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Collision of a small bubble with a large falling particle
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Abstract. The motion of a tiny bubble (< Imm) in a neighborhood of a solid sphere falling through a liquid
is studied. A model assuming irrotational flow around the sphere and spherical bubble shape is provided; this
model is validated by comparison with the experiment. The model can be further simplified by neglecting inertial
forces, which are negligible in present experiments. Results of the model are provided also for the opposite limit,
in which the inertial forces are dominating the bubble motion.

1 Introduction

Motivated by applications of separation of various plas-
tic materials by flotation during their recycling, we study
the behavior of a tiny (D, < 1mm) bubble rising in water,
which encounters a larger spherical particle falling through
the liquid (with velocity Up, in order of few cm/s). The aim
is to determine, what are the conditions under which the
bubble touches the particle’s surface. Basically, all bub-
bles, which are initially in a distance xp (see figure 1) smaller
than some limiting value x, collide with the particle sur-
face, whereas bubbles with x; > x, do not collide. The
aim hence reduces in an effort of obtaining an expression
for the maximum collision distance x,.

In paper by Hubicka et al.[1], we have experimentally
investigated the collision. We have provided a model for
the bubble motion, which was based on expressing hydro-
dynamic forces acting on the bubble. We have also shown
that for studied conditions of small particle velocity (which
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Fig. 1. Studied configuration and symbols.
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are typical for practical conditions), the model can be fur-
ther simplified by considering only the drag and buoyancy
forces. In this conference contribution, we will summarize
our previous work [1]. In addition, we will show results of
the model for the hypothetical opposite case, in which the
bubble motion is dominated only by inertial forces, and the
drag and buoyancy can be neglected.

2 Experimental observations

In experiments, a single bubble (0.5 to 0.8 mm in diam-
eter) was created in a controlled manner [2] in a glass
cell (height 50 cm, width 8 cm and depth 6 cm). A glass
ball (14.1 mm in diameter) was fixed to a traversing de-
vice, which displaced it downward with a velocity of 5 or
10 cm/s. A high-speed camera (Redlake Motion Pro) was
moved by another traversing device with the same velocity
as the glass particle. Movies of the bubble motion around
the particle (recorded with a rate of 500 frames per second,
resolution 1280x1024 pixels and scale 14 um) were ana-
lyzed using NIS-Elements software; this analysis provided
data about the bubble size and its trajectory. Experiments
were repeated with several bubble sizes, two particle veloc-
ities and two different working fluids. For each operating
condition, several trajectories differing in the initial bubble
position xo were recorded, leading to a set of experimen-
tal trajectories, whose example is shown in figure 2. More
details about experiments are provided in [1].

A remarkable behavior observed in experiments is the
linear dependence of the bubble position at the instant of
collision with the particle surface, on the initial position,
Xeol = KXo, as it is illustrated in figure 3.

3 Model

In this contribution, we consider three different models for
the bubble motion. The full model solves the bubble trajec-
tory in the frame of reference, which moves with the par-
ticle (figure 1). This model is simplified by omitting some
terms, leading to either non-inertial or inviscid models.
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Fig. 3. Observed dependence of the radial distance x., at the time of collision with the particle, on the initial position xq of the bubble.
Data for pure water, particle velocity 50 mmy/s (a-d) and 100 mmy/s (e-h).
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Fig. 2. Example of observed and computed trajectories of bubble.
Velocity of the ball is 50 mm/s, bubble diameter 0.596 mm, pure
water.

3.1 Full model

The full model assumes that the liquid motion around the
sphere is not affected by the bubble, and is modeled by an
irrotational flow. Such an assumption is reasonable if the
Reynolds number of the sphere is high enough,

Re,,:Z@ > 1, (1)
and values Re > 100 are generally suflicient (p and p are
the liquid density and viscosity). It is also assumed that the
impulse related with the bubble motion is smaller than the
impulse related with the motion of the sphere (g:l}'?.?J Uy, <
pr, Up). The assumption of irrotational flow holds reason-

ably only upstream the sphere (i.e. in its lower part), but is
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not justified downstream the sphere, where the flow sepa-
rates. Another assumption is that the bubble remains spher-
ical. In low-viscosity fluids, this assumption is satisfied if
the Weber number of the bubble remains small during its
motion, 5
PRy, —ul” ! @
o
where ¢ is the surface tension. This assumptions is the first
to be unsatisfied in the present works. On other hand, the
present paper is valid also for motion of some light spher-
ical particles around a larger moving particle; the assump-
tion about the Weber umber is not required in such a case.
The bubble trajectory is obtained by solving an equa-
tion for bubble motion. This equation is written as a bal-
ance of forces, which act on the bubble. Those forces in-
clude the buoyancy, drag, added-mass, inertia and lift,

