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Abstract 

This paper examines the effect of non-linearities on density forecasting. It focuses on the 
relationship between credit markets and the rest of the economy. The possible non-linearity 
of this relationship is captured by a threshold vector autoregressive model estimated on the 
US data using Bayesian methods. Density forecasts thus account for the uncertainty in all 
model parameters and possible future regime changes. It is shown that considering non-
linearity can improve the probabilistic assessment of the economic outlook. Moreover, three 
illustrative examples are discussed to shed some light on the possible practical applicability 
of density forecasts derived from non-linear models. 
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Nontechnical Summary 

Density forecasts are defined as estimated probability densities of future values of a macroeconomic 
variable. So, a future development of a variable is not represented by a single number (point forecast) 
but by the whole distribution of possible values (density forecast). Density forecasts thus provide 
more information about the future outlook of a variable and not surprisingly have become an 
important tool of economic analysis, with many applications in economics and finance.  

The estimation of density forecasts usually draws on linear models. However, a growing literature 
suggests that many economic relationships are inherently non-linear, and neglecting this fact can 
influence an economic analysis significantly. A prominent example of a non-linear relationship is the 
interaction between financial markets and the real economy during the recent financial crisis. The 
profound fall in economic activity has not been proportional to the original shock to the financial 
markets. Feedback effects have arisen between the financial markets and the real economy and 
affected the nature of the relationship. 

Given the presumably non-linear relationship between credit conditions and economic activity, the 
aim of this paper is to examine density forecasting based on non-linear models. To that end a very 
simple non-linear model is estimated using Bayesian techniques and its forecasting ability is 
compared to its linear counterpart. The real economy is captured by output, the short-term interest 
rate, and inflation. The model is completed with a variable representing credit conditions. The data set 
contains US quarterly data and covers the period 1984–2012.  

The results suggest that non-linear models can provide a more realistic tool for the probabilistic 
assessment of the macroeconomic outlook than linear models. Moreover, some practical issues are 
discussed with the aid of three illustrative examples. The first example focuses on density forecasting 
at the end of 2004 and describes the situation where non-linearity does not play an important role in 
density forecasting. It suggests that extending models to explicitly account for non-linearity will not 
necessarily give a sufficient gain for a majority of periods. On the other hand, the second example 
demonstrates that during stress events, the probabilistic assessment of the future provided by the non-
linear model is more accurate. The example discusses the ex-ante probability of the global financial 
crisis estimated on data available in 2008Q2. Finally, the third example examines the likelihood of 
hitting the zero lower bound in the period 2008–2012. It implies that accounting for the uncertainty in 
model parameters is important to provide realistic assessment of likelihood of the zero lower bound 
events.  

The analysis presented in the paper suggests that non-linear models are important when modeling 
stress events, and exploration of the effect of non-linearities on density forecasting is a promising 
topic for future economic research. 
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1. Introduction 

A growing number of macroeconomic issues are being examined with the aid of density forecasts, 
i.e., the estimated probability densities of the future values of a random variable. For example, fan 
charts for inflation help the Bank of England communicate the direction and size of risks related to 
the inflation outlook (Britton et al., 1998). Next, predictive densities of macroeconomic variables 
allow for the assessment of the consistency and adverseness of macroeconomic scenarios underlying 
stress testing of the financial sector (Franta et al., 2013). Many applications of density forecasting can 
also be found in finance – for a selected survey see Tay and Wallis (2000). 

Density forecasts are usually based on linear models. Basically, there are two reasons for this. First, 
the forecasting performance of linear models is often superior to that of non-linear models. Second, 
linear models are easy to deal with from the computational point of view. For example, as noted in 
Teräsvirta (2006) density forecasts based on non-linear models typically do not account for estimation 
uncertainty, as the inclusion of this type of uncertainty is computationally very demanding. 

Imposing linearity on a macroeconomic relationship can, however, be misleading. A prominent 
example is the interaction between the financial markets and the real economy during the recent 
financial crisis. The aim of this paper is to examine the effect of non-linearity in the relationship 
between economic activity and credit markets on density forecasts. By building the analysis on a 
threshold vector autoregressive model and employing the Bayesian approach, it develops a simple 
framework able both to capture the non-linearity and to generate density forecasts in an intuitive and 
straightforward way. Moreover, the framework employed enables us to account for the estimation 
uncertainty. 

How can density forecasts be affected by non-linearities and how much are they actually affected? 
Regimes identified within the modeling framework can differ in terms of the shock propagation 
mechanism and volatility of shocks. Therefore, density forecasts corresponding to different regimes 
differ as well. In addition, possible future regime changes need to be reflected in density forecasting. 
To address the positive part of the question, the performance of non-linear density forecasts is 
assessed in a standard way. The in-sample fit is assessed by means of the marginal likelihood of the 
model and the out-of sample fit by means of a pseudo out-of-sample forecasting performance exercise 
based on the Kullback-Leibler Information Criterion. 

The model draws on the analysis introduced in Balke (2000), where the focus is on the role of credit 
in shock transmission in the US economy and where substantial differences in macroeconomic 
dynamics are detected for different ‘credit regimes’. Balke (2000) and the subsequent papers estimate 
the model by least squares, discretizing the range for the threshold variable driving the regime that the 
system is in. Here, similarly to Chen and Lee (1995) and Koop and Potter (2003), we use a Gibbs 
sampler with a Metropolis step to estimate the model. Therefore, the density forecasting takes into 
account not only the uncertainty related to the autoregressive parameters of the model and to the size 
of shocks, but also the uncertainty related to the value of the threshold and the delay of the threshold 
variable. The non-linear model and its linear counterpart are estimated on the US data.   
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The bottom line of the paper is that non-linear models can provide a more realistic tool for the 
probabilistic assessment of the macroeconomic outlook than linear models. On a general level, the 
result is confirmed by estimates of the marginal likelihood and by forecasting performance exercises 
for threshold VAR and VAR with constant parameters. Moreover, some practical issues are discussed 
with the aid of three illustrative examples. The first example focuses on density forecasting at the end 
of 2004 and describes the situation where non-linearity does not play an important role in density 
forecasting. It suggests that extending models to explicitly account for non-linearity will not 
necessarily give a sufficient gain for a majority of periods. On the other hand, the second example 
demonstrates that during stress events, the probabilistic assessment of the future provided by the non-
linear model is more accurate. The example discusses the ex-ante probability of the global financial 
crisis estimated on data available in 2008Q2. Finally, the third example examines the likelihood of 
hitting the zero lower bound in the period 2008–2012. It shows that accounting for the uncertainty in 
model parameters is important to provide realistic assessment of likelihood of the zero lower bound 
events.   

