presented the cumula-
tive MSE over all episodes. In the other columns, the MSE for each particular
episode is displayed. In each column, the lowest value is underlined.

MSE - M/episode 1 2 3 4 5 6
2-MSE (212.51) 2.61 2.37 2.96 5.86 849.71 7.50
3-MSE (35.70) 1.41 1.51 1.87 4.21 136.90 6.33
4-MSE (109.86) 0.58 0.32 6.36 10.85 427.99 18.09
5-MSE (17.05) 1.13 1.34 0.92 4.24 63.07 3.82
6-MSE (24.85) 0.81 0.92 1.32 4.91 93.36 7.61
7-MSE (55.11) 0.82 0.90 1.38 3.72 217.59 4.51
8-MSE (52.23) 0.99 0.89 1.19 3.44 205.84 5.14
9-MSE (27.40) 0.88 0.87 1.56 5.74 103.37 6.15

Table 4.4: The MSE for the Mamdani fuzzy system.
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The same group of experiments was performed with the Mamdani fuzzy
system. The results are presented in Table 4.4.

By the inspection of two tables, we see that the Gaussian system performs
better in terms of the MSE error and we can choose m = 5 as to be the
suitable number of rules constituting the system.
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Figure 4.4: Flood waves episodes. The dashed line - real flow. The solid line
- the output of the Gaussian system with 5 rules.
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Fig. 4.4 shows that the fuzzy modelling has good description capabilities.
Concerning the prediction capabilities, the above results bear the drawback
that the flow data of each episode were used for establishing the fuzzy sys-
tem. That is, in the language of machine learning, the testing data were
incorporated into the training data. This is inappropriate when testing the
predictive capabilities and some type of cross-validation should be further
considered and explored.

4.5 Cross-validation

The idea of cross-validation is as follows. First of all we have employed only
the Gaussian system because it has lower MSE than the Mamdani system.
We have 6 periods. In the cross-validation procedure, we have used as train-
ing data all data from all periods except the data from the period which was
used for testing. That is, for example, the data from the 1-st period were
used to test the system learned on the the data from the 2, 3, 4, 5 and the
6-th period. Similarly, the data from the 2-nd period were used for testing
the system learned on data from the 1, 3, 4, 5 and 6-th period. The obtained
results are presented in Table 4.5. All experiments were performed for the
Gaussian system with 5 rules.

Gauss-CrossVal-ep 1 2 3 4 5 6
5-MSE 1.06 0.09 0.83 2.93 770.72 9.46

Kinfill model 1.48 0.88 5.98 2.89 119.20 12.88

Table 4.5: Comparison of fuzzy and traditional models predicitions.

From the table we see that our results are better than those for the Kinfill
model with the exception of the 4-th and 5-th periods. This is good result
as our MSE are based on the cross-validation procedure explained above.
The results from the Kinfill model are from the experiments where no split
to training and unseen testing data was taken. From this point of view the
obtained results are promising. Graphically, the predicted flows for individual
episodes from the Gaussian S-shaped radial I-FS, which was built up on the
basis of unseen data, are presented in Fig. 4.5.

The problem with the 5-th period is clearly seen from the Fig. 4.5. We can
see that information acquired from remaining periods was not sufficient to
detect flood wave in the 5-th period. The reason is that the acceleration of the
wave is much higher in comparison to other periods so if only these are used
in learning, then the system cannot acquire this pattern from training data.
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Figure 4.5: The flood waves episodes predictions using the Gaussian S-shaped
radial I-FS. The dashed line represents the real flow and the solid one the
prediction.

On the other hand, as we have seen when all data are used for learning, the
fuzzy system is capable to accommodate such patterns and fuzzy modelling
represents a suitable alternative to the Kinfill model.
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Chapter 5

Conclusions

We have applied two new methodologies for data mining to a critical infra-
structure data of the flood prediction problem. It has been shown that our
approaches yield competitive results while needing much less input data and
generally less computational time.

Both our approaches require only the time series data and can provide
results within seconds to minutes of training time. Several problems for
further research have been identified. Concerning the neural models, the
main problem seems to be able to predict when the model starts to over-train.
This will not only decrease the modelling time but also should improve the
generalization capabilities.

