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ABSTRACT.

The paper deals with the scalar-valued score function SF defined for a
regular unimodal and continuous probability distribution F with arbitrary
interval support X ∈ R, recently introduced by the author. The concept
of the central characteristic that describes a relative influence of x ∈ X is
described in a much more general way in order to improve its usefulness in
parametric estimation by means of the general moment method. In partic-
ular, the whole approach is elucidated by describing it in a more suitable
framework than before. Further we show that the inference function to be
used in the moment estimating equations is either the score function of dis-
tribution (bounded for heavy-tailed parametric distribution models) or its
modification based on the Huber’s approach.

1. INTRODUCTION

The basic objective of parametric estimation of classical statistics is to
get reliable estimates of parameters involved in probabilistic description of a
given set of random variables. The models of classical statistics are paramet-
ric families of distributions {Fθ : θ ∈ Θ ⊆ Rm} with parent F with density
f(x) > 0 on an open interval X ⊆ R and f(x) = 0 on R − X . X is called
the support of F . The estimation is typically based on averaging functions
of the variables generally called score functions that measure sensitivity of
the corresponding likelihood function with respect to its parameters. More
in detail, a value ψ(x0; θ) of a score function ψ at an observed point x0 and
for a parameter θ describes the relative influence of x0 on the estimated
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characteristic under the chosen model.
The basic and most well-known score functions are vector functions with

components

Uθj(x; θ) =
∂

∂θj
log f(x; θ), j = 1, ...,m,

sometimes called Fisher scores. These scores naturally arise in the maximum
likelihood method, that provides estimates of θ of minimum variance. A
disadvantage of the method is that the Fisher scores are not stable under
deviations from the assumed model.

Robust statistics represent an important approach to solve the problem
of reliable parametric estimation in case of the instabilities caused by out-
lying data deviations. This approach is based on constructing bounded
score functions with the intention to suppress the influence of data out-
liers. For example, in case of data following a contaminated normal model
Nc = (1 − ε)N (µ, σ) + εN (µ, σc) with ε << 1 and σc >> σ, the Huber
function

ψ(x; k) = max[−k,min(x, k)]

where k is a tuning constant, often play a role of the score function.
This paper develops and further generalizes the approach recently intro-

duced by Fabián (2007) based on generalizing the Fisher score functions,
called score functions of distribution. These functions are denoted here by
SF and abbreviated by sfd. Here a value SF (x0) at x0 ∈ X characterizes
relative influence of x0 ∈ X on a certain central characteristic of distribu-
tion F . If a parametric distribution has a parameter expressing this central
characteristic, the sfd is identical with Fisher score for this parameter. It
was shown that the sfd-based approach provides in some important cases (as
the heavy-tailed distributions) score functions that are bounded. Further, a
unique scalar-valued sfd can be used for tackling point estimation problems
even if θ is a vector by means of the generalized moment method. More in
detail, the moments ESkF (θ), where E means the expectation, exist and are
often simple functions of parameters. More complex score moment estimates
of θ may need more computational effort in the estimation, but, at the same
time, they provide unique features such as they are robust for all components
of θ for the heavy-tailed distributions with bounded sfd’s.

The development of the sfd may be characterized as a generalization
of the maximum likelihood method such that it captures as many of the
important features of the considered probabilistic model as possible. It may
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be instructive to describe briefly the research that led to the development
of the sfd functions since this may also explain its potential for solving new
problems.

i) The starting point is the following identity valid for location distribu-
tions with support R and density with location parameter µ ∈ R in the form
f(x− µ):

∂

∂µ
log f(x− µ) = − 1

f(x− µ)

d

dx
f(x− µ).