The structure of the paper is the following. The next section introduces the model and the dataset used 
for the analysis. Section 3 contains a discussion of the results, three illustrative examples, and some 
robustness checks. Finally, Section 4 concludes. Technical details of the estimation procedures, post-
estimation diagnostics, and convergence diagnostics can be found in the appendices, which also 
contain some additional results. 

2. Model 

The relationship between credit markets and economic activity has been thoroughly examined, 
especially in the period following the recent Global Financial Crisis (GFC). The interaction between 
financial markets and the business cycle has proven to be crucial and many studies have reflected this 
fact. On the side of theory, for example, a lot of effort has been put into the extension of general 
equilibrium macroeconomic models for realistic modeling of financial frictions implying the so-called 
financial accelerator mechanism.1 The relationship has been elaborated extensively by empirical 
studies, starting with McCallum (1991), who shows how credit rationing affects economic activity if 
a certain threshold is exceeded.2   

Both the theoretical and empirical approaches suggest that the relationship between credit markets 
and economic activity is inherently non-linear. This non-linearity can stem, for example, from the 
asymmetric transmission of shocks during different phases of the business cycle and from periods of 
different levels of shock volatility. A possible channel through which the non-linearity is propagated 
is based on credit constraints of firms. Normally, an efficient financial market allows an investment 
project to be financed based on the expected rate of return. During stress events, however, 
informational asymmetries bring about the problem of availability of credit. The investment behavior 
of firms thus differs depending on the credit conditions.  

1 This strand of literature draws mainly on Bernanke and Gertler (1989) and Kiyotaki and Moore (1997). For an 
extensive survey of recent studies see Brázdik et al. (2011). 
2 Focusing on time-series models, various approaches have been employed, including Markov-switching models (e.g. 
Serwa, 2012, Hubrich and Tetlow, 2012) and panel VARs (e.g. Hristov et al., 2012). 
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One strand of the empirical literature that focuses on capturing non-linearities between credit markets 
and economic activity employs threshold vector autoregressions (TVARs). The seminal contribution 
in this vein is represented by Balke (2000), who identifies different credit regimes in the US economy 
and examines transmission within those regimes. Subsequent studies use the same methodology and 
address either the same question for different countries or more general questions dealing with the 
role of the financial sector in general.3 As noted in Balke (2000), a TVAR model can capture regime 
switching, asymmetry, and multiple equilibria, being at the same time simple and intuitive.  

The advantage of TVARs in examining non-linearity issues is that they are relatively parsimonious 
models, in contrast to, for example, time-varying parameter VARs, which consider a different set of 
autoregressive (AR) parameters and the elements of the residual covariance matrix for every period. 
The next advantage of the TVAR approach is the explicitness of the variable that drives the regime of 
the system. The interpretation of regimes is thus intuitive. This is in contrast to Markov-switching 
VARs, for which regime changes are driven by a non-observed state variable. On the other hand, a 
disadvantage of TVARs can be seen in the assumption of linearity within a particular regime, which 
can be inappropriate in the case of more complicated non-linear structures. Another problematic 
feature of TVARs is the assumed coincidence of switches in AR coefficients and volatility. The 
model can thus have difficulty capturing changes in volatilities. 

 
Let’s consider the following two-regime TVAR ( 1p , 2p ): 

 
( )1 2 1

TR
t t t t t d ty x A x A x A I y r u− = + − ≤ +  , (1) 

 
where 1, , M

t t ty y y =    is a row vector of endogenous variables, 
111, , ,t t t px y y− − =    and 

211, , ,t t t px y y− − =     are row vectors of length 1 iMp+ , and iA  are ( )1 iMp M+ × matrices of 

coefficients, 1, 2i = . Indicator [ ]I ⋅  equals one if a particular lagged value of the threshold variable, 
TR
t dy − , lies below the threshold value r . The delay parameter { }01, 2,...,d d∈  implies the lag of the 

threshold variable considered to identify the regime. 
 

Stacking row vectors ,t ty x , and tu  for 1, ,t T=   according to the indicator function into ,i iY X , and 
iU  we can rewrite the model in matrix form: 

 
1 1 1 1

2 2 2 2

       y

       y

TR
t d

TR
t d

Y X U r
Y X U r

−

−

= Α + >

= Α + ≤
, (2) 

3 Atanasova (2003) and Calza and Sousa (2006) focus on the role of credit markets in economic activity in the UK 
and the euro area, respectively. Holló et al. (2012) and Van Roy (2012) construct their own financial stress indicator 
and examine its effect on the real economy in the euro area and Germany, respectively. 
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where the elements of the column vector 1U  are distributed as ( )10,N Σ  and the elements of 2U  are 
distributed as ( )20,N Σ . We therefore allow for regime-dependent volatilities.4 

2.1 Data 

The vector of endogenous variables includes GDP and CPI inflation (seasonally adjusted annualized 
q-o-q growth), the federal funds rate, and a measure of the credit market conditions. The sample 
covers the period 1984Q1–2012Q3. We follow the relevant literature and choose the start of the 
sample to be 1984Q1, which corresponds to the beginning of the ‘Great Moderation.’ The choice of 
the credit market conditions measure is a tricky task. The predictive ability of a measure can change 
over time. For example, Friedman and Kuttner (1993) and others show a robust relationship between 
the difference between the interest rate on commercial paper and Treasury bills and future economic 
activity in the United States during the 1970s and 1980s. However, as noted by Faust et al. (2012), 
this relationship disappeared in the 1990s. So, we follow recent literature (Ferraresi et al., 2013, 
Atanasova, 2003) and consider the spread between the BAA-rated corporate bond yield and the 10-
year treasury constant maturity rate. As a robustness check, we also test an alternative measure 
considered also in Balke (2000) and Ferraresi et al. (2013) – the first difference of the mix of bank 
loans and commercial paper in total firm external finance.5 

The threshold variable, TR
ty , is a transformed version of the respective credit conditions measure. The 

transformation employed is primarily intended to ‘smooth’ the measure and thus avoid too frequent 
changes of regime. Again we follow the literature and take the moving average of the BAA spread 
(MA(2)) and the mix variable (MA(6)). Graphs of the endogenous variables and threshold variables 
can be found in Appendix A. 

3. Results 

The Gibbs sampler with a Metropolis step is run for 100,000 iterations, discarding the first 50,000 to 
minimize the influence of the initial values of the parameters. Every 10th draw is taken to get 
independent draws. The estimation procedure, prior distributions, and initial values of the model 
parameters are described in Appendix B. Note that the prior on the AR coefficients is the same for the 
two regimes and thus reflects the prior belief of no threshold effect. 

