národní
úložiště
šedé
literatury

A Reduction Theorem for Absolute Value Equations

Rohn, Jiří
2014
Dostupný z http://www.nusl.cz/ntk/nusl-170449

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 03.05.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A Reduction Theorem for Absolute Value Equations

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1204
10.02 .2014

A Reduction Theorem for Absolute Value Equations

Jirí Rohn ${ }^{\square}$

http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1204
10.02.2014

Abstract:

It is shown that under certain assumption an absolute value equation of size $n \times n$ can be reduced to an absolute value equation of size $p \times p, p \leq n$, such that both equations are simultaneously solvable or unsolvable and from a solution of the reduced equation a solution of the original equation can be computed by using a single matrix-vector multiplication. ${ }^{\text {D }}$

Keywords:
Absolute value equation, size reduction, solvability.

[^0]
1 Introduction

In this report we show that under certain assumption an absolute value equation

$$
\begin{equation*}
A x+B|x|=b \tag{1.1}
\end{equation*}
$$

with A, B of size $n \times n$ can be transformed into an absolute value equation

$$
\begin{equation*}
A^{\prime} x^{\prime}+B^{\prime}\left|x^{\prime}\right|=b^{\prime \prime} \tag{1.2}
\end{equation*}
$$

with A^{\prime}, B^{\prime} of size $p \times p$, where p is the number of negative entries of the vector

$$
(A+B)^{-1} b,
$$

such that $(\mathbb{\square})$ is solvable if and only if ($\square \mathbb{\square}$) is solvable and from each solution x^{\prime} of (solution x of ($\mathbb{\square}$) can be computed using a single matrix-vector multiplication. This means that we can do with solving the smaller system ($\mathbb{L D}$). The method works under assumption of nonnegativity of the matrix

$$
N=(A+B)^{-1} A-I .
$$

In Section we prove the above-stated assertions and in Section we show that for 1000 randomly generated 100×100 absolute value equations the average value of the reduction ratio p / n was close to 0.5 . This shows that further investigation into this matter might be worth doing.

2 The result

For $N \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$ and a set of indices $K=\left\{k_{1}, \ldots, k_{p}\right\}$ with $1 \leq k_{1}<k_{2}<\ldots<k_{p} \leq n$, denote

$$
\begin{aligned}
N_{K K} & =\left(N_{k_{i} k_{j}}\right)_{i, j=1}^{p} \\
N_{\bullet K} & =\left(N_{i, k_{j}}\right)_{i, p, p=1}^{n, j=1} \\
x_{K} & =\left(x_{k_{1}}, \ldots, x_{k_{p}}\right)^{T} .
\end{aligned}
$$

Given an absolute value equation

$$
\begin{equation*}
A x+B|x|=b \tag{2.1}
\end{equation*}
$$

with $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, put

$$
\begin{equation*}
N=\left(I+A^{-1} B\right)^{-1}-I=(A+B)^{-1} A-I \tag{2.2}
\end{equation*}
$$

(assuming implicitly that the inverses exist),

$$
\begin{gather*}
b^{\prime}=(N+I) A^{-1} b=(A+B)^{-1} b, \tag{2.3}\\
K=\left\{i \mid b_{i}^{\prime}<0\right\},
\end{gather*}
$$

and assuming that $K \neq \emptyset$, construct a new absolute value equation

$$
\begin{equation*}
\left(I+N_{K K}\right) x^{\prime}-N_{K K}\left|x^{\prime}\right|=b_{K}^{\prime}, \tag{2.4}
\end{equation*}
$$

where $N_{K K} \in \mathbb{R}^{p \times p}, p \leq n$. Our basic results concerns the interconnection between solutions of ([.]) and ([.]).

Theorem 1. Let N be nonnegative and let $K \neq \emptyset$. Then we have:
(i) if x is a solution of (2.]), then $x^{\prime}=x_{K}$ is a solution of (2.4),
(ii) if x^{\prime} is a solution of (2.4), then

$$
x=N_{\bullet K}\left(\left|x^{\prime}\right|-x^{\prime}\right)+b^{\prime}
$$

is a solution of (Ш.ل入) satisfying $x_{K}=x^{\prime}$.
Proof. (i) Let x solve

$$
A x+B|x|=b
$$

Through a series of rearrangements

$$
\begin{gathered}
x+A^{-1} B|x|=A^{-1} b, \\
\left(I+A^{-1} B\right) x=-A^{-1} B(|x|-x)+A^{-1} b, \\
x=-\left(I+A^{-1} B\right)^{-1} A^{-1} B(|x|-x)+\left(I+A^{-1} B\right)^{-1} A^{-1} b, \\
x=-\left(I+A^{-1} B\right)^{-1}\left(A^{-1} B+I-I\right)(|x|-x)+\left(I+A^{-1} B\right)^{-1} A^{-1} b, \\
x=\left(\left(I+A^{-1} B\right)^{-1}-I\right)(|x|-x)+\left(I+A^{-1} B\right)^{-1} A^{-1} b
\end{gathered}
$$

