

Institute of Computer Science Academy of Sciences of the Czech Republic

Explicit Form of Matrices Q_z for an Interval Matrix with Unit Midpoint

Jiří Rohn http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1206

20.02.2014

Pod Vodárenskou věží 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789, e-mail:rohn@cs.cas.cz

Institute of Computer Science Academy of Sciences of the Czech Republic

Explicit Form of Matrices Q_z for an Interval Matrix with Unit Midpoint

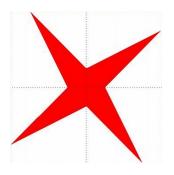
Jiří Rohn¹ http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1206

20.02.2014

Abstract:

We give three versions of explicit formulae for matrices Q_z for an interval matrix with unit midpoint.²



Keywords: Interval matrix, Q_z matrix, unit midpoint, explicit formula.

¹This work was supported with institutional support RVO:67985807.

²Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4]x_1 + [-2,1]x_2 = [-2,2], [-1,2]x_1 + [2,4]x_2 = [-2,2]$ (Barth and Nuding [1])).

1 Introduction

Matrices Q_z , first appearing in [5], may be best introduced by way of the following theorem.

Theorem 1. If an $n \times n$ interval matrix $\mathbf{A} = [A_c - \Delta, A_c + \Delta]$ is regular,³ then for each $z \in \{-1, 1\}^n$ the nonlinear matrix equation

$$QA_c - |Q|\Delta T_z = I \tag{1.1}$$

has a unique matrix solution Q_z .

Comment. Here the absolute value of a matrix is understood entrywise, I is the identity matrix and $T_z = \text{diag}(z)$ denotes the diagonal matrix with diagonal vector z.

Proof. Because \mathbf{A} is regular, its transpose $\mathbf{A}^T = \{A^T \mid A \in \mathbf{A}\} = [A_c^T - \Delta^T, A_c^T + \Delta^T]$ is also regular, hence by [3, Thm. 5.1, Assertion (A3)] for each $z \in \{-1, 1\}^n$ the equation

$$A_c^T B - T_z \Delta^T |B| = I \tag{1.2}$$

has a unique matrix solution B_z . Then

$$B_z^T A_c - |B_z^T| \Delta T_z = I,$$

hence $Q_z = B_z^T$ solves (1.1), and its uniqueness follows from that of (1.2).

A general algorithm **qzmatrix** for computing Q_z based on the algorithm **absvaleqn** for solving absolute value equations was described in [5]. Neither this nor any other known result gives any clue about the shape of these matrices. In this report we describe an explicit form of matrices Q_z for interval matrices with unit midpoint, i.e., satisfying $A_c = I$. That is, we look for explicit form of the solution of the equation

$$Q - |Q|\Delta T_z = I \tag{1.3}$$

where Δ is an arbitrary nonnegative matrix bound only by regularity requirement (see below). In this way we make a step towards our main goal, namely a new proof of the Hansen-Bliek-Rohn optimality result [4].

2 Matrices Q_z

For a nonnegative square matrix Δ put

$$M = (I - \Delta)^{-1}.$$

It is known that the following four assertions are equivalent:

(i) $[I - \Delta, I + \Delta]$ is regular, (ii) $M \ge I$, (iii) $M \ge 0$, (iv) $\rho(\Delta) < 1$

³I.e., each $A \in \mathbf{A}$ is nonsingular.

(see [6], [2]). Thus any of (ii)-(iv) can be used as a regularity condition. We choose (ii) because we need the fact that each diagonal entry of M is greater or equal than one. Now we have the following explicit description of solution of the equation (1.3).

Theorem 2. Let $M \ge I$. Then for each $z \in \{-1, 1\}^n$ the matrix Q_z is given rowwise by

$$(Q_z)_{k\bullet} = \begin{cases} M_{k\bullet}T_z & \text{if } z_k = 1, \\ ((\mu_k - 1)M_{k\bullet} - \mu_k e_k^T)T_z & \text{if } z_k = -1, \end{cases}$$
(2.1)

where

$$\mu_k = \frac{2M_{kk}}{2M_{kk}-1}$$
 $(k = 1, \dots, n).$

Comment. These formulae are not easy-to-derive ones. But once found, our task is greatly simplified because we are left with checking that Q_z given by (2.1) satisfies (1.3). $M_{k\bullet}$ denotes the kth row of M, and e_k stands for the kth column of the identity matrix I.

