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1 Introduction

We consider an ill-posed linear system

Ax ≈ b, A ∈ R
n×n, b = bexact + bnoise ∈ R

n, (1)

where A is a nonsingular matrix and bnoise is an unknown perturbation of the right-hand side
bexact, ‖bnoise‖ ≪ ‖bexact‖. Moreover, we assume that the matrix A is a discretized smoothing
operator with singular values decaying gradually to zero and the vector bnoise represents noise
(for simplicity, we assume white noise, that is, the noise has flat frequency characteristics). The
aim is to approximate the exact solution

xexact ≡ A−1bexact.

Since A has smoothing property, the operator A−1 amplifies high-frequencies. For noise sig-
nificant enough, the discrete Picard condition is violated, which makes the naive solution
xnaive ≡ A−1b completely meaningless, and problem (1) has to be regularized. A successful
regularization method has to suppress the devastating effect of high-frequency noise while pre-
serving sufficient information from the data. The amount of regularization is usually controlled
by a regularization parameter and choice of this parameter represents the most difficult part
of solving discrete inverse problems [2]. One can also attempt to eliminate (at least to some
extent) the high-frequency part of the noise. Assume, we have an estimate b̃noise of the noise
vector bnoise. Then, a straightforward approach to solve problem (1) is to subtract this estimate
from the right-hand side b, and solve the system

Ax = b− b̃noise. (2)

We want system (2) to have better overall properties than the original problem (1). In our case,
the aim is to dampen the high frequencies coming from noise. The key part of this approach is
to find an estimate b̃noise. In the following, we will present a cheap parameter-free method for
finding such an estimate using Golub-Kahan bidiagonalization [1].

2 Estimating noise via noise propagation in Golub-Kahan bidi-
agonalization

Golub-Kahan bidiagonalization is an iterative procedure that is widely used in solving large
linear systems. Given the initial vectors w0 ≡ 0, s1 ≡ b/β1, β1 ≡ ‖b‖ 6= 0, it computes

αkwk = AT sk − βkwk−1 , ‖wk‖ = 1 ,

βk+1sk+1 = Awk − αjsk , ‖sk+1‖ = 1,
(3)
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until αk = 0 or βk+1 = 0, or until k = n. Vectors sk and wk form the bases of Krylov subspaces
KK(AAT , b) and KK(ATA,AT b) respectively.

In hybrid methods (see, e.g., [3, 4]), Golub-Kahan bidiagonalization is used as outer regularization
(regularization of the original large problem by projection). Moreover, as shown in [5], due
to the orthogonalization, one may also make use of the propagation of the noise through the
bidiagonalization process. Since the starting vector s1 is polluted by white noise, this noise is
present in all subsequent left bidiagonalization vectors sk. As shown in [5], the size of the noise
in the vector sk+1 can be related to the amplification factor

ρ−1
k ≡

k∏

j=1

αj

βj+1
, (4)

where αj and βj+1 are the normalization coefficients from (3). It was also shown in [5] that if A
is a discretized smoothing operator, then the factor ρ−1

k has to grow (on average) until it reaches
the point where the noise is revealed in the maximal way. This is illustrated in Figures 1 and 2.
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Figure 1: The amplification fac-
tor ρ−1

k for problem shaw(400)

from [6] with relative noise
level 10−3.
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Figure 2: Corresponding left bidiagonalization vectors
sk, k = 2, . . . , 11.

We see that for ρ−1
k maximal, the bidiagonalization vector sk+1 may be fully dominated by the

noise. This observation forms the basis of the proposed method for finding an estimate b̃noise.

Let k̂ + 1, where k̂ ≡ argmax
k

ρ−1
k , be the iteration of maximal noise revealing (in our example

presented above, k̂ + 1 = 7). Then, one may approximate the noise vector by the (properly
scaled) left bidiagonalization vector sk̂+1. In [7] it was shown that the resulting right-hand side
b− b̃noise lies in the span of smooth vectors (the troublesome high-frequencies coming from the
noise are subtracted) and therefore the method has a regularization effect, as illustrated in Figure
3.

Despite being computationally undemanding, this method is, as shown in [7], competitive with
standard methods for solving inverse problems such as truncated SVD or Tikhonov [4]. The
method still needs to be tested on real-world examples and it has to be investigated, how to
solve system (2) efficiently, or whether rounding errors and consecutive loss of orthogonality may
harm the method significantly.
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Figure 3: Regularizing effect of the proposed method – problem from Figure 1. Left to right:
(a) original noise, (b) noise with reduced high-frequency part, (c) naive solution, (d) inverse
operator applied to thr new right-hand side together with exact solution xexact (dashed line).
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