we arrive at an equivalent form

$$
\begin{equation*}
x=N(|x|-x)+b^{\prime} \tag{2.5}
\end{equation*}
$$

Now, if $i \notin K$, then $b_{i}^{\prime} \geq 0$ and nonnegativity of both N and $|x|-x$ in (2. so that $\left|x_{i}\right|-x_{i}=0$ and (2.5) can be reduced to the form

$$
x=N_{\bullet}\left(\left|x_{K}\right|-x_{K}\right)+b^{\prime}
$$

Considering only equations for $i \in K$, we get

$$
x_{K}=N_{K K}\left(\left|x_{K}\right|-x_{K}\right)+b_{K}^{\prime}
$$

and thus also

$$
\left(I+N_{K K}\right) x_{K}-N_{K K}\left|x_{K}\right|=b_{K}^{\prime}
$$

hence $x^{\prime}=x_{K}$ solves ($\left.\mathbb{L}, \square\right)$.
(ii) Conversely, let x^{\prime} solve (L, Z). Then

$$
\begin{equation*}
x^{\prime}=N_{K K}\left(\left|x^{\prime}\right|-x^{\prime}\right)+b_{K}^{\prime} \tag{2.6}
\end{equation*}
$$

Define $x \in \mathbb{R}^{n}$ by

$$
\begin{equation*}
x=N_{\bullet K}\left(\left|x^{\prime}\right|-x^{\prime}\right)+b^{\prime} \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{K}=N_{K K}\left(\left|x^{\prime}\right|-x^{\prime}\right)+b_{K}^{\prime}=x^{\prime} \tag{2.8}
\end{equation*}
$$

 enables us to rearrange ($\mathbb{\square}$) to the form

$$
\begin{equation*}
x=N(|x|-x)+b^{\prime} . \tag{2.9}
\end{equation*}
$$

$$
A x+B|x|=b
$$

Notice that the reduced equation (\mathbb{Z}) , if written in the form ($\square .2$), satisfies $A^{\prime} \geq I$, $B^{\prime} \leq 0, A^{\prime}+B^{\prime}=I$, and $b^{\prime \prime}<0$.

We have assumed that $K \neq \emptyset$. But if $K=\emptyset$, them $b^{\prime} \geq 0$ and from (2.0) we conclude that $x \geq 0$ and thus $x=b^{\prime}$, so that we immediately obtain a solution of (of solving (

Now the idea of reiterating the whole process anew with the reduced system ($\overline{2 . \pi})$ certainly comes to reader's mind. Unfortunately, this is no more possible. The reduced right-hand side for (

$$
\left(b_{K}^{\prime}\right)^{\prime}=\left(\left(I+N_{K K}\right)-N_{K K}\right)^{-1} b_{K}^{\prime}=b_{K}^{\prime}<0,
$$

hence $K^{\prime}=K$ and no more reduction can be achieved.
We have this immediate consequence.

Theorem 2. Under assumptions and notation of Theorem [($\mathbb{\square}$, is solvable if and only if (2.4) is solvable.

Denote by

$$
X(A, B, b)=\{x|A x+B| x \mid=b\}
$$

the solution set of $A x+B|x|=b$. We have this interconnection between the solution sets.

Theorem 3. Under assumptions and notation of Theorem \square there holds

$$
X\left(I+N_{K K},-N_{K K}, b_{K}^{\prime}\right)=\left\{x_{K} \mid x \in X(A, B, b)\right\}
$$

In other words, the solution set of (2.4) consists of the K-parts of solutions of ($2 . / \mathbb{C}$). This again follows immediately from Theorem \mathbb{I}.

Our main result works under assumption of nonnegativity of the matrix N. In the last theorem we delineate a class of matrices for which this property holds true.

Theorem 4. If $A^{-1} B \leq 0$ and $\varrho\left(A^{-1} B\right)<1$, then $N \geq 0$.
Proof. Indeed, in this case $N=\left(I-\left|A^{-1} B\right|\right)^{-1}-I=\sum_{j=1}^{\infty}\left|A^{-1} B\right|^{j} \geq 0$.