Concerning fuzzy modelling, we have found that S-shaped radial fuzzy
implicative systems are capable to accommodate the flood waves modelling.
This was shown when all available data were used to built up the fuzzy
system. In the case of the proper predictive design, we have demonstrated
that the fuzzy system provides, on average, better results than the traditional
Kinfill model. The only exception was the identification of the 5-th flood
wave episode on the basis of data from other episodes. The reason for this
inappropriate behavior is that the character of the flood waves in episodes
1-4 and 6 is different from the one in the 5-th episode. Namely, the 5-th
wave accelerates faster with much higher peak than it is the case in the other
episodes. Hence, in order to such the pattern could be predicted, the presence
of this type of pattern is desired in training data.

An advantage of IF-THEN representation of knowledge in a fuzzy system
is that adding new information is easily done by adding new rules into the
rule base. More specifically, let RB1(x, y) be a rule base of a fuzzy system
built up on the basis of data available at time t1. At time t2, when new
data come, let RB2(x, y) be the rule base of the system built up on the
basis of new data. Combination of these systems (two pieces of knowledge)
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is done in a straightforward way according to formula (3.3). That is, the new
rule base is given as RB1(x, y) ∧ RB2(x, y) = min{RB1(x), y), RB2(x), y)},
however, the consistency of the knowledge should be assured. That is, the
coherence check for rules of the combined system must be performed so that
the combined knowledge is non-contradictory.

When fuzzy models are built up only on the basis of past data, i.e., when
no expert knowledge is exploited, then the prediction capabilities are criti-
cally conditioned on information carried by training data. In our concrete
application, the data are sparse with respect to the complexity of various
flood waves profiles, and various profiles in training data are required to
improve the performance of the presented system. In fuzzy models the in-
formation on new flood wave profiles can be added sequentially, as explained
above, and there is the tool how to check the coherence of the combined
knowledge.
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Appendix A

MATLAB source codes

Here we present source codes of MATLAB scripts introduced in Section 3.3.

A.1 lpbnorm.m

1 function [nU]=lpbnorm(U,B,p);

2
3 [n,N]=size(U);

4
5 U=abs(U./B);

6 if n==1,

7 nU=U;

8 elseif (n>1)&(p==Inf),

9 nU=max(U);

10 elseif (n>1)&(p~=Inf),

11 nU=sum(U.^p).^(1/p);

12 else

13 disp(’bad lpb norm parameters’);

14 end;

A.2 sgauss.m

1 function [L,R,Y]=sgauss(A,s,B,C,D,S,X);

2
3 p=2;

4
5 [n,N]=size(X);

6 [n,m]=size(A);

7
8 if m<2, error(’only one rule in the Gaussian SrI-FIS’); end;

9
10
11 %--- coherence check ---
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12
13 [STATUS]=scohcheck(A,s,B,C,D,S,p);

14
15 if STATUS~=1,

16 error(’the Gaussian SrI-FS is possibly incoherent’);

17 end;

18
19
20 %--- computation ---

21
22 nk=zeros(m,N);

23 Aj=zeros(m,N);

24 Lj=zeros(m,N);

25 Rj=zeros(m,N);

26
27 for j=1:m,

28 XA=X-A(:,j)*ones(1,N);

29 for i=1:n,

30 if s(i,j)== 1,XA(i,:)=max(0, XA(i,:)); end;

31 if s(i,j)==-1,XA(i,:)=max(0,-XA(i,:)); end;

32 end;

33 nk(j,:)=lpbnorm(XA,B(:,j)*ones(1,N),p);

34 Aj(j,:)=exp(-nk(j,:).^2);

35 Lj(j,:)=C(j)-D(j)*nk(j,:)-S(j);

36 Rj(j,:)=C(j)+D(j)*nk(j,:)+S(j);

37 end;

38
39 L=max(Lj);

40 R=min(Rj);

41 Y=0.5*(L+R);

42
43 %--- coherence verification ---

44
45 if min(R-L)<0,

46 disp(’incoherent computation of the Gaussian SrI-FS’);

47 end;

A.3 smamd.m

1 function [L,R,Y]=smamd(A,s,B,C,D,S,X);

2
3 p=Inf; Inf_w=10e+6;

4
5 [n,N]=size(X);

6 [n,m]=size(A);