Density forecasts are constructed by stochastically simulating the iterated forecasts and taking the 
summary statistics of the resulting empirical distributions. More precisely, draws from the conditional 
posterior distributions of the parameter subsets obtained in the Gibbs sampler after the burn-in period 
are used to compute iterated forecasts for a horizon of up to seven quarters. Then the centered 68% 
and 95% of the posterior distributions for a particular variable, period, and forecasting horizon 
describe the density forecasts. Importantly, the simulated forecasts take into account regime changes 
i.e., whenever the forecast of the threshold variable indicates a regime change for a given threshold, 

4 The assumption of regime-dependent volatility is not usual in the literature employing TVARs to examine the 
relationship between credit and economic activity. However, as suggested in the case of monetary policy regimes in 
Sims and Zha (2006), neglecting changes in volatility can incorrectly suggest changes in coefficients.   
5 This measure is the ratio of the total amount of loans in the liabilities of non-financial corporate and non-corporate 
firms to the sum of the total amount of loans plus the amount of commercial paper issued by non-financial corporate 
firms. 

                                                           



                                                             The Effect of Non-Linearity Between Credit Conditions 
and Economic Activity on Density Forecasts  7 

 
the set of model parameters corresponding to the regime is used for the computation of the next 
quarter forecast.   

A measure that suggests whether the non-linear model is preferred to its linear version is the marginal 
likelihood. Details on the marginal likelihood estimation can be found in Appendix C. The marginal 
likelihood is a measure closely related to the model’s out-of-sample prediction performance (Geweke, 
2001). Table 1 reports the marginal likelihood for various lags for the constant-parameter VAR 
(CVAR) and threshold VAR (TVAR) models and suggests that TVARs provide a superior fit to 
CVARs. Furthermore, comparing the marginal likelihoods of low-order TVARs with higher-order 
CVARs suggests that the TVAR model is considerably more parsimonious. 

Table 1: Marginal Likelihood 

  Threshold VAR 
 2p  1 2 3 4 

1p  1 -604.26 -617.79 -626.78 -632.92 
 2 -609.21 -619.59 -629.70 -636.14 
 3 -613.47 -626.08 -634.04 -640.27 
 4 -598.53 -611.93 -625.64 -637.60 
   Constant VAR 
p   1 2 3 4 

    -793.61 -763.49 -741.91 -700.61 
Note: The marginal likelihood is computed on the full 

sample; details of the estimation can be found in 
Appendix C. 

 
 

Table 1 also provides some guidance on the number of lags for the TVAR model in the two regimes, 
1p and 2p , and for the CVAR model, p . Nevertheless, other aspects need to be taken into account 

when setting the number of lags. Most importantly, the problem of over-parameterization limits the 
number of lags from above, as a regime can at minimum contain 15% of the estimation sample (16 
observations) due to our assumption imposed on the maximum (minimum) value of the threshold – 
see Appendix B.  

A more subtle analysis of the forecasting performance and thus of the model selection can be carried 
out using the Kullback-Leibler Information Criterion (KLIC) (Vuong, 1989). The KLIC is a measure 
of the distance between densities and allows us to examine the forecasting performance for a 
particular variable and forecasting horizon. The criterion implies that for a given endogenous 
variable, tx , and forecasting horizon, h , the model with the highest expected logarithmic score, 

( ),log t h t t hE f x+ +   , is preferred. As shown by Fernandez-Villaverde and Rubio-Ramirez (2004) the 
model chosen according to the KLIC is the model with the highest posterior probability. 

The expected logarithmic score is estimated using the average logarithmic score – the average log of 
the density for a realization of the endogenous variable, htx +  , taken for the period covering the last 
40 observations (2002Q4–2012Q3). All available periods constitute the set A  and the size of the set 
is N : 
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( )∑
∈

++
At

htitht xf
N ,,ln1 . (3) 

 
Regarding the TVAR and CVAR comparison based on the average logarithmic score, one point is 
worth emphasizing. It could be argued that in general TVARs include more parameters and thus 
provide wider density forecasts, as density forecasting also captures parameter uncertainty. Wider 
density forecasts are then more likely to cover the ex-post realized values of the endogenous 
variables, so the better forecasting performance of TVARs is simply a result of more parameters 
being included in such models. However, it is important to realize that the average logarithmic score 
penalizes too wide density forecasts. Intuitively, if an ex-ante realized value lies close to the median 
of two density forecasts, the wider density forecast adds less to the average logarithmic score. 
Therefore, the forecasting performance exercise for TVARs and CVARs is informative. 

Table 2 reports the estimated expected logarithmic score for the TVAR model with different numbers 
of lags. It shows that different numbers of lags are preferable for different variables and forecasting 
horizons.6 However, the differences are not large. For further analysis we consider the TVAR(4,4) 
model, as it performs the best in the vast majority of cases. Similarly, the CVAR(4) model is chosen 
based on the average logarithmic score (Table 3).  

Table 2: TVAR – Average Logarithmic Score 

 Output  Inflation FF rate Credit  Output  Inflation FF rate Credit 
1, 21 =pp  growth   conditions 3, 21 =pp  growth   conditions 

Horizon : 1 -1.13 -1.00 -0.92 -0.89 Horizon : 1 -1.10 -0.99 -0.96 -0.84 
2 -1.20 -1.01 -1.09 -0.96 2 -1.17 -0.99 -1.07 -0.88 
3 -1.37 -0.98 -1.21 -0.97 3 -1.37 -0.97 -1.15 -0.90 
4 -1.40 -0.94 -1.32 -0.98 4 -1.37 -0.96 -1.25 -0.89 
5 -1.46 -0.99 -1.44 -0.97 5 -1.42 -1.00 -1.35 -0.88 
6 -1.53 -1.00 -1.51 -0.96 6 -1.49 -1.04 -1.46 -0.88 
7 -1.60 -1.06 -1.63 -0.95 7 -1.55 -1.04 -1.56 -0.86 

2, 21 =pp      4, 21 =pp      
Horizon : 1 -1.11 -1.03 -0.94 -0.88 Horizon : 1 -1.08 -1.00 -0.95 -0.85 

2 -1.18 -1.01 -1.06 -0.93 2 -1.15 -0.97 -1.01 -0.88 
3 -1.34 -1.00 -1.15 -0.97 3 -1.38 -0.95 -1.07 -0.89 
4 -1.38 -0.96 -1.26 -0.98 4 -1.37 -0.92 -1.14 -0.86 
5 -1.42 -1.03 -1.35 -0.97 5 -1.38 -0.99 -1.22 -0.84 
6 -1.49 -1.04 -1.43 -0.98 6 -1.44 -1.03 -1.29 -0.84 
7 -1.56 -1.08 -1.55 -0.97 7 -1.51 -1.04 -1.38 -0.81 

Note: The highest value for a particular variable and horizon is in bold. The average logarithmic  
score is computed on the period 2002Q4–2012Q3. 