The identity says that the Fisher score for location can be obtained by dif-
ferentiating of − log f(x− µ) with respect to the variable. By setting µ = 0,
Hampel et al. (1986, pp.104) concluded that the relative rate of the change
of f

SF (x) = −f ′(x)/f(x) (1)

describes, analogically to the Fisher score, the relative influence of x ∈ R with
respect to the “center” (mode) of the distribution (which is the solution of
equation SF (x) = 0). Consistently with this observation, Cover and Thomas
(1991, pp.494) consider ES2

F as the Fisher information of F .

ii) Function (1), mentioned sometimes as a generalized score function, [cf.
Sen et al. (2009)], is called the score function of distribution by Jurečková
(2012). This concept encompasses all parametric distributions with the “full”
support R, even those without location parameter, like a distribution with
the density

f(x; p, q) =
1

B(p, q)

epx

(ex + 1)p+q

where B is the beta function. The score function of distribution is in this
case

SF (x; p, q) = − 1

f(x; p, q)

d

dx
f(x; p, q) =

qex − p
ex + 1

,

a function different from both Fisher scores for p and q and describing relative
influence of x to the “center” of F, the solution of equation SF (x; p, q) = 0.

iii) The generalized score functions (1) fail to describe distributions with
support X 6= R. Examples are the uniform distribution with support X =
(0, 1) and −f ′(x)/f(x) = 0, and the exponential one with support X =
(0,∞) and −f ′(x)/f(x) = 1. However, it does not mean that a distribu-
tion with “partial” support cannot be described by a function characterizing
influence of x ∈ X with respect to some its “center point”.
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Fabián (2001) noticed that if a distribution with support X = (0,∞) has
a density in the form 1

τ
f(x/τ), it holds that

∂

∂τ
log

(
1

τ
f(x/τ)

)
=

1

τ
TF (x; τ) (2)

where

TF (x; τ) = − τ

f(x/τ)

d

dx

[
x

1

τ
f(x/τ)

]
. (3)

By setting τ = 1 in (3), an analogue of (1) for distributions with support
(0,∞) was obtained in the form

TF (x) = − 1

f(x)

d

dx
[xf(x)]. (4)

Formula (4) was interpreted in this way: if F is taken as transformed distri-
bution F = G ◦ η with “prototype” G ∈ PR and density

f(x) = g(η(x))η′(x), (5)

where g is the density of G, and if η : (0,∞) → R is η(x) = log x, the term
in square brackets of (4) is the density multiplied by the reciprocal Jacobian
of the transformation. According to (2), by setting

SF (x; τ) =
1

τ
TF (x; τ), (6)

we obtained sfd’s of a class of distributions with support (0,∞), which are
identical with Fisher scores for certain parameter.

iv) The above observation was generalized in Fabián (2001) for distribu-
tions with arbitrary interval support and arbitrary θ by

TF (x; θ) = − 1

f(x; θ)

d

dx
[

1

η′(x)
f(x; θ)]

with a support-dependent function η(x) inspired by Johnson (1949)

η(x) =


x if X = R

log(x− a) if X = (a,∞)

log
(x− a)
(b− x)

if X = (a, b).
(7)
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v) To obtain score function affording the correct value of the Fisher in-
formation of parametric distributions without parameter τ , Fabián (2007)
replaces the term 1/τ = η′(τ) in (6) by a general expression (see the next
section).

Nevertheless, (7) was still not fully general.

The paper is organized as follows. In Section 2 a general definition of
sfd is provided. Its first four moments are discussed in Section 3. Section
4 is devoted to the score moment estimation of the sample score mean and
sample score variance, interesting namely in cases of distributions, the mean
and variance of which do not exist. The new general strategy is used to
introduce a robust version of the score moment method for the light-tailed
distributions with unbounded sfd’s. Section 6 outlines the main conclusions.

2. SCORE FUNCTION OF DISTRIBUTION

For every open interval X ⊆ R, PX be the class of probability distri-
butions satisfying the usual regularity conditions. An increasing smooth
mapping with derivative ϕ′(x) = dϕ(x)/dx is called admissible.

DEFINITION 1. Let F ∈ PX has density f(x) and ϕ : X → R be an
admissible mapping. The most favorable mapping η : X → R for F is defined
as follows: If some ϕ′(x) is a proper part of the density formula (5), η(x) =
ϕ(x). In other cases η(x) is given by (7). Set

TF (x) = − 1

f(x)

d

dx

[
1

η′(x)
f(x)

]
. (8)

Let the solution x∗ to the equation

TF (x) = 0 (9)

exists and be unique. Function

SF (x) = η′(x∗)TF (x) (10)

is called a score function of distribution (sfd of F ).

The concept of the most favorable mapping secures the simplest SF , since
it is given either by

TF (x) = − 1

f(x)

d

dx
(g(η(x)),
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or f(x) in square brackets of (8) is multiplied by the derivative of the mapping
most frequently occurring in density formulas of distributions from ΠX .

