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1 Introduction

The paper [1], see also the references therein, proposes an adaptive method with a posteriori
stopping criteria for numerical solution of nonlinear partial differential equations of diffusion
type. The main idea in [1] is to distinguish different components of the error, namely the
discretization, the linearization, and the algebraic ones, and to design stopping criteria based on
balancing these error components. The estimates rely on quasi-equilibrated flux reconstructions
and yield a general framework which can be applied to various discretization schemes.

In the present contribution we tightly follow [1] and concentrate specifically on estimating the
algebraic part of the error. We show that, with an additional assumption on the flux reconstruc-
tions, the algebraic error can be bounded using the algebraic a posteriori error estimator. This
justifies the distinction of error components presented in [1]. For simplicity we restrict ourselves
to a linear model problem discretized using the conforming finite element method. We show that
the flux reconstruction given in [1] can be modified such that the newly introduced assumption
is satisfied. We believe that an analogous modification is possible also for other discretization
schemes, as well as for the nonlinear setting considered in [1].

2 Model problem and discrete setting

Let Ω ⊂ Rd, d ≥ 2, be a polygonal (polyhedral) domain. We consider the Poisson model problem:
find u : Ω → R such that

∆u = f in Ω, u = 0 on ∂Ω, (1)

where f : Ω → R is the source term. Assuming f ∈ L2(Ω), the model problem (1) can be casted
into the weak form: find u ∈ V ≡ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ V, (2)

where H1
0 (Ω) denotes the standard Hilbert space of L2(Ω) functions whose weak derivatives are

in L2(Ω) and with trace vanishing on ∂Ω. Owing to (2), the flux −∇u is in the space H(div,Ω)
spanned by the functions in [L2(Ω)]d with weak divergences in L2(Ω).

Let Th be a simplicial mesh of Ω. We suppose that the mesh is conforming in the sense that, for
two distinct elements of Th, their intersection is either an empty set or a common l-dimensional
face, 0 ≤ l ≤ d− 1. We denote a generic element of Th by K and its diameter by hK . We denote
by Pm(K) the space of m-th order polynomial functions on an element K and by Pm(Th) the
broken polynomial space spanned by vh|K ∈ Pm(K) for all K ∈ Th. Let

Vh ≡ H1
0 (Ω) ∩ Pm (Th) =

{
v ∈ H1

0 (Ω) , v|K ∈ Pm(K) ∀K ∈ Th
}

(3)
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be the usual finite element space of continuous, piecewise m-th order polynomial functions,
m ≥ 1. The corresponding discrete formulation of problem (2) reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh . (4)

Let ψj ∈ Vh, j ∈ C ≡ {1, . . . ,dim(Vh)}, denote the usual Lagrange basis of Vh. Employing this
basis in (4) gives rise to the system of linear algebraic equations

AU = F . (5)

At the i-th step, i = 1, 2, . . . , of an iterative solver applied to the algebraic system (5), we obtain
the approximation U

i = [Ui
j ]j∈C to the solution U and the algebraic residual vector R

i = [Ri
j]j∈C

such that
AU

i = F− R
i . (6)

Finally, by uih we denote the approximation to the solution u determined by the coefficient
vector U

i,
uih ≡

∑

j∈C

U
i
jψj . (7)

3 Error measure and a posteriori error estimates for total error
and for the algebraic error

The (total) error between the exact solution u of the weak formulation (2) and the approximate
solution uih ∈ Vh given by (7) is measured as

‖∇(u− uih)‖ = sup
ϕ∈V,‖∇ϕ‖=1

(
∇(u− uih),∇ϕ

)
. (8)

The following assumption is the starting point for a posteriori error estimation proposed in [1].

Assumption 3.1 (Quasi-equilibrated flux reconstructions). There exist vector-valued functions
tih ∈ H(div,Ω), di

h,a
i
h ∈ [L2(Ω)]d, and a scalar-valued function ρih ∈ L2(Ω) such that

1. ∇· tih = fh − ρih ,

2. tih = di
h + aih ,

3. as the linear solver converges, ‖aih‖ → 0 .

Here fh is a piecewise polynomial approximation of the source term f verifying (fh, 1)K = (f, 1)K
for all K ∈ Th.

For any K ∈ Th, the Poincaré inequality states that

‖ϕ− ϕK‖K ≤ CPhK‖∇ϕ‖K ∀ϕ ∈ H1(K) , (9)

where ϕK denotes the mean value of ϕ in K. Since the simplices K are convex, there holds
CP = 1/π ; see, e.g., [2, 3]. The Friedrichs inequality states that

‖ϕ‖ ≤ hΩ‖∇ϕ‖ ∀ϕ ∈ V , (10)
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where hΩ denotes the diameter of the domain Ω. The following theorem is a simple application
of [1, Theorems 3.4 and 3.6] to our model problem. We denote local estimators in the form ηi

2,K ,
where i = 1, 2, . . . stands for the algebraic iteration step and K ∈ Th for the mesh element. The

global versions of these estimators are defined as ηi
2
≡
{∑

K∈Th
(ηi

2,K)2
}1/2

.

