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1 Introduction

The FRAP (Fluorescence Recovery After Photobleaching) method is based on measurement of
the change of fluorescence intensity in a region of interest (being usually an Euclidian 2D do-
main) in response to an external stimulus, a short period of high-intensity laser pulse provided
by the CLSM.2 Stimulus, the so-called bleach, causes irreversible loss in fluorescence of autoflu-
orescence molecules or fluorescently tagged compounds (e.g. green fluorescence proteins – GFP)
in living cells in bleached area without any damage in intracellular structures. After the bleach,
the observed recovery in fluorescence presumably reflects the diffusion of fluorescence compounds
from the area outside the bleach. Based on spatio-temporal FRAP images, the process is recon-
structed using either a closed form model or simulation based model. In the latter case, beside
a single diffusion coefficient D, also the sequence {Dj} can be estimated as well. Let us underline
that FRAP images are usually very noisy, with small signal to noise ratio (SNR), i.e. in order
to get reliable results for the sequence {Dj}, an adequate technique residing in regularization is
mandatory [1, 5, 6].

2 Inverse Problem Formulation

Assuming the special geometry residing in one-dimensional simplification, getting the unbleached
particle concentration y as a function of dimensionless quantities x := r

L (r is a spatial coordinate
in physical units, L is a characteristic length), τ := t

T (t is time, T is a constant with some
characteristic value, e.g. the time interval between the initial and the last measurements), and
p := D T

L2 (re-scaled diffusion coefficient), we obtain the following dimensionless diffusion equation

∂y

∂τ
− p

∂2y

∂x2
= 0 (1)

with the initial condition and Dirichlet boundary conditions

y(x, τ0) = f(x), x ∈ [0, 1], (2)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (3)

2Confocal laser scanning microscopy (CLSM) allows the selection of a thin cross-section of the sample by
rejecting the information coming from the out-of-focus planes. However, the small energy level emitted by the
fluorophore and the amplification performed by the photon detector introduces a measurement noise.
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Spatio-temporal FRAP data

Based on FRAP experiments, we have a 2D dataset in form of a table with (N + 1) rows
corresponding to the number of spatial points where the values are measured, and (m+M + 1)
columns with m pre-bleach and M + 1 post-bleach experimental values forming 1D profiles

yexp(xi, τj), i = 0 . . . N, j = −m. . .M.

In fact, the process is determined by m columns of pre-bleach data containing the information
about the steady state and optical distortion,3 and M+1 columns of post-bleach data containing
the information about the transport of unbleached particles (due to the diffusion) through the
boundary.

Objective function

We construct an objective function Y (p) representing the disparity between the experimental
and simulated time-varying concentration profiles, and then within a suitable method we look
for such a value p ∈ RM minimizing Y .

The usual form of an objective function is the sum of squared differences between the experimen-
tally measured and numerically simulated time-varying concentration profiles. Taking separately
temporal (sub-index j) and spatial data points (sub-index i), we get:

Y (p) =
M∑

j=1

N∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2 , (4)

where ysim(xi, τj, pj) are the simulated values resulting from the solution of problem (1)–(3),
and yexp(xi, τ0), i = 0 . . . N, represent the initial condition f(x). The left and right Dirichlet
boundary conditions g0(τ) and g1(τ) are represented by yexp(0, τj) and yexp(1, τj), j = 1 . . .M,
respectively.

Ill-posedness

Our problem is ill-posed in the sense that the solution, i.e. the diffusion coefficients p1 . . . pM , do
not depend continuously on the initial experimental data. This led us to the necessity of using
some stabilizing procedure in form of the following regularized cost functions:

Yj(pj, preg, α) =

N∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2 + α (pj − preg)

2 (5)

for j = 1 . . .M , where α ≥ 0 is a regularization parameter and preg ∈ R is an expected value.
Taking α = 0, function Y (p, preg, α) =

∑M
j=1 Yj(pj, preg, α) turns to (4).

Values p∗j(α), j = 1 . . .M, are approximate solutions of minimization problems 4

p∗j (α) = arg min
pj , preg

Yj(pj , preg, α). (6)

3The noise identification can be performed using the pre-bleach data as well.
4Minimizing Y with respect to p > 0 represents a one-dimensional optimization problem. It was solved using

variable metric method implemented in the UFO system [4].
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It holds that limα→0 p
∗
j(α) = p∗j(0). For α → ∞ we have that (i) ‖p∗(α) − preg‖

2 → 0, i.e. the
estimated parameter variance is diminishing or even p∗j(α) ≡ preg ∀j, and (ii) function values
Y (p∗(α), preg, α) become larger (although there is a supremum). The problem of choosing in
some sense optimal parameter α∗ is discussed in the next section.