According the following theorem, the construction described in Definition
1 leads in particular cases to Fisher scores for the most important parameter
of the distribution.

THEOREM 1. Let G ∈ PR be a distribution with location parameter µ. For
any interval support X , the sfd of transformed distribution F = G ◦ η equals
the Fisher score for parameter τ = η−1(µ).

Proof. Let a location distribution Gµ ∈ PR has density g(y−µ) and score
function SG(y−µ) = Uµ(y−µ). Let us consider the transformed distribution
Fτ ∈ PX with density f(x; τ) = g(η(x)− η(τ))η′(x), where

τ = η−1(µ), (11)

and with score function SF . Set u = η(x) − η(τ). Using (5) and the chain
rule for integration, we obtain

Uτ (x; τ) =
∂ log f(x; τ)

∂τ
=

1

g(u)η′(x)

∂

∂τ
[g(u)η′(x)]

=
1

g(u)

dg(u)

du

∂u

∂τ
= SG(u)η′(τ),

(where, by (1), SG(u) = −g′(u)/g(u)). Since by (8)

TF (x; τ) = − 1

g(u)η′(x)

d

dx
g(u) = − 1

g(u)η′(x)

dg(u)

du

∂u

∂x
= SG(u) (12)

and taking into account that the solution of equation TF (x; τ) = SG(u) = 0
is x∗ = τ , it holds true that

Uτ (x; τ) = η′(x∗)TF (x; τ) = SF (x; τ). (13)

2

The transformed location parameter (11) is taken as a central character-
istic of transformed distributions of this type.

The most favorable mapping for distributions from PR is usually the
identical mapping η(x) = x and the corresponding sfd’s are given by (1).
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However, the most favorable mapping for distribution with support R and
density

f(x) =
1√

(1 + x2)

esinh−1 x

(1 + esinh−1
x)2

. (14)

is η(x) = sinh−1 x, since η′(x) = 1√
(1+x2)

. From (8) one obtains

TF (x) =
esinh−1 x − 1

esinh−1 x + 1
.

As η′(0) = 1, sfd of (14) is SF (x) = TF (x). Obviously, (14) is the density
of the transformed logistic prototype. Another examples with non-trivial
Jacobians are densities of forms f(x) = g(arctanx)/(1 + x2) or perhaps
f(x) = g(tanx)/ cosh2 x, where g is the density of a certain prototype.

The most favorable mapping for distributions from P(0,∞) is η(x) = log x.
Some parametric distributions from P(0,∞) and their sfd’s are listed in Table
I.

TABLE I. Sfd’s of some parametric distributions from P(0,∞).

Distribution f(x) TF (x) x∗ SF (x) ES2
F

lognormal c√
2πx

e−
1
2

log2(x
τ

)c c log(x
τ
)c τ c

τ
log(x

τ
)c c2

τ2

Weibull c
x
(x
τ
)ce−(x

τ
)c c((x

τ
)c − 1) τ c

τ
((x
τ
)c − 1) c2

τ2

Fréchet c
x
(x
τ
)−ce−(x

τ
)−c c(1− (x

τ
)−c) τ c

τ
(1− (x

τ
)−c) c2

τ2

log-logistic c
x

(x/τ)c

((x/τ)c+1)2
c (x/τ)c−1

(x/τ)c+1
τ c

τ
(x/τ)c−1
(x/τ)c+1

3c2

τ2

gamma γα

xΓ(α)
xαe−γx γx− α α

γ
γ2

α
(x− x∗) γ2

α

inv. gamma γα

xΓ(α)
x−αe−γ/x α− γ/x γ

α
α2

γ
( 1
x∗
− 1

x
) α2

γ

beta-prime 1
B(p,q)

xp−1

(1+x)p+q
qx−p
x+1

p
q

q2

p
x−x∗
x+1

q3

p(p+q+1)

Burr XII kcxc−1

(xc+1)k+1 ckx
c−1

xc+1
1

k1/c
ck(xc−(x∗)c)

k1/c(xc+1)
c2k1+2/c

k+2

Distributions in the upper half of Table I are those with transformed location
parameter and sfd’s equal to Fisher scores for it. The pivotal quantity y−µ

σ

of a prototype distribution from PR transforms into

y − µ
σ

=
log x− log τ

σ
= log

(x
τ

)1/σ

, (15)
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the pivotal quantity of distributions from P(0,∞). Let us point out here that
parameter in denominator of a ratio with variable in numerator is frequently
referred to as scale parameter. From our point of view it represents a typical
value of a distribution. By (15), parameter c of distributions in Table I can
be explained not as expressing the shape, but reciprocal scale.

