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Abstract:

We give three versions of explicit formulae for matrices Qz for an interval matrix with unit mid-
point.2
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1 Introduction

Matrices Qz, first appearing in [5], may be best introduced by way of the following theorem.

Theorem 1. If an n× n interval matrix A = [Ac −∆, Ac +∆] is regular,3 then for each
z ∈ {−1, 1}n the nonlinear matrix equation

QAc − |Q|∆Tz = I (1.1)

has a unique matrix solution Qz.

Comment. Here the absolute value of a matrix is understood entrywise, I is the identity
matrix and Tz = diag(z) denotes the diagonal matrix with diagonal vector z.

Proof. Because A is regular, its transpose AT = {AT | A ∈ A } = [AT
c −∆T , AT

c +∆T ] is
also regular, hence by [3, Thm. 5.1, Assertion (A3)] for each z ∈ {−1, 1}n the equation

AT
c B − Tz∆

T |B| = I (1.2)

has a unique matrix solution Bz. Then

BT
z Ac − |BT

z |∆Tz = I,

hence Qz = BT
z solves (1.1), and its uniqueness follows from that of (1.2). 2

A general algorithm qzmatrix for computing Qz based on the algorithm absvaleqn for
solving absolute value equations was described in [5]. Neither this nor any other known
result gives any clue about the shape of these matrices. In this report we describe an explicit
form of matrices Qz for interval matrices with unit midpoint, i.e., satisfying Ac = I. That
is, we look for explicit form of the solution of the equation

Q− |Q|∆Tz = I (1.3)

where ∆ is an arbitrary nonnegative matrix bound only by regularity requirement (see be-
low). In this way we make a step towards our main goal, namely a new proof of the Hansen-
Bliek-Rohn optimality result [4].

2 Matrices Qz

For a nonnegative square matrix ∆ put

M = (I −∆)−1.

It is known that the following four assertions are equivalent:

(i) [I −∆, I +∆] is regular,
(ii) M ≥ I,
(iii) M ≥ 0,
(iv) ϱ(∆) < 1

3I.e., each A ∈ A is nonsingular.

1



(see [6], [2]). Thus any of (ii)-(iv) can be used as a regularity condition. We choose (ii)
because we need the fact that each diagonal entry of M is greater or equal than one. Now
we have the following explicit description of solution of the equation (1.3).

Theorem 2. Let M ≥ I. Then for each z ∈ {−1, 1}n the matrix Qz is given rowwise by

(Qz)k• =

{
Mk•Tz if zk = 1,
((µk − 1)Mk• − µke

T
k )Tz if zk = −1,

(2.1)

where

µk = 2Mkk
2Mkk−1 (k = 1, . . . , n).

Comment. These formulae are not easy-to-derive ones. But once found, our task is
greatly simplified because we are left with checking that Qz given by (2.1) satisfies (1.3).
Mk• denotes the kth row of M , and ek stands for the kth column of the identity matrix I.

Proof. Given a z ∈ {−1, 1}n, define a matrix Q by

Qk• =

{
Mk•Tz if zk = 1,
((µk − 1)Mk• − µke

T
k )Tz if zk = −1

(k = 1, . . . , n). (2.2)

We shall prove that Q solves (1.3), which under the regularity assumption M ≥ I will mean
that Q = Qz. Let us note that this assumption implies that 2Mkk − 1 ≥ 1 and µk > 1 for
each k, and M∆ = M − I. Take an arbitrary k ∈ {1, . . . , n}. Now we have either zk = 1, or
zk = −1.

If zk = 1, then

|Q|k• = Mk•, (2.3)

hence

(Q− |Q|∆Tz)k• = Mk•Tz −Mk•∆Tz = Mk•Tz − (Mk• − eTk )Tz = eTk Tz = zkIk• = Ik•,

so that

(Q− |Q|∆Tz)k• = Ik•. (2.4)

If zk = −1, then (2.2) implies that

|Qkj | = |(µk − 1)Mkjzj | = (µk − 1)Mkj (2.5)

for each j ̸= k, and since

Qkk = ((µk − 1)Mkk − µk)zk =

(
Mkk

2Mkk − 1
− 2Mkk

2Mkk − 1

)
zk = − Mkk

2Mkk − 1
zk,

we have

|Qkk| =
Mkk

2Mkk − 1
= (µk − 1)Mkk

which together with (2.5) gives

|Q|k• = (µk − 1)Mk•. (2.6)
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Now,

