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1 Introduction

The paper [1], see also the references therein, proposes an adaptive method with a posteriori
stopping criteria for numerical solution of nonlinear partial differential equations of diffusion
type. The main idea in [1| is to distinguish different components of the error, namely the
discretization, the linearization, and the algebraic ones, and to design stopping criteria based on
balancing these error components. The estimates rely on quasi-equilibrated flux reconstructions
and yield a general framework which can be applied to various discretization schemes.

In the present contribution we tightly follow [1] and concentrate specifically on estimating the
algebraic part of the error. We show that, with an additional assumption on the flux reconstruc-
tions, the algebraic error can be bounded using the algebraic a posteriori error estimator. This
justifies the distinction of error components presented in [1]. For simplicity we restrict ourselves
to a linear model problem discretized using the conforming finite element method. We show that
the flux reconstruction given in [1] can be modified such that the newly introduced assumption
is satisfied. We believe that an analogous modification is possible also for other discretization
schemes, as well as for the nonlinear setting considered in [1].

2 Model problem and discrete setting

Let Q@ € R, d > 2, be a polygonal (polyhedral) domain. We consider the Poisson model problem:
find u : Q — R such that
Au=f in, u=0 on 09, (1)

where f : Q — R is the source term. Assuming f € L?(2), the model problem (1) can be casted
into the weak form: find u € V = H}(Q) such that

(Vu, Vov) = (f,v) Yo eV, (2)

where H} () denotes the standard Hilbert space of L?(€2) functions whose weak derivatives are
in L2(Q)) and with trace vanishing on 9Q. Owing to (2), the flux —Vu is in the space H(div, Q)
spanned by the functions in [L?(92)]? with weak divergences in L?(f2).

Let Tp, be a simplicial mesh of 2. We suppose that the mesh is conforming in the sense that, for
two distinct elements of 7Tj,, their intersection is either an empty set or a common [-dimensional
face, 0 <[ < d—1. We denote a generic element of 7, by K and its diameter by hx. We denote
by P,,,(K) the space of m-th order polynomial functions on an element K and by P,,(7;) the
broken polynomial space spanned by vp,|x € Py, (K) for all K € Tj,. Let

Vi = Hy(Q) NPy (Th) = {v € Hy(Q) 0|k € P(K) VK € Ty} (3)
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be the usual finite element space of continuous, piecewise m-th order polynomial functions,
m > 1. The corresponding discrete formulation of problem (2) reads: find uy € Vj, such that

(Vuh, V’Uh) = (f, Uh) Yo, € V3, . (4)

Let ¢; € V3, j € C={1,...,dim(V},)}, denote the usual Lagrange basis of V},. Employing this
basis in (4) gives rise to the system of linear algebraic equations

AU =F. (5)
At the i-th step, i = 1,2, ..., of an iterative solver applied to the algebraic system (5), we obtain
the approximation U* = [U;] jec to the solution U and the algebraic residual vector R* = [R;] jec

such that ‘ A
AU*=F — R". (6)

Finally, by u}1 we denote the approximation to the solution u determined by the coefficient
vector U?,

uh = Z U;-wj i (7)

jec

3 Error measure and a posteriori error estimates for total error
and for the algebraic error

The (total) error between the exact solution u of the weak formulation (2) and the approximate
solution uj € V}, given by (7) is measured as

IVu—up)l = sup  (V(u—u), Vo). (8)
PeV,IVill=1

The following assumption is the starting point for a posteriori error estimation proposed in [1].

Assumption 3.1 (Quasi-equilibrated flux reconstructions). There exist vector-valued functions
ti € H(div, ), di,al € [L2(Q)]¢, and a scalar-valued function pi € L?(Q) such that

9t —di +al,
3. as the linear solver converges, ||aj| — 0.