 

 
 
A comparison of the average logarithmic scores for the TVAR and CVAR models in Table 2 and 
Table 3 suggests that the forecasting performance of the best model for a particular horizon and 
variable is very similar, with a slight preference for the TVAR model. So, accounting for non-

6 For the sake of simplicity, we only considered cases of the same number of lags in both regimes, as such 
assumption does not affect the exposition significantly. 
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linearity does not improve the forecasting ability of the VAR modeling framework much, and in 
general the linear approach seems to be sufficient. The negligible increase in forecasting performance 
may be due to over-fitting and misspecification of the TVARs as well as to the general absence of 
non-linear effects.   

 

Table 3: CVAR – Average Logarithmic Score 

 Output  Inflation FF rate Credit  Output  Inflation FF rate Credit 
1p =  growth   conditions 3p =  growth   conditions 

Horizon : 1 -1.11 -1.00 -0.94 -0.99 Horizon : 1 -1.07 -1.03 -1.10 -0.88 
2 -1.21 -1.04 -1.08 -1.08 2 -1.16 -1.10 -1.24 -0.89 
3 -1.36 -1.04 -1.21 -1.13 3 -1.34 -1.12 -1.34 -0.92 
4 -1.43 -0.97 -1.32 -1.07 4 -1.42 -1.03 -1.45 -0.85 
5 -1.48 -1.00 -1.44 -1.00 5 -1.48 -1.00 -1.56 -0.78 
6 -1.53 -1.01 -1.49 -0.92 6 -1.55 -1.06 -1.64 -0.73 
7 -1.61 -1.09 -1.59 -0.86 7 -1.62 -1.13 -1.76 -0.68 

2p =      4p =      
Horizon : 1 -1.10 -1.03 -1.08 -0.96 Horizon : 1 -1.10 -1.01 -1.09 -0.87 

2 -1.21 -1.05 -1.22 -0.98 2 -1.19 -1.07 -1.14 -0.89 
3 -1.36 -1.07 -1.31 -1.00 3 -1.36 -1.08 -1.18 -0.89 
4 -1.44 -1.04 -1.44 -0.94 4 -1.43 -0.94 -1.28 -0.83 
5 -1.49 -1.03 -1.52 -0.88 5 -1.48 -0.96 -1.34 -0.77 
6 -1.54 -1.05 -1.61 -0.84 6 -1.54 -1.02 -1.42 -0.72 
7 -1.62 -1.14 -1.72 -0.80 7 -1.62 -1.06 -1.49 -0.67 

Note: The highest value for a particular variable and horizon is in bold. The average logarithmic 
score is computed on the period 2002Q4–2012Q3. 

 

 
 
 
Considering TVAR(4,4) and CVAR(4), only each fourth comparison for a particular forecasting 
horizon and variable results in a preference for the CVAR model. Restricting the forecasting 
performance exercise to the sub-period before the GFC, i.e., 2002Q4–2008Q2 (see the tables in 
Appendix F), yields CVAR(4) to be preferable already in each second comparison. This suggests that 
stress events such as the GFC represent circumstances where the TVAR model provides a more 
accurate probabilistic outlook for the variables. Such hypothesis is explored more deeply in the 
following three illustrative examples. The first example discusses the case where the non-linearity has 
no effect. The second example relates to the ex-ante probability of the GFC. Finally, the third 
example concerns the probability of hitting the zero lower bound – a topical macroeconomic issue. 
We start, however, with the benchmark estimation carried out on the full data sample. 
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3.1 Benchmark Estimation 

As the benchmark estimation we estimate the TVAR(4,4) and CVAR(4) models on the full sample 
covering the period 1984Q1–20012Q3. The convergence of the Gibbs sampler is discussed in 
Appendix D. Posterior distributions of selected model parameters are presented in Appendix E. The 
mean of the posterior distribution of the threshold is estimated at 2.95. Not surprisingly, regime 1 
covers the period of tight credit conditions during the GFC and the period after the 2001 recession 
(Figure 1). 

 

Figure 1: Threshold Variable and Estimated Threshold 

 

 
 
 

 
The density forecasts presented in Figure 2 demonstrate that for the benchmark estimation the non-
linear model produces wider distributions of future values of endogenous variables than the linear 
model. The only exception is the density forecast of the federal funds rate, which does not differ 
between the two models. Furthermore, it can be observed that the density forecasts based on the 
TVAR model are not symmetric.  
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Figure 2: Density Forecasts From the CVAR(4) and TVAR(4,4) Models 

 

 
 
Note: For the CVAR, the red curves indicate the median and the centered 68% and 95% of the density 

forecasts. For the TVAR, the median is denoted by the black dot-dash line and the centered 68% and 
95% of the density forecasts are indicated by dark and light yellow. 

 
 

The sample skewness for a particular forecasting horizon and variable is presented in Table 4. The 
table shows that the density forecasts based on TVAR(4,4) are not symmetric. The opposite is true for 
the CVAR(4) model, which clearly exhibits symmetry of density forecasts. The ability of the model 
to provide asymmetric density forecasts can play a significant role in the performance of the TVAR 
model during stress events.   

 

Table 4: Sample Skewness – Full Sample 

 TVAR(4,4) CVAR(4) 
 Output  Inflation FF rate Credit Output  Inflation FF rate Credit 
Horizon: growth   conditions growth   conditions 

1 -0.27 -0.02 -0.13 0.08 0.04 0.03 -0.02 0.00 
2 -0.14 -0.02 0.96 0.08 0.01 -0.02 -0.02 0.00 
3 -0.29 -0.04 1.24 0.14 -0.03 0.02 0.00 -0.02 
4 -0.31 -0.23 1.13 0.16 0.01 -0.04 0.00 -0.03 
5 -0.19 -0.16 0.99 0.10 0.02 0.00 0.00 -0.03 
6 -0.10 -0.27 0.96 0.06 0.01 0.00 0.00 0.01 
7 -0.10 -0.59 0.91 0.07 0.02 -0.02 -0.01 0.03 
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3.2 Non-Linearity Without Any Effect 

As noted, for example, in Clements et al. (2004), non-linear models outperform linear models in out-
of-sample forecasting only if the evaluation period ‘contains non-linear features.’ So, an improvement 
cannot be expected in the assessment of the future uncertainty related to the outlook for endogenous 
variables if non-linearity does not enter the simulation of the density forecasts.  

 

Figure 3: Density Forecasts From the CVAR(4) and TVAR(4,4) Models Estimated on 1984Q1–
2004Q4 

 

 
 
Note: For the CVAR, the red curves indicate the median and the centered 68% and 95% of the density 

forecasts. For the TVAR, the median is denoted by the black dot-dash line and the centered 68% and 
95% of the density forecasts are indicated by dark and light yellow. Observed data are denoted by a solid 
black line. 