(Q− |Q|∆Tz)k• = ((µk − 1)Mk• − µke
T
k )Tz − (µk − 1)Mk•∆Tz

= ((µk − 1)Mk• − µke
T
k )Tz − (µk − 1)(Mk• − eTk )Tz

= −eTk Tz = −zkIk• = Ik•,

hence (2.4) again holds. In this way we have shown that Q solves (1.3), and uniqueness of
its solution implies that Q = Qz. This proves that Qz is given by (2.1). 2

As a by-product of the proof we obtain an explicit description of the matrix |Qz|.

Theorem 3. Let M ≥ I. Then for each z ∈ {−1, 1}n the matrix |Qz| is given rowwise by

|Qz|k• =
{

Mk• if zk = 1,
(µk − 1)Mk• if zk = −1

(k = 1, . . . , n).

Proof. These are simply the equations (2.3) and (2.6). 2

Next we show that both Qz and |Qz| can be given by compact one-line formulae that,
however, may be seen less transparent than the former ones.

Theorem 4. Let M ≥ I. Then for each z ∈ {−1, 1}n the matrix Qz and its absolute
value are given by

Qz = max{TzM, Tz((I − Tµ)M + Tµ)}Tz (2.7)

and
|Qz| = max{TzM, Tz(I − Tµ)M}, (2.8)

where
µ = 2diag(M)

2diag(M)−e . (2.9)

Comment. Observe closely the equation (2.7): first the entrywise maximum of two
matrices is taken, then the result is postmultiplied by Tz. In (2.9) we use the Hadamard
division of vectors so that

µk = 2Mkk
2Mkk−1 (k = 1, . . . , n)

as before (e is the vector of all ones).
Proof. For given z ∈ {−1, 1}n set

Q = max{TzM, Tz((I − Tµ)M + Tµ)}Tz

and consider the difference

TzM − Tz((I − Tµ)M + Tµ) = TzTµ(M − I).

Because of µ > 0 and M ≥ I we have Tµ(M − I) ≥ 0, hence for each k there holds

(TzM)k• ≥ (Tz((I − Tµ)M + Tµ))k•

if zk = 1 and
(TzM)k• ≤ (Tz((I − Tµ)M + Tµ))k•
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if zk = −1. Thus
Qk• = (TzM)k•Tz = Mk•Tz = (Qz)k•

if zk = 1 and

Qk• = (Tz((I − Tµ)M + Tµ))k•Tz = ((µk − 1)Mk• − µke
T
k )Tz = (Qz)k•

if zk = −1, both by Theorem 2, hence Q = Qz.
Similarly, for the matrix defined by

Qa = max{TzM, Tz(I − Tµ)M}

we have
TzM − Tz(I − Tµ)M = TzTµM

where TµM ≥ 0, hence
(Qa)k• = Mk• = |Qz|k•

if zk = 1 and
(Qa)k• = (µk − 1)Mk• = |Qz|k•

if zk = −1, both by Theorem 3, which means that Qa = |Qz|. 2

Finally, we bring about the utmost simplification.

Theorem 5. Let M ≥ I. Then for each z ∈ {−1, 1}n the matrix Qz and its absolute
value are given by

Qz = (Dz + Tz)MTz −DzTz

and
|Qz| = (Dz + Tz)M,

where
Dz =

1
2(I − Tz)Tµ

and
µ = 2diag(M)

2diag(M)−e .

Proof. For a z ∈ {−1, 1}n, Dz is a diagonal matrix such that (Dz)kk = 0 if zk = 1 and
(Dz)kk = µk otherwise, therefore the matrix Q defined by

Q = (Dz + Tz)MTz −DzTz

satisfies
Qk• = Mk•Tz

if zk = 1 and
Qk• = (µk − 1)Mk•Tz − µke

T
k Tz

if zk = −1, hence Q = Qz by Theorem 2. The proof for |Qz| follows the same line. 2
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