Here fp, is a piecewise polynomial approximation of the source term f verifying (fn, g = (f, 1)k
for all K € Ty,

For any K € T, the Poincaré inequality states that

lo — oxllx < Crhi||Veolk Vo€ H'(K), (9)

where pg denotes the mean value of ¢ in K. Since the simplices K are convex, there holds
Cp = 1/m; see, e.g., |2, 3]. The Friedrichs inequality states that

lell <halVel  VeeV, (10)
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where hgo denotes the diameter of the domain 2. The following theorem is a simple application
of [1, Theorems 3.4 and 3.6 to our model problem. We denote local estimators in the form nim K
where i = 1,2, ... stands for the algebraic iteration step and K € 7Tj, for the mesh element. The

. ) 1/
global versions of these estimators are defined as ny = {Z ket Mo, K)2}

Theorem 3.2 (Total error a posteriori estimate distinguishing error components). Let u € V
solve (2), let ui, € Vj, be given by (7), and let Assumption 5.1 hold. For any K € Ty, define
respectively the discretization estimator, the algebraic estimator, the algebraic remainder, and
the data oscillation estimator as

Naisere = IIVuh +djllx (11)
Taerx = laglx, (12)
Temrx = hallohlx, (13)
Mosew = Cphillf — fallk - (14)
Then
IV (u = )| < Wtise + Matg + Miem + Nose - (15)

In the adaptive algorithm proposed in [1] the flux reconstruction d% is constructed using the
approximate algebraic solution U’ given at the i-th step of algebraic iterative solver. Then
one performs v > 0 additional iteration steps yielding the vector U"*” and the corresponding
flux reconstruction dz}f”. The algebraic error flux reconstruction is defined as az = d;:r” — dﬁl.
The number v of the additional iteration steps and the convergence of the algebraic solver are
controlled using the (global) criteria

nﬁem S “Yrem IMaxX {néiscv nglg} ) (16)
n;lg < Valg ntliisc > (17)
or using the elementwise equivalents
nﬁem,K < Trem, K Max {nilisc,K’ nglg,K} ’ (18)
nglg,K < Valg, K nziisc,Kv VK € 77L : (19)

Here Yrem,Valg (respectively Yrem, i, Valg, k) are the user-given weights (typically of order 0.1).
The criteria (16)—(17) are sufficient to establish the global efficiency of the total error estimator;
the local criteria (18)—(19) assure the local efficiency; see |1, Section 5|.

Elaborating on the results from [1], our goal is to bound also the algebraic error

IV (un — up) || = sup (V(un = up), Veon) ,
PrEVR,[IVen|=1

where uy, is the (unknown) solution of the discrete formulation (4) and u € V} is an approxi-
mation to uy as given by (7). We introduce for this purpose an additional assumption on the
flux reconstruction.

Assumption 3.3 (Quasi-equilibration of di). The function d} satisfies dj, € H(div,Q) and
there exists a scalar-valued function ri € L*(Q) such that

de = fh_rgu (20)
(r, ) = R} VjecC. (21)
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Assuming (20) and setting a} = d;:“’ —d! as above, Assumption 3.1 is satisfied with p} = r,i:r”.
Theorem 3.4 (Algebraic error a posteriori estimate). Let uy, be the solution of (4) and u € V,
be given by (7). Let nglg,nﬁem be defined respectively by (12) and (13). Let Assumption 3.3 hold.
Then

Hv(uh - uﬁz)” < nélg + nﬁem : (22)

Therefore, using the criteria (16) or (18), the algebraic estimator nglg provides an upper bound on
the algebraic error. The efficiency of this estimator is a subject of further study — the techniques
used for the proof of global and local efficiency of the total error estimator (see [1, Section 5|)
are not applicable in this case.

4 Flux reconstructions

The paper [1] presents flux reconstruction in various discretization schemes that fulfill Assump-
tion 3.1 and the first part (20) of Assumption 3.3. In this contribution we restrict ourselves to
the conforming finite element method. We show that we can easily modify the flux reconstruc-
tion from [1] such that the relation (21) required for proving the bound (22) is also satisfied.
The flux reconstruction is sought in the Raviart—Thomas—Nédélec finite element space and it
is constructed using (mutually independent) local homogeneous Neumann mixed finite element
problems posed on patches around mesh vertices.

5 Conclusion

Following [1] we presented a posteriori error estimate for the total error that distinguishes its
different components. The estimate yields a guaranteed upper bound on the total error. Addi-
tionally, we showed that the parts of the estimate denoted as algebraic estimator and algebraic
reminder provide an upper bound on the algebraic error. This justifies the distinction of error
components and the stopping criteria presented in [1]. We applied the general framework from [1]
to a linear problem and the conforming finite element discretization. The application for other
discretization schemes and nonlinear problems and the efficiency of the estimate are subjects of
further study.
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