Proof. Given a $z \in \{-1, 1\}^n$, define a matrix Q by

$$Q_{k\bullet} = \begin{cases} M_{k\bullet}T_z & \text{if } z_k = 1, \\ ((\mu_k - 1)M_{k\bullet} - \mu_k e_k^T)T_z & \text{if } z_k = -1 \end{cases} \quad (k = 1, \dots, n).$$
(2.2)

We shall prove that Q solves (1.3), which under the regularity assumption $M \ge I$ will mean that $Q = Q_z$. Let us note that this assumption implies that $2M_{kk} - 1 \ge 1$ and $\mu_k > 1$ for each k, and $M\Delta = M - I$. Take an arbitrary $k \in \{1, \ldots, n\}$. Now we have either $z_k = 1$, or $z_k = -1$.

If $z_k = 1$, then

$$|Q|_{k\bullet} = M_{k\bullet},\tag{2.3}$$

hence

$$(Q - |Q|\Delta T_z)_{k\bullet} = M_{k\bullet}T_z - M_{k\bullet}\Delta T_z = M_{k\bullet}T_z - (M_{k\bullet} - e_k^T)T_z = e_k^TT_z = z_kI_{k\bullet} = I_{k\bullet},$$

so that

$$(Q - |Q|\Delta T_z)_{k\bullet} = I_{k\bullet}.$$
(2.4)

If $z_k = -1$, then (2.2) implies that

$$Q_{kj}| = |(\mu_k - 1)M_{kj}z_j| = (\mu_k - 1)M_{kj}$$
(2.5)

for each $j \neq k$, and since

$$Q_{kk} = ((\mu_k - 1)M_{kk} - \mu_k)z_k = \left(\frac{M_{kk}}{2M_{kk} - 1} - \frac{2M_{kk}}{2M_{kk} - 1}\right)z_k = -\frac{M_{kk}}{2M_{kk} - 1}z_k,$$

we have

$$|Q_{kk}| = \frac{M_{kk}}{2M_{kk} - 1} = (\mu_k - 1)M_{kk}$$

which together with (2.5) gives

$$|Q|_{k\bullet} = (\mu_k - 1)M_{k\bullet}.$$
(2.6)

Now,

$$(Q - |Q|\Delta T_z)_{k\bullet} = ((\mu_k - 1)M_{k\bullet} - \mu_k e_k^T)T_z - (\mu_k - 1)M_{k\bullet}\Delta T_z$$

= $((\mu_k - 1)M_{k\bullet} - \mu_k e_k^T)T_z - (\mu_k - 1)(M_{k\bullet} - e_k^T)T_z$
= $-e_k^T T_z = -z_k I_{k\bullet} = I_{k\bullet},$

hence (2.4) again holds. In this way we have shown that Q solves (1.3), and uniqueness of its solution implies that $Q = Q_z$. This proves that Q_z is given by (2.1).

As a by-product of the proof we obtain an explicit description of the matrix $|Q_z|$.

Theorem 3. Let $M \ge I$. Then for each $z \in \{-1, 1\}^n$ the matrix $|Q_z|$ is given rowwise by

$$|Q_z|_{k\bullet} = \begin{cases} M_{k\bullet} & \text{if } z_k = 1, \\ (\mu_k - 1)M_{k\bullet} & \text{if } z_k = -1 \end{cases} \quad (k = 1, \dots, n).$$

Proof. These are simply the equations (2.3) and (2.6).

Next we show that both Q_z and $|Q_z|$ can be given by compact one-line formulae that, however, may be seen less transparent than the former ones.