Distributions in the lower part of Table I have sfd’s which are yet unknown
functions different from any of Fisher scores and the solution of (9) is x∗ =
exp y∗ where y∗ is the mode of the prototype distribution.

The mapping η(x) = log log x is the most favorable mapping for the log-
gamma distribution with support X = (1,∞) and density

f(x;α, γ) =
γα

Γ(α)
(log x)α−1x−(γ+1), (16)

since η′(x) = 1/(x log x). Then TF (x;α, γ) = 1
f(x)

d
dx

[x log xf(x)] = γ log x−α,

x∗ = eα/γ and the sfd of log-gamma distribution is SF (x;α, γ) = γ
α
e−α/γ(γ log x−

α).

The Pareto distribution has support (1,∞) and density

f(x; c) = cx−(c+1). (17)

According (7), η(x) = log(x− 1) and

TF (x; c) = − 1

f(x)

d

dx
[(x− 1)f(x)] = c− c+ 1

x

so that x∗ = c+1
c

and

SF (x; c) = S1(x; c) = c2(1− x∗/x) (18)

If one try to use mapping ϕ(x) = log log x, one obtains

TF (x; c) = − 1

f(x)

d

dx
[x−c log x] = c log x− 1

and S2(x; c) = ce−1/c(c log x − 1) which is proportional to the Fisher score
for c. Fig. 1 shows both S1 and S2. Since a distribution with support (0,∞)
and density f(x, c) = c(x+ 1)−(c+1) (a “shifted” Pareto) is a member of the
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beta-prime distribution (Table I) with a bounded sfd, the sfd of the Pareto
distribution is S1.

Fig 1. Sfd of Pareto distribution.

Let us consider distributions with finite support X = (a, b). The most
favorable mapping for the beta distribution with support (0, 1) and density

f(x) =
1

B(p, q)
xp−1(1− x)q−1,

is apparently (7), as η′(x) = 1
x(1−x)

. Then,

TF (x) =
1

xp−1(1− x)q−1

d

dx
[xp(1− x)q] = (p+ q)x− p, (19)

x∗ = p
p+q

and SF (x) = (p + q)(x/x∗ − 1). The most favorable mapping for
distribution with density

f(x) =
−1√

2πx log x
e−

1
2

log2(− log x)

is η(x) = − log(− log x) as η′(x) = −1/x log x. The sfd is then

SF (x) = TF (x) = − 1

f(x)

d

dx
[−x log xf(x)] = η(x).

An alternative to (7) for distributions from P(−1,1) is mapping η(x) = tanh−1(x),
η′(x) = 1/ cosh2(x). The most favorable mapping of distributions from
P(−π/2,π/2) described by means of goniometric functions is often η(x) = tan x,
η′(x) = 1/ cos2 x. For instance, the sfd of a distribution with density f(x) =
e−x/κ = 1

cos2 x
e−x cos2 x/κ is

SF (x) = ex
d

dx
[e−x cos2 x] = sin 2x− cos2 x.

9



Densities and sfd’s of distributions from P(−π/2,π/2) with densities

1 f(x) = e−x/κ 3 f(x) = 1√
2π cos2 x

e−
1
2

tan2 x

2 f(x) = ex/κ 4 f(x) =
√

π
2

1
(x+π/2)(π/2−x)

e−
1
2

log2 π/2−x
x+π/2

are plotted in Fig. 2. The last two distributions have a normal prototype,
the latter one is the Johnson’s UB distribution transformed into (−π/2, π/2).

Fig 2. Densities and sfd’s of distributions from P(−π/2,π/2).

Notice that to find the sfd of F ∈ ΠX one does not usually need to
determine the prototype explicitly. It suffices to identify η′(x) at (5).