3 Tikhonov regularization vs. Least squares with a quadratic
constraint regularization

A useful tool to see the relation between the residuum for different values of regularization
parameter α, and the norm of a solution or relative standard deviation of the solution or some
other measure of variability of the solution, is the so-called L-curve. Usually, this parametric
plot, in our case with Y (p∗(α), preg, 0) (without the regularization term) in the abscissa, and
‖p∗(α) − preg‖

2 in the ordinate, is L-shaped (hence the name). In the upper left part we have
small values of α (under-smoothing, the solution is corrupted by the noise in data) and the lower
right part corresponds to the over-smoothing (the regularization term dominates for large α). Let
see Figure 1 for the just introduced plot corresponding to our FRAP problem with the synthetic
noisy data.

Tikhonov regularization

Tikhonov regularization [6] is based on adding a regularization term in (4) getting (5) and solving
the problem

p∗(α) = arg min
p, preg

Y (p, preg, α), st. p ≥ 0. (7)

The question is how to choose a "right" (in some sense optimal) parameter α∗. In [2], it is
preferred the so-called L-curve criterion consisting in finding the point of maximal curvature on
the L-curve. This point with corresponding solution p∗(α∗) is called L-curve optimal. However,
in most cases this point is hard to determine.

Constraint based on determination of estimated parameter variance

To avoid the above mentioned situation of non-unambiguous choice of the parameter α∗, another
approach, consisting in prescribing the value of ‖p∗ − preg‖

2 in advance, can be used. As the
norm of a solution p∗(α) becomes more and more smaller for α→ ∞, assume that we have pre-
scribed the variance in the solution with some value ξ. If we denote Y (p) =

∑M
j=1 Yj(pj , preg, 0),

then according to Hansen [2], we can solve the following equivalent optimization problem with
a quadratic constraint

p∗(ξ) = argmin
p
Y (p), st. ‖p − preg‖

2 ≤ ξ, p ≥ 0. (8)

Measurement noise based constraint

Suppose that we either know or can estimate the noise in input data. If we denote yδexp(xi, τj)
as real noisy data and yexp(xi, τj) as ideal data that would be measured without the noise, then

M∑

j=1

N∑

i=0

[
yδexp(xi, τj)− yexp(xi, τj)

]2
≤ δ
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where δ specifies the noise level (for the normally distributed non-correlated additive noise with
the variance σ20 , we have δ ≈ M N σ20). This leads to another possibility to determine (6). As
Hansen [2] claims, the following optimization problem is again equivalent to the previous ones

p∗(δ) = argmin
p

‖p− preg‖
2, st. Y (p) ≤ δ, p ≥ 0. (9)

By theory, L-curve is continuous and decreasing which means that both constraints in (8) and (9)
are attained on the boundary. Thus each value δ (specifying the noise level) corresponds the
value L(δ) = ξ on the L-curve so that

Y (p) = δ ⇔ ‖p − preg‖
2 = L(δ).

Moreover, this point also corresponds to a certain Tikhonov regularization parameter α, i.e. α ≡
[δ, L(δ)]. The respective α∗ for a given noise δ∗ is called noise optimal. Then the solution p∗(δ∗)
corresponds to the solution found by applying the discrepancy principle [3].

The practical confirmation of the Hansen’s conjecture about the equivalency of above three
methods is shown in Figure 1.
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Figure 1: L-curves for three different regularization methods, i.e. the log-log-plot of the solution
norm versus the residual norm, with α as the parameter.
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4 Conclusions

We have presented three methods for the solution of the apparently simple parameter estimation
problem. However, due to the noisy data from the spatio-temporal FRAP measurement, we have
to look for a stabile numerical process. The most usual method is the Tikhonov regularization.
Nevertheless, in our specific problem we had to deal with the complicated problem of determining
the optimal regularization parameter α. Fortunately, there are two equivalent methods based
on least squares with a quadratic constraint regularization enabling the application of the UFO
system [4]. While the first method constrains the estimated parameter variance, the second is
based on the measurement noise determination and constraining the residuum (proportional to
the noise level). This latter approach naturally takes into account the noise level in the data
and corresponds to the discrepancy principle as well. Furthermore, all three approaches were
implemented into our software CA-FRAPwith satisfactory results on synthetic data.
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