Theorem 4. Let $M \ge I$. Then for each $z \in \{-1,1\}^n$ the matrix Q_z and its absolute value are given by

$$Q_z = \max\{T_z M, T_z((I - T_\mu)M + T_\mu)\}T_z$$
(2.7)

and

$$|Q_z| = \max\{T_z M, T_z (I - T_\mu) M\},$$
(2.8)

where

$$\mu = \frac{2 \operatorname{diag}(M)}{2 \operatorname{diag}(M) - e}.$$
(2.9)

Comment. Observe closely the equation (2.7): first the entrywise maximum of two matrices is taken, then the result is postmultiplied by T_z . In (2.9) we use the Hadamard division of vectors so that

$$\mu_k = \frac{2M_{kk}}{2M_{kk}-1}$$
 $(k = 1, \dots, n)$

as before (e is the vector of all ones).

Proof. For given $z \in \{-1, 1\}^n$ set

$$Q = \max\{T_z M, T_z((I - T_\mu)M + T_\mu)\}T_z$$

and consider the difference

$$T_z M - T_z ((I - T_\mu)M + T_\mu) = T_z T_\mu (M - I).$$

Because of $\mu > 0$ and $M \ge I$ we have $T_{\mu}(M - I) \ge 0$, hence for each k there holds

$$(T_z M)_{k\bullet} \ge (T_z ((I - T_\mu)M + T_\mu))_{k\bullet}$$

if $z_k = 1$ and

$$(T_z M)_{k\bullet} \le (T_z ((I - T_\mu)M + T_\mu))_{k\bullet}$$

if $z_k = -1$. Thus

$$Q_{k\bullet} = (T_z M)_{k\bullet} T_z = M_{k\bullet} T_z = (Q_z)_{k\bullet}$$

if $z_k = 1$ and

$$Q_{k\bullet} = (T_z((I - T_\mu)M + T_\mu))_{k\bullet}T_z = ((\mu_k - 1)M_{k\bullet} - \mu_k e_k^T)T_z = (Q_z)_{k\bullet}$$

if $z_k = -1$, both by Theorem 2, hence $Q = Q_z$.

Similarly, for the matrix defined by

$$Q_a = \max\{T_z M, T_z (I - T_\mu)M\}$$

we have

$$T_z M - T_z (I - T_\mu) M = T_z T_\mu M$$

where $T_{\mu}M \geq 0$, hence

$$(Q_a)_{k\bullet} = M_{k\bullet} = |Q_z|_{k\bullet}$$

if $z_k = 1$ and

$$(Q_a)_{k\bullet} = (\mu_k - 1)M_{k\bullet} = |Q_z|_k$$

if $z_k = -1$, both by Theorem 3, which means that $Q_a = |Q_z|$. Finally, we bring about the utmost simplification.

Theorem 5. Let $M \ge I$. Then for each $z \in \{-1,1\}^n$ the matrix Q_z and its absolute value are given by

$$Q_z = (D_z + T_z)MT_z - D_zT_z$$

and

$$|Q_z| = (D_z + T_z)M,$$

where

$$D_z = \frac{1}{2}(I - T_z)T_\mu$$

and

$$\mu = \frac{2\mathrm{diag}(M)}{2\mathrm{diag}(M) - e}.$$

Proof. For a $z \in \{-1,1\}^n$, D_z is a diagonal matrix such that $(D_z)_{kk} = 0$ if $z_k = 1$ and $(D_z)_{kk} = \mu_k$ otherwise, therefore the matrix Q defined by

$$Q = (D_z + T_z)MT_z - D_zT_z$$

satisfies

$$Q_{k\bullet} = M_{k\bullet}T_z$$

if $z_k = 1$ and

$$Q_{k\bullet} = (\mu_k - 1)M_{k\bullet}T_z - \mu_k e_k^T T_z$$

if $z_k = -1$, hence $Q = Q_z$ by Theorem 2. The proof for $|Q_z|$ follows the same line.

Bibliography

- W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117–125.
- [2] R. A. Horn and C. R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1985. 2
- [3] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39–78. 1
- [4] J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can be made more efficient, Interval Computations, 4 (1993), pp. 13–21. 1
- [5] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equations, Linear Algebra and Its Applications, 435 (2011), pp. 193–201.
- mid-[6] J. Rohn, Explicit inverse ofaninterval matrixwithunitElectronic Journal ofLinear Algebra, 22(2011),pp. 138 - 150.point, http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp138-150.pdf. 2