3. SCORE MOMENTS

The moments of the sfd,

Mk = ESkF (X) =

∫
X
SkF (x)f(x) dx, (20)

are called score moments.
Although SF can be determined from pure knowledge of the density f ,

in study of score moments it is useful the concept of prototype distribution.
Recall that G ∈ PR is a prototype of F ∈ PX if F (x) = G(η(x)), where η is
the most favorable mapping for F .

THEOREM 2. Let G ∈ PR with score function SG be a prototype of F ∈ PX
with score function SF . Let k ∈ N and |ESkG| <∞. Then,

ESkF = [η′(x∗)]kESkG.

Proof. According the chain rule in (12),

TF (x) = SG(η(x)). (21)
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By (10) and (5),

ESkF = [η′(x∗)]k
∫
X
T kF (x)f(x) dx = [η′(x∗)]k

∫
X
SkG(η(x))g(η(x))η′(x) dx

= [η′(x∗)]k
∫ ∞
−∞

SkG(y)g(y) dy.

2

Let the density g of G ∈ PR be unimodal. If g(y) = O(e−y) when y →∞,
SG(y) = O(1). By (5), the transformed distribution F ∈ P(0,∞) has density
f(x) = g(log x) 1

x
so that f(x) = O(1/x2) and SF (x) = O(1) as well. Then,

ESkF is finite for any k ≥ 1. Contrary to usual moments, the score moments
of heavy-tailed distributions exist.

Let us clarify the meaning of score moments.

i) For any F ∈ PX , ESF = 0 due to the fact that ESG = 0 and Theorem
2. By (1), the solution y∗ of equation SG(y) = 0 is the mode of G. By
(21), TF (x∗) = SG(η(x∗)) so that x∗ = η−1(y∗) is the transformed mode of
the prototype of F . This value, which we call here a score mean, is taken
as a typical value of distribution F . It exists and is unique for distributions
with unimodal prototypes (distributions with multimodal prototypes could
be perhaps viewed as mixtures). Let us note that there are three distributions
with linear sfd’s, the normal (Table II), gamma (Table I) and beta (19), score
mean (typical value) x∗ of which is the mean.

ii) By (13), ES2
F of transformed location distributions is the Fisher infor-

mation for τ . Analogously, we interpret ES2
F of any continuous distribution

as Fisher information for x∗ (or simply the mean information of distribution
F ). Function

IF (x) = S2
F (x), (22)

increases from the least informative point x∗ in both directions to the end-
points of the support interval with the average amount of information of
distribution F . We interpret (22) as an information function, expressing
relative information about x∗ contained in x (Fabián, 2012).

Fisher information for x∗ of some parent distributions from PR is given
in Table II. Fig. 3 shows densities, score functions and information functions
of two distributions from Table I with x∗ = 5. Score functions and infor-
mation functions of the Weibull distribution are unbounded when x → ∞,
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whereas those of beta-prime distribution are bounded. In the latter case,
information contained in observations near zero (with a low probability of
their occurrence) is high, but finite.

Fig. 3. Functions characterizing Weibull (left) and beta-prime distributions (right)

with x∗ = 5.

Based on analogy with the Cramér-Rao theorem for variance of efficient
estimators, and by Example 1 in Hampel et al. (1986), pp.104, the reciprocal
value of Fisher information called here score variance

ω2 =
1

ES2
F

(23)

was suggested by Fabián (2007) as a measure of variability of distribution
F . Its square root ω =

√
(ω2), a score deviation, represents a characteristic

radius of the distribution. By Theorem 2, the score variance of F ∈ P(0,∞)

with prototype G is ω2 = (x∗)2/ES2
G. In Fig. 4 are plotted densities of

Weibull and beta-prime distributions, all with ω2 = 1. Note that they look
as if having a similar variability. We add that the densities in Fig. 3 differ
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just due to various ω2 = τ 2/c2 (Weibull) and ω2 = p(p + q + 1)/q3 (beta
prime) of distributions.