7
8 if m<2, error(’only one rule in the Mamdani SrI-FS’); end;

9
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10
11 %--- coherence check ---

12
13 [STATUS]=scohcheck(A,s,B,C,D,S,p);

14
15 if STATUS~=1,

16 error(’the Mamdani SrI-FS is possibly incoherent’);

17 end;

18
19
20 %--- computation ---

21
22 nk=zeros(m,N);

23 Aj=zeros(m,N);

24 Lj=zeros(m,N);

25 Rj=zeros(m,N);

26
27 for j=1:m,

28 XA=X-A(:,j)*ones(1,N);

29 for i=1:n,

30 if s(i,j)== 1,XA(i,:)=max(0, XA(i,:)); end;

31 if s(i,j)==-1,XA(i,:)=max(0,-XA(i,:)); end;

32 end;

33 nk(j,:)=lpbnorm(XA,B(:,j)*ones(1,N),p);

34 Aj(j,:)=max(0,1-nk(j,:));

35 Lj(j,:)=C(j)-D(j)*nk(j,:)-S(j);

36 Rj(j,:)=C(j)+D(j)*nk(j,:)+S(j);

37 i0=find(Aj(j,:)==0);

38 if any(i0),

39 Lj(j,i0)=-Inf_w*ones(1,length(i0));

40 Rj(j,i0)=+Inf_w*ones(1,length(i0));

41 end;

42 end;

43
44 L=max(Lj);

45 R=min(Rj);

46 Y=0.5*(L+R);

47
48
49 %--- coherence verification ---

50
51 if min(R-L)<0,

52 disp(’incoherent computation of the Mamdani SrI-FS’);

53 end;

A.4 scohcheck.m

1 function [STATUS]=scohcheck(A,s,B,C,D,S,p);
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2
3 % if STATUS=0, then the S-shaped radial I-FS is posibly incoherent

4 % if STATUS=1, then the S-shaped radial I-FS is coherent

5
6 %--- domains check ---

7
8 if min(min(B))<0, error(’some element of B is negative’);

9 elseif min(S)<0, error(’some element of S is negative’);

10 end;

11
12 [n,m]=size(A);

13
14 %--- admissible dimensions ---

15
16 AD=zeros(m,m,n);

17 for j=1:m-1, for k=j+1:m,

18 for i=1:n, if A(i,j)~=A(i,k),

19 if (s(i,j)==0)&&(s(i,k)==0),

20 AD(j,k,i)=1;

21 end;

22 if (s(i,j)==0)&&(s(i,k)==+1),

23 if A(i,j)>A(i,k), AD(j,k,i)=1; end;

24 end;

25 if (s(i,j)==0)&&(s(i,k)==-1),

26 if A(i,j)<A(i,k), AD(j,k,i)=1; end;

27 end;

28 if (s(i,j)==+1)&&(s(i,k)==0),

29 if A(i,k)>A(i,j), AD(j,k,i)=1; end;

30 end;

31 if (s(i,j)==-1)&&(s(i,k)==0),

32 if A(i,k)<A(i,j), AD(j,k,i)=1; end;

33 end;

34 if (s(i,j)==+1)&&(s(i,k)==-1),

35 if A(i,j)<A(i,k), AD(j,k,i)=1; end;

36 end;

37 if (s(i,j)==-1)&&(s(i,k)==+1),

38 if A(i,j)>A(i,k), AD(j,k,i)=1; end;

39 end;

40 end; end;

41 end; end;

42
43
44 %--- S-coherence check ---

45
46 STATUS=1;

47 if m>1,

48 for j=1:m-1, for k=j+1:m,

49 adjk=zeros(n,1);

50 for l=1:n, adjk(l,1)=AD(j,k,l); end;
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51 if max(adjk)==0, RHS=0; end;

52 if max(adjk)>0,

53 njk=lpbnorm(adjk.*(A(:,j)-A(:,k)),ones(n,1),p);

54 alphaj=1/max(adjk.*B(:,j));

55 alphak=1/max(adjk.*B(:,k));

56 RHS=min(alphaj*D(j),alphak*D(k))*njk;

57 end;

58 LHS=abs(C(j)-C(k))-(S(j)+S(k));

59 if LHS>RHS, STATUS=0; end;

60 end; end;

61 end;
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