 
 

As an example, Figure 3 presents the density forecasts for the two models estimated on the 1984Q1–
2004Q4 sub-sample. The differences between the density forecasts based on linear and non-linear 
models are negligible. The reason can be observed in Figure 4, where the threshold variable and the 
estimated threshold are shown. The threshold variable in 2004 is so far from the threshold (2.67) that 
the density forecasts are hardly influenced at all by the possibility of regime changes. Moreover, the 
vector autoregression in the prevailing regime is apparently close to the estimated CVAR model. The 
sample skewness shows that all the density forecasts are symmetric.7 

 

7 The results for sample skewness are available upon request. 
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Figure 4: Threshold Variable and Estimated Threshold, 1984Q1–2004Q4 

 

 
 
3.3 Probability of the GFC 

The motivation for examining the density forecasts produced by non-linear models lies partially in the 
question of whether accounting for the non-linearity between credit markets and economic activity 
would have helped produce a more accurate probabilistic assessment of the future before the 
realization of the GFC. To answer this question, the model is estimated on the sub-sample covering 
the period 1984Q1–2008Q2. The following figure shows the density forecasts and ex-post observed 
values of the endogenous variables. Again, asymmetric density forecasts are produced by the TVAR 
model. 

Figure 5: Density Forecasts From the CVAR(4) and TVAR(4,4) Models Estimated on 1984Q1–
2008Q2 

 
Note: For the CVAR, the red curves indicate the median and the centered 68% and 95% of the density 

forecasts. For the TVAR, the median is denoted by the black dot-dash line and the centered 68% and 
95% of the density forecasts are indicated by dark and light yellow. Observed data are denoted by a solid 
black line. 
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Table 5 provides a probabilistic assessment of the ex-post observed values of the endogenous 
variables covering the GFC. An accurate measure should be based on joint density forecasts. 
However, for our purposes it is sufficient to look at distributions marginalized in the dimension of the 
variable and forecasting horizon. 

 

Table 5: Cumulative Distribution Function of Marginalized 
Distributions at Ex-post Observed Values of 
Endogenous Variables. 

TVAR(4,4)    
Forecasting Output  Inflation FF rate Credit 

period growth   conditions 
2008Q3 0.152 0.877 0.746 0.827 
2008Q4 <0.001 <0.001 0.276 0.999 
2009Q1 0.002 0.067 0.365 0.999 
2009Q2 0.016 0.584 0.483 0.996 
2009Q3 0.187 0.709 0.472 0.690 
2009Q4 0.529 0.457 0.451 0.582 
2010Q1 0.345 0.273 0.426 0.48 

CVAR(4)     
2008Q3 0.09 0.77 0.89 0.952 
2008Q4 <0.001 <0.001 0.225 0.999 
2009Q1 <0.001 0.002 0.301 0.999 
2009Q2 0.009 0.357 0.41 0.999 
2009Q3 0.131 0.663 0.426 0.894 
2009Q4 0.522 0.459 0.408 0.820 
2010Q1 0.292 0.211 0.383 0.722 

Note: The models are estimated on the 1984Q2–2008Q2 sub-period. 
The marginalized distributions are evaluated on the data for 
2008Q3–2010Q1. 

 
 
The numbers in Table 5 provide the probabilities of observing the value of a particular variable at a 
particular forecasting horizon less than or equal to the ex-post observed values. For example, based 
on the data to 2008Q2 the estimated probability of observing inflation in 2009Q1 less than or equal to 
the ex-post observed value (0.95%) is 0.067 for the TVAR model and 0.002 for the CVAR model. 

From Figure 5 and Table 5 it follows that for some horizons the non-linear model suggests a non-zero 
probability of an ex-post observed outcome that the linear model estimates as a zero-probability 
event. It has to be stated, however, that this is not the case for all the zero-probability events 
suggested by the linear model.  
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3.4 Probability of Hitting the ZLB 

Another issue that can be resolved using density forecasts is the likelihood of hitting the zero lower 
bound on the nominal interest rate. By employing stochastic simulations, Chung et al. (2012) estimate 
the probabilities of hitting the ZLB and staying at the ZLB for at least one, four, and eight quarters. 
Their stochastic simulations are based on a battery of models – structural models (the FRB/US model, 
the Smets-Wouters model, and the Estimated Dynamic Optimization-Based Model used by the Board 
of Governors) and statistical models (TVP-VAR, the Laubach-Williams model, and the GARCH 
model).  

The aim of this subsection is to complement the results from Chung et al. (2012) and estimate the 
probability of hitting the ZLB with stochastic simulations based on the TVAR(4,4) and CVAR(4) 
models. Similarly to Chung et al. (2012) for the TVP-VAR and GARCH models we do not impose 
the ZLB. Moreover, we stick to the suggested forecasting horizon of 5 years. In addition, we follow 
Chung et al. (2012) and estimate the models on the sample 1968Q1–2007Q4. The starting date for the 
forecasting is 2008Q1. The results are reported in Table 6. 

 

Table 6: Estimated Probability of ZLB Events 

    Results from Chung et al. (2012) – Tables 2 and 3 
Lasting at least: TVAR CVAR FRB/US* EDO SW LW TVP-VAR GARCH* 

1 quarter 0.10 0.11 0.03 0.02 0.13 0.09 0.07 0.20 
4 quarters 0.12 0.11 0.01 <0.01 <0.01 0.05 0.02 0.09 
8 quarters 0.03 0.03 <0.01 <0.01 <0.01 0.01 <0.01 0.02 

Note: (*) The asterisk denotes models that do not account for uncertainty about the parameters and latent 
variables. 

 
 
The table suggests that the TVAR model predicts a probability of long-lasting ZLB events (four and 
eight quarters) that is higher than the models considered in Chung et al. (2012). For the ZLB to be hit 
for at least one quarter, the estimated probabilities are close to the Laubach-Williams model and 
Smets-Wouters model. So, underestimation of the probability of hitting the zero lower bound by the 
current macroeconomic models discussed by Chung et al. (2012) is not an issue in the TVAR and 
CVAR models. On the other hand, the non-linear version of VAR seems not to add anything in this 
respect. 

Finally, note that Chung et al. (2012) do not impose the ZLB on the TVP-VAR and GARCH models. 
As the zero lower bound constraint does not represent the focus of this paper it is not accounted for in 
the TVAR and CVAR models either. However, the treatment of the ZLB in density forecasting is 
discussed in detail in Franta et al. (2013) and would be implemented for non-linear density forecasts 
analogously. 
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3.5 Some Modeling and Robustness Issues 

The main modeling issue concerns the threshold parameter r. For very low initial values of the 
parameter the posterior distribution exhibits bimodality, suggesting the existence of more than two 
regimes. However, the TVAR(4,4) model imposes two regimes. From the computational point of 
view, more than two regimes represents an obstacle, as regimes with a very low number of 
observations can occur. Therefore, the assumption of two regimes is retained and instead the prior 
distribution on the threshold parameter is modified to cover only a part of its range. Details are given 
in Appendix B. 