Fig. 4. Densities of distributions with equal score deviance ω = 1. Typical values

are marked by crosses on the x-axis.

iii) M3 characterizes skewness. The negative/positive value of M3 indi-
cates a negative/positive skewness. If M3 = 0, distribution can be taken as
“symmetric on X”. Particularly, M3 = 0 if f(−x) = f(x) when X = R,
f(1/x) = x2f(x) when X = (0,∞) and f(1 − x) = f(x) when X = (0, 1).
Note that M3 6= 0 of F ∈ P(0,∞) means a departure from the “symmetric
form on (0,∞)”, which is itself skewed.

iv) M4 characterizes flatness of the distribution, described by an analog
of Pearson’s measure of kurtosis γ2, coefficient γ̃2 = M4/M

2
2 . The values

γ2 and γ̃2 of some symmetric distributions from PR with various behavior
of sfd’s are shown in Table II. The values of γ̃2 forms a logical structure
reversed to kurtosis. To obtain a clearer picture we omitted in the table γ̃2

of non-symmetric distributions. γ2 of the Cauchy distribution does not exist.

TABLE II. Score moments of some prototype distributions.

distribution f(x) SF (x) M2 M3 M4 γ̃2 γ2

no name 1
c
e−x

4/4 x3 2.028 0 45 10.94 1.707

normal 1√
2π
e−

1
2
x2 x 1 0 3 3 3

extr. value e−xe−e
−x

1− e−x 1 -2 9
Gumbel exe−e

x
ex − 1 1 2 9

logistic ex

(1+ex)2
ex−1
ex+1

1/3 0 1/5 1.8 4.2

Cauchy 1
π(1+x2)

2x
1+x2

1/2 0 3/8 1.5 -

Laplace 1
2
e−|x| sgn x 1 0 1 1 6
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4. THE SCORE MOMENT METHOD AND CHARACTERISTICS OF
DATA SAMPLES

The score moment (SM) estimator (θ̂SM)n is athe solution to implicit
estimating equations, the finite parametric versions of (20)

1

n

n∑
i=1

SkF (xi; θ) = ESkF (θ), k = 1, ...,m. (24)

(24) is a special form of an M-estimator with inference function

Ψ(x; θ) = [SF (x; θ), S2
F (x, θ)− ES2

F , ..., S
m
F (x; θ)− ESmF ].

The conditions for existence of “well-behaved” (unique, consistent and asymp-
totically normal) M-estimators of several parameters are well-known, see for
instance Serfling (1980), Hampel et al. (1986), Marrona et al. (2006), Huber
and Ronchetti (2009) etc. Since ESF = 0 and higher score moments are
finite, the sufficient conditions are that i) moments ESk(θ) are differentiable
with respect to any θk, ii) matrix B with elements

Bjk = E[kSk−1
F (x; θ)

∂SF (x; θ)

∂θj
]θ=θ0 − ESkF (θ0)

is non-singular. The last condition must be dealt with separately in each
situation; in simple setups with two-parameter distributions we did not en-
counter any violation.

From the above considerations it follows

THEOREM 3. Let (X1, ..., Xn) be a random sample from distribution Fθ0 , θ0

unknown, and let the score function of distribution Fθ, SF (x; θ), satisfy the
above conditions. The solution of equations (24) is consistent and asymptot-
ically N (θ0,B

−1A(B−1)′), where A = EΨ(x; θ0)Ψ(x, θ0)′.

The SM estimation equations are often quite simple and score moments
are often simple functions of parameters. In what follows the SM estimators
are written without suffixes.

EXAMPLE 4.1. Estimating equations (24) for Weibull distribution with
semi-bounded score function (Table I) are

n∑
i=1

[(xi/τ)c − 1] = 0
1

n

n∑
i=1

[(xi/τ)c − 1]2 = 1.

14



ĉ is thus a solution of equation n
∑n

i=1 x
2c
i = 2 (

∑n
i=1 x

c
i)

2
. From the first

equation τ̂ = 1
n

(∑n
i=1 x

ĉ
i

)1/ĉ
.

EXAMPLE 4.2. A particular case of the Pearson VI distribution, the beta-
prime distribution, called also the beta of the II kind [Johnson, Kotz and
Balakrishnan (1995)], is heavy-tailed if 0 < q < 2. However, it has a bounded
sfd (Table I) even when q ≥ 2, so that SM estimate can be robust even in
some cases of light-tailed distributions. Since

ET 2 =

∫ ∞
0

(
qx− p
x+ 1

)2
1

B(p, q)

xp−1

(x+ 1)p+q
dx =

pq

(p+ q + 1)
,

the estimating equations (24) are

n∑
i=1

xi − x∗

xi + 1
= 0

ξ(x∗) ≡ 1

n

n∑
i=1

(
xi − x∗

xi + 1

)2

=
p

q(p+ q + 1)
,

from which

x̂∗ =

∑n
i=1

xi
1+xi∑n

i=1
1

1+xi

, (25)

p̂ = x̂∗q̂ and q̂ = (x̂∗/ξ(x̂∗)− 1)/(x̂∗ − 1).