We =2 1

Fp+Fg+Fo +Fi+F =0. 3)

The added-mass force F,p is proportional to the bubble
acceleration, while other forces are either constant or de-
pendent on the bubble velocity. The balance (3) is hence
a differential equation of second order (for each position
component). Detailed expressions of considered forces are
provided in [1].

The force balance (3) is not complete, as some forces
(e.g. the history force [3]) are neglected. The model com-
pares well with the experimental data, however. This is
apparent from figure 2, in which experimental trajectories
(points) are drawn above results of the full model (lines,
mostly hidden below the symbeols). Furthermore, the ve-
locity evolation of the bubble is also captured correctly,
as it is apparent from figure 4, where modeled and experi-
mental velocity of the bubble are compared.

Figure 5 shows the computed trajectories of the full
model in the left part of the images by dark lines. At very
high velocities of the particle (e.g. figure 5d1 and partly
also figure 5d2), the full model predicts that the bubble is
expelled by the particle in the way that it does not come in
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contact with the particle surface. This is mostly due to the
inertial force Fy in front of the bubble.

It is noted that a similar model for motion of small
particles around larger bubbles was presented recently by
Huang et al. [6].

3.2 Non-inertial model

A remarkable behavior [1] observed in experiments (and in
results of the computations by the full model for low parti-
cle velocities) is the linear dependence of the radial bubble
position at the instant of collision with the particle surface,
on the initial radial position, x.,; = kxg. This simple de-
pendence is easily explained if we consider for the bubble
velocity uy, at each instant

up =u+upg, CO)]
where u is the local liquid velocity in the location of the
bubble and uy ¢ is the velocity of bubble rise in a still lig-
uid. Equation (4) follows from (3) if only buoyancy Fy, and
drag F4 are considered, whereas Fam, Fr and Fr are ne-
glected. The trajectory of the bubble is then easily derived
via the stream function. The stream function ¢ of fluid par-
ticles moving around the sphere is given by

1, BY., »..
W== 1_r_3 Uyr~sin™ 6. (5)

2

The bubble trajectory function ¢, is computed. This func-
tion is constant along the bubble trajectory, and is hence
analogous to stream function i, which is constant along
the trajectory of the liquid. It is expressed by adding the
term %U;,'nr"' sin® ¢ to ; this term corresponds to the mo-
tion with constant velocity Uy aligned with the particle
axis. We hence obtain

3
RJ"

P e
(1+ UsotUp) 7}

1
¥ = 5 (Up + Uno) rysin®8 (6)

Note that i, has the same form as the stream function i of
the flow around a sphere, but the velocity is different (U, +
Uy), as well as the sphere radius (R,(1 + Upp/Up)™'7).
The collision occurs when the bubble distance from the
particle center is 1, = Rp+R,. Using (6), we can now easily
derive an expression for the collision position x.,, which is

o7
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time to collision (ms}

Fig. 4. Comparison of the bubble velocity computed using the
full model and experimental data,
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found (in agreement with experiments) in the form x., =
kxp, where the constant & is

ol

3
= Ry

(1+ UsotUp) (Rp + Rs)’

)

The maximum initial distance x,, for which the bubble just
touches the particle surface, is easily determined as

R, + Ry

Xy = "—k~ (8)

The presented non-inertial model is basically a com-
bination of the classical models of Sutherland [4] and of
Flint and Howarth [5], applied to the case of moving bub-
bles instead of settling particles, for which those models
have been developed. Its results are also shown in Figure
5 (gray lines in the left parts of the trajectory maps, which
are frequently overlapped by black lines). For the results
seen in the second row of figure 5 (results for water), the
non-inertial model predicts correctly the bubble trajectory
for velocities up to 10 cm/s, which is the case of experi-
ments [1].