A robustness check is carried out with respect to the length of the data sample. The original period 
starting in 1984 is extended to start in 1960. The results of the benchmark estimation are not 
significantly affected. The results are also robust to the choice of hyperparameters of the prior 
variance of AR coefficients. In addition to the original values from Canova (2007), the values 
introduced in Kadiyala and Karlsson (1997) that imply more shrinkage are tested.    

Finally, an alternative credit conditions measure and its transformation in the threshold variable are 
tested. The estimated threshold value is shown in Figure 6. In accordance with the original credit 
conditions measure, the alternative variable identifies the period around 2009 as regime 1. 
Nevertheless, the variable suggests more regime changes than the original variable based on the BAA 
spread.  

 

Figure 6: An Alternative Threshold Variable and Estimated Threshold, 1984Q1–2012Q3. 
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4. Conclusions 

This paper examined density forecasts for a simple non-linear model and compared them with the 
density forecasts produced by its linear counterpart. To that end, we focused on a macroeconomic 
relationship that is presumably highly non-linear – the relationship between credit markets and 
economic activity. The macroeconomic dynamics between credit markets and the rest of the economy 
were captured by a threshold vector autoregression of output, inflation, the short-term interest rate, 
and a measure of the credit conditions.  

The results suggest that accounting for non-linearity can improve estimates of the uncertainty of the 
macroeconomic outlook. More precisely, during ‘normal times’ the threshold VAR seems not to 
improve the forecasting performance significantly and thus its use is not sufficiently justified. The 
extra effort of modeling non-linearities is not necessarily worth it and a linear model usually suffices. 
Non-linearity does not matter even in the second moments. However, in periods of tight credit 
conditions, when non-linearities presumably play a significant role, the threshold VAR model is a 
more suitable tool for forecasting the probabilistic outlook for the economy. 

To illustrate the above-mentioned issues, the paper discusses three examples – a situation where non-
linearity does not play any significant role, the ex-ante probability of the Global Financial Crisis, and 
the likelihood of zero lower bound events.. A possible explanation for why the TVAR model 
improves forecasting performance arises. It seems that the TVAR model can produce asymmetric 
densities more easily than a constant-parameter VAR. 

The result that the TVAR model is appropriate for modeling ‘stress events’ naturally implies a 
possible use of the model. Realistic modeling of stress events is a key element of stress testing of the 
financial sector. An advantage of the TVAR model is that the threshold variable that drives the 
regime of the system is endogenous. The explicit regime driver allows us to impose a particular 
regime in the future. This can be done, for example, by soft-conditioning as introduced in Waggoner 
and Zha (1999). Such a procedure could be useful in the formulation of macroeconomic scenarios 
used in stress testing of the financial sector.  
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Appendix A: Data  

This appendix presents endogenous variables (Fig. A1), an alternative credit conditions variable (Fig. 
A2), and benchmark and alternative threshold variables (Fig. A3). For details on the data see Subsection 
2.1. 

 

 

Figure A1: Endogenous Variables in the Benchmark Specification, 1960Q1–2012Q3 
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Figure A2: Mix Variable, 1960Q1–2012Q3 

 

 
 
 

 

Figure A3: Threshold Variables, 1960Q1–2012Q3 
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Appendix B: Bayesian Estimation 

 
B.1 Priors 

 
For the AR coefficients and residual variance–covariance matrix, the normal-inverse Wishart prior is 
assumed (see, for example, Karlsson, 2012):  
 
 

( )~ ,PR PR
i i iN Vα α  and ~ (0.1* , 1)i MinvW I MΣ +  1,2i = , (B1) 

 
 
where iα  is a vector created by stacking the columns of iA . We set (1 ) 10

i

PR
i p M Mα + ×=  and 1

PRV , 2
PRV such 

that the diagonal element equals 2
0 / lφ  for the coefficient on the lags of the LHS variable at lag l . For the 

coefficients on the lags of variables different from the LHS variable ( )m n≠  the prior variance is set to 
2 2 2

0 1 , ,/ ( )i m i nlφ φσ σ , and 0 2φ φ  for the coefficients on the intercepts. 2
,i mσ is the standard error of an AR(1) 

process for a particular variable m estimated on the whole sample. The hyperparameters are set to 

1 20.2, 0.5φ φ= = , and 5
3 10φ = . The specification of the prior variance of the AR coefficients and 

hyperparameter values is taken from Canova (2007). The residual variance matrix follows an inverse 
Wishart distribution with five degrees of freedom and the scale matrix equal to a rescaled identity matrix. 
The priors on the AR coefficients and the residual variance-covariance matrix are independent. 
 
The prior for parameter r, ( )pr r , is considered to be uniform on 0.15 0.85,q qr r= =   , where qr  denotes the 
respective quantile of the threshold variable.8 As the preliminary analysis suggests the possibility of more 
than two regimes, the values of the threshold are restricted in the benchmark estimation to the upper half 
of the range, i.e., 0.50 0.85,q qr r= =   .  
 
Finally, the prior for the delay parameter follows a multinomial distribution with probability of a 
particular delay equal to 01/ d . Parameter 0d is set to 3. 
 

8 As an alternative, the beta distribution on the same interval with the shape parameters ,a bβ β  is considered. The results 
are not significantly affected. The beta distribution is chosen to impose less weight on the extremes without excluding the 
end points of the interval. 
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B.2 Gibbs Sampler 

 
The likelihood function takes the following form (see, for example, Kadiyala and Karlsson, 1997): 
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where { }1
1

TR
t

T p

y r
t

n I
−

≤
=

= ∑  and 2 1n T p n= − −  are parameters dependent on the threshold value r. 

 
The Gibbs sampler formulated in terms of the conditional posterior distributions of parameter subsets is 
as follows: 

 
1) AR coefficients: 
 

( )( ) 11 1| , , , ~ ,POST PR
i i i i i i ir d Y N V X Xα α

−− − ′Σ + Σ ⊗ 
 

 (B2) 

 
 

where ( )( ) ( ) ( )
11 11 1POST PR PR PR OLS

i i i i i i i i i i iV X X V X Xα α α
−− −− − ′ ′= + Σ ⊗ + Σ ⊗  

 

 
2) Residual variance matrix: 
 

( ) ( ) ( ) ( )
1

1 | , , , ~ ,OLS OLS OLS OLS
i i i i i i i i i i i i i i iY r d W Y X Y X X X nα

−
−

  ′ ′ ′Σ − Α − Α + Α −Α Α −Α     
 (B3) 

 
 
3) Threshold value: 
 
The conditional posterior probability of the threshold r is: 
 

( ) ( ) ( ) ( )
1 2 2

12 2
1 2 1 2 1 2

1

1| , , , , , exp
2

n n

i i i i i i i
i

p r d Y tr Y X Y X pr r− − −

=

  ′Α Α Σ Σ ∝ Σ Σ − − Α Σ − Α ×    
∑ . (B4) 
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The draw of the threshold is carried out similarly to Koop and Potter (2003). Since the conditional 
posterior for the threshold is not identified, a Metropolis algorithm is employed. The proposed value of 
the threshold is drawn and the log of its conditional posterior probability is compared to the log of the 
conditional posterior probability for the original value of the threshold parameter. If the difference is 
larger than the logarithm of a draw from a standard uniform, then the proposed value is taken.  
 