Some results of Monte Carlo simulation experiments are presented in Ta-
ble III. Random samples of length n = 50 were generated from the Weibull
and beta-prime distributions. Average relative efficiencies of x∗ and ω2, given
by e(x̂∗) = var(x̂∗ML)/var(x̂∗) and e(ω̂2) = var(ω̂2

ML)/var(ω̂2) were deter-
mined over 10 000 samples. Their values indicate that the SM estimates of
typical value have often an admissible accuracy. A general observation is that
the accuracy of estimates decreases if densities have the mass concentrated
near zero and very long tail. Further, in the case of Weibull distribution
the accuracy of estimates of ω is low if the density has a sharp narrow peak
distant from zero.
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TABLE III. Efficiencies of SM estimates. Left: Weibull, right: beta-prime.

x∗ ω 0.5 1 2 3 4 0.5 1 2 3 4
1 0.96 0.93 0.93 0.88 0.83 1.0 0.99 0.87 0.82 0.73
3 e(x∗) 0.96 0.95 0.94 0.93 0.92 1.0 1.0 0.99 0.99 0.98
5 0.95 0.95 0.94 0.94 0.94 1.0 1.0 1.0 1.0 1.0

1 0.78 0.94 0.95 0.99 1.0 0.99 0.98 0.78 0.67 0.60
3 e(ω) 0.70 0.72 0.84 0.93 0.99 0.99 0.97 0.91 0.85 0.79
5 0.66 0.69 0.77 0.81 0.86 0.99 0.98 0.95 0.92 0.85

Some other examples can be found in Fabián (2010) and Stehĺık et al.
(2011).

The sample score mean x̂∗ = x∗(θ̂n), where θ̂n is some consistent estimate
of θ, can be considered as a “center” of a random sample from Fθ.

In cases of one-parameter distributions, the first equation of system (24)
can be often written as

n∑
i=1

SF (xi;x
∗) = 0 (26)

with x∗ taken as parameter. Let us call the solution x̂∗ to the equation (26)
expressed as an explicit function of sample observations a score average. The
asymptotic variance of score averages is clearly (c.f. Fabián, 2009)

σ2
a = ES2/[

∂

∂x∗
SF (x;x∗)]2.

Let us give some examples. The score average of a sample from the normal
distribution is the arithmetic mean, the score average of a sample from the
Gumbel distribution with f(x) = ex−µe−e

x−µ
and SF (x) = ex−µ − 1 is

x̂∗ = µ̂ = log

(
1

n

n∑
i=1

exi

)
, (27)

which equals to the ML estimate of the location parameter. To give an exam-
ple of a distribution without location parameter, a prototype of the gamma
distribution has density f(x;α, γ) = γα

Γ(α)
eαxe−γe

x
and sfd SF (x;α, γ) =

γex − α so that x∗ = log(α/γ) and the score average of the data from it
is, incidentally, given by (27) as well. Score average of a sample from the
Laplace distribution is median.
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Score averages of samples from members of P(0,∞) listed in Table I are:

i) If c is a constant, lognormal x̂∗ = ( 1
n

∏
xci)

1/c, Weibull x̂∗ = ( 1
n

∑
xci)

1/c,
Fréchet x̂∗ = 1/( 1

n

∑
1
xci

)1/c. If c = 1, the score average of the lognormal

distribution is the geometric mean, of Weibull the mean and of the Fréchet
distribution the harmonic mean.

ii) The score average of a sample from the gamma distribution is the
mean, from inverted gamma the harmonic mean, from beta-prime distribu-
tion is given by formula (25), from Pareto distribution (17) with sfd (18)
the harmonic mean and score average of the sample from the log-gamma
distribution (16) is x̂∗ = 1

n

∑
log xi.

Further, the estimate of the score variance, the sample score variance, is
given by ω̂2 = ω2(θ̂n) or as a finite version of (23), that is,

ω̂2 =
n∑n

i=1 S
2
F (xi; θ̂n)

.

