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Abstract:

It is shown that under certain assumption an absolute value equation of size n×n can be reduced
to an absolute value equation of size p× p, p ≤ n, such that both equations are simultaneously
solvable or unsolvable and from a solution of the reduced equation a solution of the original
equation can be computed by using a single matrix-vector multiplication.2
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1 Introduction

In this report we show that under certain assumption an absolute value equation

Ax+B|x| = b (1.1)

with A,B of size n× n can be transformed into an absolute value equation

A′x′ +B′|x′| = b′′ (1.2)

with A′, B′ of size p× p, where p is the number of negative entries of the vector

(A+B)−1b,

such that (1.1) is solvable if and only if (1.2) is solvable and from each solution x′ of (1.2) a
solution x of (1.1) can be computed using a single matrix-vector multiplication. This means
that we can do with solving the smaller system (1.2). The method works under assumption
of nonnegativity of the matrix

N = (A+B)−1A− I.

In Section 2 we prove the above-stated assertions and in Section 3 we show that for 1000
randomly generated 100 × 100 absolute value equations the average value of the reduction
ratio p/n was close to 0.5. This shows that further investigation into this matter might be
worth doing.

2 The result

ForN ∈ Rn×n, x ∈ Rn and a set of indicesK = {k1, . . . , kp} with 1 ≤ k1 < k2 < . . . < kp ≤ n,
denote

NKK = (Nkikj )
p
i,j=1

N•K = (Ni,kj )
n, p
i=1, j=1

xK = (xk1 , . . . , xkp)
T .

Given an absolute value equation

Ax+B|x| = b (2.1)

with A,B ∈ Rn×n and b ∈ Rn, put

N = (I +A−1B)−1 − I = (A+B)−1A− I (2.2)

(assuming implicitly that the inverses exist),

b′ = (N + I)A−1b = (A+B)−1b, (2.3)

K = { i | b′i < 0 },
and assuming that K ̸= ∅, construct a new absolute value equation

(I +NKK)x′ −NKK |x′| = b′K , (2.4)

where NKK ∈ Rp×p, p ≤ n. Our basic results concerns the interconnection between solutions
of (2.1) and (2.4).
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Theorem 1. Let N be nonnegative and let K ̸= ∅. Then we have:

(i) if x is a solution of (2.1), then x′ = xK is a solution of (2.4),

(ii) if x′ is a solution of (2.4), then

x = N•K(|x′| − x′) + b′

is a solution of (2.1) satisfying xK = x′.

Proof. (i) Let x solve
Ax+B|x| = b.

Through a series of rearrangements

x+A−1B|x| = A−1b,

(I +A−1B)x = −A−1B(|x| − x) +A−1b,

x = −(I +A−1B)−1A−1B(|x| − x) + (I +A−1B)−1A−1b,

x = −(I +A−1B)−1(A−1B + I − I)(|x| − x) + (I +A−1B)−1A−1b,

x = ((I +A−1B)−1 − I)(|x| − x) + (I +A−1B)−1A−1b

we arrive at an equivalent form

x = N(|x| − x) + b′. (2.5)

Now, if i /∈ K, then b′i ≥ 0 and nonnegativity of both N and |x| − x in (2.5) implies xi ≥ 0,
so that |xi| − xi = 0 and (2.5) can be reduced to the form

x = N•K(|xK | − xK) + b′.

Considering only equations for i ∈ K, we get

xK = NKK(|xK | − xK) + b′K

and thus also
(I +NKK)xK −NKK |xK | = b′K ,

hence x′ = xK solves (2.4).
(ii) Conversely, let x′ solve (2.4). Then

x′ = NKK(|x′| − x′) + b′K . (2.6)

Define x ∈ Rn by
x = N•K(|x′| − x′) + b′. (2.7)

Then
xK = NKK(|x′| − x′) + b′K = x′ (2.8)

by (2.6), and if i /∈ K, then b′i ≥ 0 and from (2.7) we have xi ≥ 0, hence |xi| − xi = 0, which
enables us to rearrange (2.7) to the form

x = N(|x| − x) + b′. (2.9)
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Now, using the definitions of N and b′ in (2.2) and (2.3), we can transform (2.9) to the form

Ax+B|x| = b,

hence x solves (2.1) and additionally satisfies xK = x′ by (2.8). 2

Notice that the reduced equation (2.4), if written in the form (1.2), satisfies A′ ≥ I,
B′ ≤ 0, A′ +B′ = I, and b′′ < 0.

We have assumed that K ̸= ∅. But if K = ∅, them b′ ≥ 0 and from (2.5) we conclude that
x ≥ 0 and thus x = b′, so that we immediately obtain a solution of (2.1) without necessity
of solving (2.4).

Now the idea of reiterating the whole process anew with the reduced system (2.4) certainly
comes to reader’s mind. Unfortunately, this is no more possible. The reduced right-hand
side for (2.4) according to (2.3) is

(b′K)′ = ((I +NKK)−NKK)−1b′K = b′K < 0,

hence K ′ = K and no more reduction can be achieved.

We have this immediate consequence.

Theorem 2. Under assumptions and notation of Theorem 1, (2.1) is solvable if and only
if (2.4) is solvable.