4) Delay parameter: 
 
The conditional posterior follows a multinomial distribution with probability 
 

( ) ( )

( )
0

1 2 1 2
1 2 1 2

1 2 1 2
1

, , , , , |
| , , , , ,

, , , , , |
d

d

L r d Y
p d r Y

L r d Y
=

Α Α Σ Σ
Α Α Σ Σ =

Α Α Σ Σ∑
. 

(B5) 

 
 
B.3 Initial Values 

 
The initial values of the threshold value and the delay parameter are taken as a draw from the respective 
prior distribution. The initial covariance matrix equals the OLS estimate of a draw from a standard 
uniform covariance matrix of the model. 
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Appendix C: Marginal Likelihood 

 
The marginal likelihood for the threshold VAR is computed according to Chib (1995) and Chib and 
Jeliazkov (2001). The Bayes rule yields the posterior distribution of the model 
parameters { }1 2 1 2, , , , ,A A r dΘ ≡ Σ Σ :  
 

( ) ( ) ( )
( )

Lik |
| .

MLik
Y p

p Y
Y

Θ × Θ
Θ =  (C1) 

 
Thus, 
 

( )( ) ( )( ) ( )( ) ( )( )ln MLik ln Lik | ln ln |Y Y p p Y= Θ + Θ − Θ . (C2) 
 
The previous formula is usually evaluated at a high density point under the posterior. A posterior mean of 
the parameter vector is considered. Since the delay parameter can attain only integer values, the mode of 
the sampled posterior distribution of the delay parameter is taken. The parameter vector used for the 
evaluation of the marginal likelihood is denoted as *Θ . In the following we denote { }1 2,A A A≡  
and { }1 2,Σ ≡ Σ Σ . 
 
1) Log-likelihood of data at *Θ : 
 

( )( ) ( ) ( ) ( )
2

1 2* * 1 * 1 * * 1 *1 2
1 2

1

1ln Lik | ln ln
2 2 2 2 i i i i i i i

i

n n M n nY tr Y X Y X− − −
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2) Joint prior at *Θ : 
 

( )~ ,PR PR
i i iA N A V     ( )~ ,PR PR

i iW S vΣ   for 1,2i =  

( )0.1 0.9~ ,q qr U r r= =  ( )0~ 1,1/d Multinomial d  
(C4) 

 
3) Posterior density of parameters at *Θ : 
 

( ) ( ) ( ) ( ) ( )* * * * * * * * * * *| | , , , | , , | , |p Y p A r d Y p r d Y p r d Y p d YΘ = Σ Σ , (C5) 
 
where ( ) ( ) ( )* * * * * * * * * * * *

1 2| , , , | , , , | , , ,p A r d Y p A r d Y p A r d YΣ = Σ Σ , as the conditional posterior 

distribution for iA  is independent of iA  for i j≠ . The two terms of the last formula represent the full 
conditional posterior density ordinate of the AR parameters, which follow a normal distribution, with 
parameters computed in the same way as in the Gibbs sampler (see B2).  
 
The term ( )* * *| , ,p r d YΣ  is approximated by the following sum: 
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Σ Σ∑ , (C6) 

 
 
where a reduced conditional density ordinate of covariance matrix *

iΣ  is computed in a separate reduced 
Gibbs MCMC run carried out for fixed *r and *d .  

As the full conditional density is unknown for *r , the procedure from Chib and Jeliazkov (2001) is 
employed to estimate ( )* *| ,p r d Y  using the following ratio: 

 

( ) ( )

( )

( ) * ( ) ( ) * ( ) * ( ) ( ) *

1

* ( ) ( ) ( ) *

1

, | , , , , | , , ,

, | , , ,

K
k k k k k k

k
K

k k k

k

r r A d Y q r r A d Y

r r A d Y

α

α

=

=

Σ Σ

Σ

∑

∑
, (C7) 

 
where  
 

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) * ( ) ( ) *
( ) ( ) *

( ) ( ) * ( ) ( ) *

Lik | , , , , | , , ,
, | , , , min 1,

Lik | , , , , | , , ,

k k k k
k k

k k k k

Y A r d p r q r r A d Y
r r A d Y

Y A r d p r q r r A d Y
α

 ′ ′ ′Σ Σ ′ Σ =  
′Σ Σ  

 (C8) 

 
and ( ), |q r r′   denotes the proposal density for the transition from r  to r′ . The proposal densities take 
a simple form of uniform or beta distributions (see B4). 

Finally, the marginal density ( )* |p d Y  is estimated using the original chain produced by the Gibbs 
sampler: 
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Appendix D: Convergence Diagnostics9 

 
Two measures of autocorrelation are used to assess the Gibbs sampler convergence. The first measure is 
the simple autocorrelation of a chain of draws at a lag equal to 10. A more general measure of a chain’s 
autocorrelation is the inefficiency factor, defined as follows: 

 

1
1 2 k

k
ρ

∞

=

+ ∑ , (D1) 

 
where kρ  represents the autocorrelation of the chain at lag k. Low autocorrelation values and inefficiency 
factor values less than 20 suggest independent draws from the conditional posteriors and thus efficiency 
of the sampling algorithm. 

The next measure is based on Raftery and Lewis (1992) and suggests how many draws should be taken 
from the conditional posteriors within the Gibbs sampler to obtain a stationary joint distribution.10  

Table D1 reports the convergence diagnostics for the threshold value r and the delay parameter d. 

 

Table D1: Convergence Diagnostics 

 Autocorr.  Inefficiency  Number of  
Parameter at lag=10 factor runs 
Threshold r 0.0115 0.4179 2246 
Delay par. d 0.0128 1.7658 8770 

 
 
The following figures present the statistics for the AR coefficients (in the two regimes of the TVAR 
model and for the CVAR model). The parameters are stacked along the x-axis. The y-axis presents the 
value of the particular statistic. The presented statistics suggest that the chain of draws generated within 
the Gibbs sampler converges to the posterior distribution. 