3 Examples

We have incorporated the described reduction method into the MATLAB file absvaleqnred.m. If $N \geq 0$, then reduction is performed and the resulting absolute value equation is solved by the absvaleqn.m file (for its description see [[$]$, [$[3]$), otherwise the unreduced absolute value equation is solved by the same file.

```
function [Ap,Bp,bp,K,xp,x]=absvaleqnred(A,B,b) % AVE via REDuction
Ap=[]; Bp=[]; bp=[]; K=[]; xp=[]; x=[];
n=length(b);
N=inv(A+B)*A-eye(n,n);
if ~all(all(N>=0))
    x=absvaleqn(A,B,b); return
end
bpp=inv(A+B)*b;
K=find(bpp<0);
if isempty(K)
    x=bpp; return
end
NKK=N(K,K);
Ap=eye(size(NKK))+NKK;
Bp=-NKK;
bp=bpp(K);
xp=absvaleqn(Ap,Bp,bp);
if isempty(xp), return, end
x=N(1:n,K)*(abs(xp)-xp)+bpp;
```

For example, solving the problem with the data

$\mathrm{A}=$						
-0.1281	0.6661	-0.7544	-0.2097	0.9153	0.7977	0.0295
0.6425	-0.0353	0.0753	0.8638	0.3687	0.6106	0.2361
0.3294	-0.9756	-0.0242	0.0571	0.3553	-0.2312	-0.3262
0.2911	0.7952	-0.0436	0.4250	-0.3719	0.7087	0.1880
0.6880	-0.4864	0.0025	-0.5859	0.8378	0.9116	0.6197
0.8989	0.1423	-0.5385	-0.5601	-0.7465	-0.4859	-0.7328
-0.1766	-0.7195	0.2596	0.8765	0.8840	0.0993	-0.6118
$B=$						
-0.0260	-0.0142	-0.0042	-0.0188	-0.0158	0.0036	-0.0128
-0.0232	-0.0362	-0.0348	-0.0287	-0.0500	-0.0237	-0.0348
0.0189	0.0153	0.0123	0.0041	0.0035	0.0023	0.0130
-0.0273	-0.0380	-0.0294	-0.0135	-0.0254	-0.0152	-0.0261
-0.0199	-0.0141	-0.0100	-0.0304	-0.0373	-0.0223	-0.0237
0.0117	0.0052	0.0102	0.0297	0.0402	0.0113	0.0441
0.0086	0.0007	0.0034	-0.0111	-0.0213	0.0022	-0.0136
$\mathrm{b}=$						
0.5581						
0.6435						
-0.2816						
0.5931						
-0.5970						
0.5860						
-0.2015						

by $[\mathrm{Ap}, \mathrm{Bp}, \mathrm{bp}, \mathrm{K}, \mathrm{xp}, \mathrm{x}]=\mathrm{absvaleqnred}(\mathrm{A}, \mathrm{B}, \mathrm{b})$ leads to the output

```
Ap =
    1.0066 0.0113
    0.0050 1.0092
Bp =
    -0.0066 -0.0113
    -0.0050 -0.0092
bp =
    -0.8370
    -0.5263
K =
            3
            6
xp =
    -0.8149
    -0.5088
x =
    0.5680
    0.6779
    -0.8149
    0.7621
    0.1841
    -0.5088
    0.2860
```

where $A p, B p, b p$ are the data of the reduced system and $x p$ is its solution ('p' stands for 'prime'). Hence the size of the problem has been reduced from 7×7 to 2×2. The solution x of the original system has then been computed by ([2.). Notice that $x_{K}=x p$, as predicted by the theory.

We call the number $r=p / n=$ length (K)/length (b) the reduction ratio of the problem. To assess its average value, we wrote the file redrataver.m which solves m absolute value equations of size $n \times n$ whose data are generated randomly on the basis of Theorem π by the subfunction averandata.m, computes for each problem its reduction ratio and at the end outputs the average value of all m reduction ratios.

```
function r=redrataver(m,n) % REDuction RATio AVERage
r=0;
for i=1:m
    [A,B,b]=averandata(i,n);
    [Ap,Bp,bp,K,xp,x]=absvaleqnred(A,B,b);
    r=r+length(K)/n;
end
r=r/m;
function [A,B,b]=averandata(i,n) % AVE RANdom DATA
rand('state',i);
A=2*rand (n,n)-1;
C=-rand (n,n);
C=(rand/ro(C))*C;
```

$B=A * C$;
$\mathrm{b}=2 * \mathrm{rand}(\mathrm{n}, 1)-1$;
function ro=ro(A) \% spectral radius
$r o=\max (\operatorname{abs}(\operatorname{eig}(A)))$;
We have run the file for $m=1000, n=100$ (i.e., 1000 problems of size 100×100):
>> tic, r=redrataver $(1000,100)$, toc
r =
0.4989

Elapsed time is 106.348758 seconds.
As we can see, the average reduction ratio, at least for this set of test problems, was about 50%.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. []
[2] J. Rohn, An algorithm for solving the absolute value equation, Electronic Journal of Linear Algebra, 18 (2009), pp. 589-599. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589599.pdf.
[3] J. Rohn, An algorithm for solving the absolute value equation: An improvement, Technical Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 2010. http://uivtx.cs.cas.cz/~rohn/publist/absvaleqnreport.pdf.

[^0]: ${ }^{1}$ This work was supported with institutional support RVO:67985807.
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [四)).