Theorem 3.2 (Total error a posteriori estimate distinguishing error components). Let u ∈ V
solve (2), let uih ∈ Vh be given by (7), and let Assumption 3.1 hold. For any K ∈ Th, define
respectively the discretization estimator, the algebraic estimator, the algebraic remainder, and
the data oscillation estimator as

ηidisc,K ≡ ‖∇uih + di
h‖K , (11)

ηialg,K ≡ ‖aih‖K , (12)

ηirem,K ≡ hΩ‖ρ
i
h‖K , (13)

ηiosc,K ≡ CPhK‖f − fh‖K . (14)

Then

‖∇(u− uih)‖ ≤ ηidisc + ηialg + ηirem + ηiosc . (15)

In the adaptive algorithm proposed in [1] the flux reconstruction di
h is constructed using the

approximate algebraic solution U
i given at the i-th step of algebraic iterative solver. Then

one performs ν > 0 additional iteration steps yielding the vector U
i+ν and the corresponding

flux reconstruction di+ν
h . The algebraic error flux reconstruction is defined as aih ≡ di+ν

h − di
h.

The number ν of the additional iteration steps and the convergence of the algebraic solver are
controlled using the (global) criteria

ηirem ≤ γrem max
{
ηidisc, η

i
alg

}
, (16)

ηialg ≤ γalg η
i
disc , (17)

or using the elementwise equivalents

ηirem,K ≤ γrem,K max
{
ηidisc,K , η

i
alg,K

}
, (18)

ηialg,K ≤ γalg,K ηidisc,K , ∀K ∈ Th . (19)

Here γrem, γalg (respectively γrem,K , γalg,K) are the user-given weights (typically of order 0.1).
The criteria (16)–(17) are sufficient to establish the global efficiency of the total error estimator;
the local criteria (18)–(19) assure the local efficiency; see [1, Section 5].

Elaborating on the results from [1], our goal is to bound also the algebraic error

‖∇(uh − uih)‖ = sup
ϕh∈Vh,‖∇ϕh‖=1

(
∇(uh − uih),∇ϕh

)
,

where uh is the (unknown) solution of the discrete formulation (4) and uih ∈ Vh is an approxi-
mation to uh as given by (7). We introduce for this purpose an additional assumption on the
flux reconstruction.

Assumption 3.3 (Quasi-equilibration of di
h). The function di

h satisfies di
h ∈ H(div,Ω) and

there exists a scalar-valued function rih ∈ L2(Ω) such that

∇· di
h = fh − rih , (20)

(rih, ψj) = R
i
j ∀j ∈ C . (21)
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Assuming (20) and setting aih = di+ν
h −di

h as above, Assumption 3.1 is satisfied with ρih ≡ ri+ν
h .

Theorem 3.4 (Algebraic error a posteriori estimate). Let uh be the solution of (4) and uih ∈ Vh
be given by (7). Let ηialg, η

i
rem be defined respectively by (12) and (13). Let Assumption 3.3 hold.

Then
‖∇(uh − uih)‖ ≤ ηialg + ηirem . (22)

Therefore, using the criteria (16) or (18), the algebraic estimator ηialg provides an upper bound on
the algebraic error. The efficiency of this estimator is a subject of further study — the techniques
used for the proof of global and local efficiency of the total error estimator (see [1, Section 5])
are not applicable in this case.

4 Flux reconstructions

The paper [1] presents flux reconstruction in various discretization schemes that fulfill Assump-
tion 3.1 and the first part (20) of Assumption 3.3. In this contribution we restrict ourselves to
the conforming finite element method. We show that we can easily modify the flux reconstruc-
tion from [1] such that the relation (21) required for proving the bound (22) is also satisfied.
The flux reconstruction is sought in the Raviart–Thomas–Nédélec finite element space and it
is constructed using (mutually independent) local homogeneous Neumann mixed finite element
problems posed on patches around mesh vertices.

5 Conclusion

Following [1] we presented a posteriori error estimate for the total error that distinguishes its
different components. The estimate yields a guaranteed upper bound on the total error. Addi-
tionally, we showed that the parts of the estimate denoted as algebraic estimator and algebraic
reminder provide an upper bound on the algebraic error. This justifies the distinction of error
components and the stopping criteria presented in [1]. We applied the general framework from [1]
to a linear problem and the conforming finite element discretization. The application for other
discretization schemes and nonlinear problems and the efficiency of the estimate are subjects of
further study.
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