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Abstract:

We describe explicit formulae for the solution of a special case of absolute value equations.2
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[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

Since its introduction in [3] ten years ago, the absolute value equation

Ax+B|x| = b

(A,B ∈ Rn×n, b ∈ Rn) has received quite a bit of attention. Various authors have proposed
numerous methods for finding its solution (as e.g. via linear programming, nonlinear pro-
gramming, etc.), but it seems that nobody has attempted so far to find an explicit form of
the‘ solution in some special cases. In this report we bring some result in this direction (The-
orem 1). The assumption imposed on the right-hand side b may seem to be too restrictive,
but even this partial result makes it possible to carry out the proof of the Hansen-Bliek-Rohn
optimality result [2] in a new, more convincing fashion, which is possibly going to appear
elsewhere.

Notation used: I is the identity matrix, ek stands for the kth column of I, and the
maximum of two vectors is taken entrywise.

2 The result

Our main result is formulated as follows.

Theorem 1. Let ∆ ≥ 0, let the matrix M = (I −∆)−1 satisfy

M ≥ I, (2.1)

and let there exist a k such that bi ≥ 0 for each i ̸= k. Then the equation

x−∆|x| = b (2.2)

has a unique solution

x = max{Mb, Mb− 2(Mb)k
2Mkk−1(M − I)ek}. (2.3)

Moreover,

|x| = max{Mb, Mb− 2(Mb)k
2Mkk−1Mek}. (2.4)

Proof. In view of nonnegativity of ∆, the assumption (2.1) implies that ϱ(∆) < 1, hence
∆j → 0 as j → ∞, so that the sequence {xi}∞i=0 defined by x0 = 0 and

xi+1 = ∆|xi|+ b (i = 0, 1, . . .) (2.5)

is Cauchian, thus convergent, xi → x. Taking the limit for i → ∞ in (2.5), we obtain

x = ∆|x|+ b, (2.6)

hence x is a solution of (2.2). Assume that x′ also solves (2.2). Then from

x− x′ = ∆(|x| − |x′|)

1



we obtain
|x− x′| ≤ ∆|x− x′|

and
(I −∆)|x− x′| ≤ 0,

and premultiplying this inequality by the nonnegative matrix M leads to conclusion that

|x− x′| ≤ 0,

hence x = x′ and the solution x of (2.2) is unique.
Now, the assumption of nonnegativity of bi for each i ̸= k implies in the light of (2.6) that

xi ≥ 0 for i ̸= k, so that |xi| = xi for each i ̸= k and consequently we can write

|x| = x+ (|xk| − xk)ek. (2.7)

Substituting this expression into (2.6), we obtain

(I −∆)x = (|xk| − xk)∆ek + b

and by premultiplying by M we get

x = (|xk| − xk)(M − I)ek +Mb (2.8)

since M = (I −∆)−1 implies M∆ = M − I. From this we can see that if xk ≥ 0, then

x = Mb.

If xk < 0, then |xk| = −xk and from the kth equation in (2.8)

xk = (|xk| − xk)(Mkk − 1) + (Mb)k (2.9)

we have

xk =
(Mb)k

2Mkk − 1
(2.10)

(since Mkk ≥ 1 implies 2Mkk − 1 ≥ 1), and finally from (2.8)

x = Mb− 2(Mb)k
2Mkk−1(M − I)ek.

Notice now that 2Mkk − 1 is positive and (M − I)ek is nonnegative. Thus, if xk ≥ 0, then
(Mb)k ≥ 0 and

x = Mb ≥ Mb− 2(Mb)k
2Mkk−1(M − I)ek,

hence
x = max{Mb, Mb− 2(Mb)k

2Mkk−1(M − I)ek}, (2.11)

and if xk < 0, then (Mb)k < 0 (for otherwise (2.9) would imply xk ≥ 0), hence

x = Mb− 2(Mb)k
2Mkk−1(M − I)ek ≥ Mb,

so that (2.11) again holds. This proves (2.3).
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To prove (2.4), we proceed in a similar way. If xk ≥ 0, then (Mb)k ≥ 0 and

|x| = x = Mb ≥ Mb− 2(Mb)k
2Mkk−1Mek,

hence
|x| = max{Mb, Mb− 2(Mb)k

2Mkk−1Mek}, (2.12)

whereas if xk < 0, then (Mb)k < 0 and from (2.7), (2.10) we have

|x| = Mb− 2(Mb)k
2Mkk−1(M − I)ek − 2(Mb)k

2Mkk−1ek = Mb− 2(Mb)k
2Mkk−1Mek ≥ Mb,

which is again (2.12). This proves (2.4), and the proof is complete. 2

We can also formulate the result in the following more explicit form.

Theorem 2. Under assumptions and notation of Theorem 1, the unique solution x of the
equation (2.2) is given by

x =

{
Mb if (Mb)k ≥ 0,

Mb− 2(Mb)k
2Mkk−1(M − I)ek if (Mb)k < 0,

and its absolute value by

|x| =

{
Mb if (Mb)k ≥ 0,

Mb− 2(Mb)k
2Mkk−1Mek if (Mb)k < 0.

Proof. This is an immediate consequence of (2.3), (2.4). 2

3 Application

With the help of Theorem 1 it is possible to derive closed-form formulae for matrices Qz

(introduced in [4]) for interval matrices of the form [I−∆, I+∆], which then leads to a new
proof of the Hansen-Bliek-Rohn optimality result, as mentioned in the Introduction.
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