Denote by

X(A,B, b) = {x | Ax+B|x| = b }

the solution set of Ax+B|x| = b. We have this interconnection between the solution sets.

Theorem 3. Under assumptions and notation of Theorem 1 there holds

X(I +NKK ,−NKK , b′K) = {xK | x ∈ X(A,B, b) }.

In other words, the solution set of (2.4) consists of the K-parts of solutions of (2.1). This
again follows immediately from Theorem 1.

Our main result works under assumption of nonnegativity of the matrix N . In the last
theorem we delineate a class of matrices for which this property holds true.

Theorem 4. If A−1B ≤ 0 and ϱ(A−1B) < 1, then N ≥ 0.

Proof. Indeed, in this case N = (I − |A−1B|)−1 − I =
∑∞

j=1 |A−1B|j ≥ 0. 2

3 Examples

We have incorporated the described reduction method into the MATLAB file absvale-
qnred.m. If N ≥ 0, then reduction is performed and the resulting absolute value equation
is solved by the absvaleqn.m file (for its description see [2], [3]), otherwise the unreduced
absolute value equation is solved by the same file.
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function [Ap,Bp,bp,K,xp,x]=absvaleqnred(A,B,b) % AVE via REDuction

Ap=[]; Bp=[]; bp=[]; K=[]; xp=[]; x=[];

n=length(b);

N=inv(A+B)*A-eye(n,n);

if ~all(all(N>=0))

x=absvaleqn(A,B,b); return

end

bpp=inv(A+B)*b;

K=find(bpp<0);

if isempty(K)

x=bpp; return

end

NKK=N(K,K);

Ap=eye(size(NKK))+NKK;

Bp=-NKK;

bp=bpp(K);

xp=absvaleqn(Ap,Bp,bp);

if isempty(xp), return, end

x=N(1:n,K)*(abs(xp)-xp)+bpp;

For example, solving the problem with the data

A =

-0.1281 0.6661 -0.7544 -0.2097 0.9153 0.7977 0.0295

0.6425 -0.0353 0.0753 0.8638 0.3687 0.6106 0.2361

0.3294 -0.9756 -0.0242 0.0571 0.3553 -0.2312 -0.3262

0.2911 0.7952 -0.0436 0.4250 -0.3719 0.7087 0.1880

0.6880 -0.4864 0.0025 -0.5859 0.8378 0.9116 0.6197

0.8989 0.1423 -0.5385 -0.5601 -0.7465 -0.4859 -0.7328

-0.1766 -0.7195 0.2596 0.8765 0.8840 0.0993 -0.6118

B =

-0.0260 -0.0142 -0.0042 -0.0188 -0.0158 0.0036 -0.0128

-0.0232 -0.0362 -0.0348 -0.0287 -0.0500 -0.0237 -0.0348

0.0189 0.0153 0.0123 0.0041 0.0035 0.0023 0.0130

-0.0273 -0.0380 -0.0294 -0.0135 -0.0254 -0.0152 -0.0261

-0.0199 -0.0141 -0.0100 -0.0304 -0.0373 -0.0223 -0.0237

0.0117 0.0052 0.0102 0.0297 0.0402 0.0113 0.0441

0.0086 0.0007 0.0034 -0.0111 -0.0213 0.0022 -0.0136

b =

0.5581

0.6435

-0.2816

0.5931

-0.5970

0.5860

-0.2015

by [Ap,Bp,bp,K,xp,x]=absvaleqnred(A,B,b) leads to the output
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Ap =

1.0066 0.0113

0.0050 1.0092

Bp =

-0.0066 -0.0113

-0.0050 -0.0092

bp =

-0.8370

-0.5263

K =

3

6

xp =

-0.8149

-0.5088

x =

0.5680

0.6779

-0.8149

0.7621

0.1841

-0.5088

0.2860

where Ap, Bp, bp are the data of the reduced system and xp is its solution (’p’ stands for
’prime’). Hence the size of the problem has been reduced from 7×7 to 2×2. The solution x
of the original system has then been computed by (2.7). Notice that xK = xp, as predicted
by the theory.

We call the number r = p/n=length(K)/length(b) the reduction ratio of the problem.
To assess its average value, we wrote the file redrataver.m which solves m absolute value
equations of size n×n whose data are generated randomly on the basis of Theorem 4 by the
subfunction averandata.m, computes for each problem its reduction ratio and at the end
outputs the average value of all m reduction ratios.

function r=redrataver(m,n) % REDuction RATio AVERage

r=0;

for i=1:m

[A,B,b]=averandata(i,n);

[Ap,Bp,bp,K,xp,x]=absvaleqnred(A,B,b);

r=r+length(K)/n;

end

r=r/m;

function [A,B,b]=averandata(i,n) % AVE RANdom DATA

rand(’state’,i);

A=2*rand(n,n)-1;

C=-rand(n,n);

C=(rand/ro(C))*C;
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B=A*C;

b=2*rand(n,1)-1;

function ro=ro(A) % spectral radius

ro=max(abs(eig(A)));

We have run the file for m = 1000, n = 100 (i.e., 1000 problems of size 100× 100):

>> tic, r=redrataver(1000,100), toc

r =

0.4989

Elapsed time is 106.348758 seconds.

As we can see, the average reduction ratio, at least for this set of test problems, was about
50%.
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