3.3 Inviscid model

The remaining terms of the motion equation (3) are studied
by neglecting the buoyancy and drag forces, Fy, and Fy. All
remaining forces (Fam, Fr and Fy,) follow from the inertia
of the liquid, and such a model is hence purely inertial. The
rising motion of the bubble is now assured by imposing the
velocity Uy via initial conditions; because the drag and
buoyancy are neglected, the initial velocity is maintained
up to the interaction with the particle.

The resulting trajectories are shown in figure 5 in the
right halves of the trajectory maps. For small particle ve-
locity, the bubbles continue due to its inertia (represented
by the added-mass force Fyy,) straight ahead and hits the
particle with unchanged velocity (figure 5a). At higher ve-
locities Up, the bubble trajectory is deflected due to the in-
ertial force Fy acting on the bubble (figures 5b2 and 5¢2).
This inertial force prevents the bubbles to come close to
the particle surface. As the particle velocity is increased,
the distance, in/to which the bubbles are deflected, is in-
creasing (compare figures 5b2 and 5c¢2); however, at high
velocities, this distance is then increasing only very slowly
(figures 5¢2 and 5e2) in consequence of the character of the
inertial force Fy, which decreases with the distance from
the particle as ~ r~%.

The inertial model shows another feature, which might
be easily overlooked in figure 5: close the particle’s equator
(8 = 90°), the inertial force Fy attracts the bubbles toward
the particle. This is seen from the curvature of trajecto-
ries of the bubble, which bend toward the particle’s surface
close to the particle’s equator.

Note that the inviscid approach is useful only for un-
derstanding the effect of inertial forces. This limiting case
is applicable directly only under exotic conditions (either
very low liquid viscosity, or high particle velocity com-
bined with very high surface tension).
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Fig. 5. Computed trajectories of 0.5 mm bubble, encountering 14.1 mm particle moving at velocity U, Each row is for a different liquid
viscosity (0.091, 0.91 and 9.1 mPa-s for the first, second and third row, respectively; the first row is a rather hypothetical case). All results
are for a bubble with immobile interface (e.g. contaminated with surfactants). Left halves of the trajectory map shows the results for the
full model (black lines) and for the non-inertial model (gray lines, which sometimes hidden below the black lines). The right halves show
the results of the inviscid model.
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3.4 Usability of simplified models

The non-inertial model is easy to use. It can be used under
two conditions: i) the inertial force Fy (which is responsi-
ble from deflecting the bubble from the particle) is negli-
gible compared to the buoyancy (which drives the bubble
upward). and ii) the bubble, when perturbed from its mo-
tion with a velocity of steady rise Uy relative to the liguid,
relaxes rapidly back to this equilibrium velocity.

The first condition is readily expressed by comparing
the two forces. The inertial force is proportional to pR;a,
where a is the liquid (convective) acceleration, which scales
as ~ Uf, /Rp. The ratio of the inertial and buoyancy forces
is hence proportional to

2
UP

a
Ac=-=-—1L,
gR,

&)

If this dimensionless parameter is small, Ac < 1, bubble
can follow the motion predicted by the non-inertial model.
Oppositely, if Ac > 1, the bubble will be deflected by the
inertial force Fy (see e.g. figure 5¢3, where the trajectories
of the full and non-inertial model deviate).

The second condition is well-known and it is commonly
expressed by means of Stokes number,

_ lpUpr

Sr=
. 9 uR,

(1M

which is the ratio of the relaxation time (~ pRg,r' (9u)) and
time scale of action of perturbating forces (~ R,/U). As
it is apparent from figure 5, the non-inertial model holds
only if St < 1. Oppositely, for very high St, the bubble tra-
jectory approaches those predicted by the inviscid model.

The inviscid model itself would be valid only under
very exotic conditions. Still, it is interesting to observe its
results, as their detailed examination allows us to under-
stand the differences of the full and non-inertial models,
and eventually provide a simplified equivalent of the full
model.

4 Conclusions

We have provided three different models for the motion
of a spherical bubble around a large moving particle. The
full models agree well with the experiments. In most prac-
tical cases, much simpler non-inertial model can provide
reliable and accurate results; for its validity, both the ac-
celeration and Stokes numbers should be small. The non-
viscous model predicts that bubbles do not come in contact
with the particle, if its velocity is high. This model is valid,
however, only in rather exotic situations.
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