 
 
 

9 The Econometric Toolbox (LeSage, 1999) for Matlab is used. 
10 The usual diagnostics parameters are used: for the 0.025th and 0.975th quantiles of a marginal posterior distribution, an 
accuracy of 0.025 is required to be achieved with a probability of 0.95. 
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Figure D1: Convergence Diagnostics for the AR Coefficients 

 

 
Note: The parameters are stacked on the x-axis; for the TVAR model there are 36 AR parameters 

in each regime; the CVAR includes 52 AR parameters. 
 
 
 

Figure D2: Convergence Diagnostics for the Elements of the Covariance Matrices 

 

 
Note: The parameters are stacked on the x-axis; for the TVAR model there are 16 elements of the 

residual covariance matrix in each regime; the CVAR includes 16 elements of the residual 
covariance matrix. 
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Appendix E: Estimation Diagnostics 

The following figures show the posterior distributions of selected model parameters of the TVAR(4,4) 
model estimated on the full sample. Complete results for all the model parameters and both the TVAR 
(4,4) and CVAR(4) models are available upon request. For convenience of comparison, the corresponding 
distributions in Figures E1 and E2 are presented over the same range. 

Figure E1: Posterior Distribution of Selected AR Parameters, TVAR(4,4), Regime 1 

 

 
 

Note: The superscript in the graph label indicates the left-hand side variable, and the subscript denotes the lag. 

Figure E2: Posterior Distribution of Selected AR Parameters, TVAR(4,4), Regime 2 

 
 
Note: The superscript in the graph label indicates the left-hand side variable, and the subscript denotes the lag. 
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Figures E1 and E2 show the posterior distributions of the intercept and first lag of the endogenous 
variables in the TVAR(4,4) model. The figures also indicate the prior and posterior mean of the 
respective distribution. The distributions of the parameters estimated in the first regime exhibit in general 
higher variances, as implied by the low number of observations in regime 1. The posterior means of the 
selected parameters between the two regimes usually differ in size and even in sign in some cases. For 
example, the coefficient at the first lag of the credit measure in the equation for the federal funds rate is 
positive with a mean close to zero in regime 1 and negative in regime 2. 

Figure E3: Posterior Distribution of the Elements of the Covariance Matrix, TVAR(4,4), Regime 1 

 

 
 

Figure E4: Posterior Dstribution of the Elements of the Covariance Matrix, TVAR(4,4), Regime 2 
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Similarly to the presented distributions of the AR parameters, the posterior distributions of the elements 
of the covariance matrices are estimated more precisely for regime 2 (Figures E3 and E4). 

Finally, Figures E5 and E6 show the posterior distributions of the threshold and delay parameters. For the 
threshold, the chain of draws is also presented (left panel).  

 

Figure E5: Posterior Distribution of the Threshold Value, TVAR(4,4). 

 

 
 
 
 

Figure E6: Posterior Distribution of the Delay Parameter, TVAR(4,4) 
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Appendix F: Average Logarithmic Score on Subsample 

Table F1: TVAR – Average Logarithmic Score (1984Q1–2008Q2) 

 Output  Inflation FF rate Credit  Output  Inflation FF rate Credit 
1, 21 =pp  growth   conditions 3, 21 =pp  growth   conditions 

Horizon : 1 -0,93 -1,05 -1,02 -1,00 Horizon : 1 -0,93 -1,03 -1,04 -0,98 
2 -0,88 -0,91 -0,97 -1,16 2 -0,80 -0,94 -1,01 -1,13 
3 -0,89 -0,85 -0,91 -1,26 3 -0,81 -0,89 -0,94 -1,22 
4 -0,89 -0,78 -0,76 -1,34 4 -0,83 -0,82 -0,78 -1,29 
5 -0,92 -0,76 -0,67 -1,40 5 -0,85 -0,78 -0,70 -1,32 
6 -0,93 -0,76 -0,63 -1,44 6 -0,84 -0,75 -0,67 -1,36 
7 -0,95 -0,74 -0,59 -1,47 7 -0,86 -0,70 -0,64 -1,40 

2, 21 =pp      4, 21 =pp      
Horizon : 1 -0,93 -1,13 -1,01 -1,02 Horizon : 1 -0,89 -1,03 -1,08 -0,99 

2 -0,88 -0,97 -0,96 -1,19 2 -0,78 -0,94 -0,98 -1,13 
3 -0,85 -0,90 -0,88 -1,31 3 -0,78 -0,87 -0,86 -1,20 
4 -0,85 -0,82 -0,74 -1,40 4 -0,82 -0,79 -0,70 -1,24 
5 -0,87 -0,80 -0,66 -1,44 5 -0,83 -0,75 -0,62 -1,26 
6 -0,89 -0,78 -0,63 -1,51 6 -0,83 -0,73 -0,57 -1,30 
7 -0,89 -0,76 -0,60 -1,55 7 -0,84 -0,69 -0,55 -1,32 

Note: The highest value for a particular variable and horizon is in bold. The average logarithmic 
score is computed on the period 2002Q4–2008Q2. 

 

 
 

Table F2: CVAR – Average Logarithmic Score (1984Q1–2008Q2) 

 Output  Inflation FF rate Credit  Output  Inflation FF rate Credit 
1p =  growth   conditions 3p =  growth   conditions 

Horizon : 1 -0,97 -1,04 -1,01 -0,88 Horizon : 1 -0,95 -1,09 -1,17 -0,85 
2 -0,89 -0,88 -0,96 -0,97 2 -0,86 -0,96 -1,16 -0,93 
3 -0,93 -0,87 -0,89 -1,02 3 -0,85 -0,93 -1,11 -0,97 
4 -0,90 -0,76 -0,74 -1,06 4 -0,85 -0,85 -0,99 -0,99 
5 -0,94 -0,79 -0,63 -1,08 5 -0,86 -0,78 -0,91 -0,99 
6 -0,94 -0,75 -0,58 -1,09 6 -0,88 -0,76 -0,87 -1,02 
7 -0,99 -0,76 -0,55 -1,09 7 -0,92 -0,75 -0,83 -1,04 

2p =      4p =      
Horizon : 1 -0,99 -1,13 -1,13 -0,89 Horizon : 1 -0,96 -1,03 -1,22 -0,86 

2 -0,92 -0,97 -1,12 -0,97 2 -0,85 -0,91 -1,11 -0,95 
3 -0,91 -0,93 -1,04 -1,02 3 -0,85 -0,87 -1,01 -0,99 
4 -0,89 -0,87 -0,92 -1,06 4 -0,84 -0,76 -0,86 -1,02 
5 -0,91 -0,83 -0,83 -1,07 5 -0,86 -0,74 -0,78 -1,02 
6 -0,94 -0,80 -0,78 -1,10 6 -0,88 -0,71 -0,71 -1,04 
7 -0,97 -0,82 -0,74 -1,13 7 -0,91 -0,68 -0,68 -1,05 

Note: The highest value for a particular variable and horizon is in bold. The average logarithmic 
score is computed on the period 2002Q4–2008Q2. 
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