5. ESTIMATION IN THE PRESENCE OF OUTLYING VALUES

If the data iid according distributions with unbounded or semi-bounded
sfd’s are contaminated, it is necessary to modify inference function by the
use of some of procedures of robust statistics. Since SF is a scalar function,
such modification is in principle easy to apply.

To obtain robust score moment estimators for distributions with un-
bounded or semi-bounded score functions, we chosen Huber’s suggestion
(1964) modified by Huber and Ronchetti (2005) to use as an inference func-
tion of distributions from PR

ψ(x) =

{
SF (x− µ) if |x− µ| ≤ v
r sgn(x− µ) if |x− µ| > v,

where v is some bound and r = SF (v). According to Beran and Schell (2010),
the procedure is called “huberizing”.

DEFINITION 2. Let SF (x; θ) be sfd of Fθ ∈ PX where X = (a, b) and let

a ≤ u < v ≤ b. Set

ψk(x; θ) = [SkF (x; θ)]vu − Eθ{[SkF (x; θ)]vu}, (28)
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where [y]vu = min(max(y, v), u). The M-estimator (θ̂H)n defined as the solu-

tion of equations

n∑
i=1

ψk(xi; θ) = 0, k = 1, ...,m (29)

will be called a huberized score moment estimator.

THEOREM 4. Let (θ̂H)n →p θ0, Eψk(x; θ) be differentiable at θ0, and ψk
be continuously differentiable according θk. Let matrix B of derivatives with
elements ψ̇jk = ∂ψk/∂θj|θ=θ0 be nonsingular, |ψ̇jk(x; θ)| ≤ K(x) for j, k =
1, ...,m where EK(x) <∞, and E|ψk(x; θ0)|2 be finite. Then,√

(n)(Tn − θ0)→d Np(0,B−1A(B−1)′)

where A = Eψk(x; θ0)ψk(x; θ0)′.

Proof. Assumptions of the theorem agree with assumptions of the well-known
result (cf. Theorem 10.11, Maronna et al., 2006). 2

Set

Ik|cd(θ) =

∫ d

c

SkF (x; θ) dFθ(x),

Iku(θ) = SkF (u; θ)Fθ(u) and Ivk = SkF (v; θ)(1− Fθ(v)). Equations (29) can be
then written in the form

1

n

n∑
i=1

SkF (x̃i; θ)−ESk(θ) = −{Ik|au(θ)+Ik|vb(θ)}+{Iku(θ)+Ivk (θ)}, (30)

where

x̃i =


r1 if xi < u
xi if u ≤ xi ≤ v
r2 if xi > v,

(31)

where r1 = SF (u; θin), r2 = SF (v; θin) and where θin is some initial value of
θ. As initial robust estimates of x∗ and ω can be used x̂∗0 = median(x) and
ω̂0 = qMAD(x), where MAD = median(|x−median(x)|) and q is a constant.
Initial estimates of the parameter vector θ = (θ1, θ2) were determined as

θin = θ(x̂∗0, ω̂0). (32)
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For two-parameter distributions, relation (32) is usually one-to-one.
This general scheme will be now used for a study of properties of huberized

score moment estimators of simple distributions with unbounded or semi-
bounded score functions.

EXAMPLE 5.1 Normal distribution N (µ, σ), x∗ = µ, ω = σ. Set u =
µ0 − rσ0, v = µ0 + rσ0. The huberized sfd is

ψ(x) =


−r if x < u
x−µ
σ

if u ≤ x ≤ v
r if x > v.

(33)

Since Eψ = 0 and, by (30),

Eψ2 = 1− 2√
2π

∫ ∞
r

ξ2e−
1
2
ξ2 dξ + r2 2√

2π

∫ ∞
r

e−
1
2
ξ2 dξ,

it follows from (29) that µ̂H = 1
n

∑n
i=1 x̃i and

σ̂2
H =

1
n

∑n
i=1(x̃i − µ̂H)2

1−
√

2
π
re−

1
2
r2 + (r2 − 1)(1− erf(r/

√
2))

. (34)

In simulation experiments, 2 000 samples of length n = 50 were taken
from a contaminated distribution

Fcont(µ, σ) = (1− ε)Φ(0, 1) + εΦ(0, 1 + k)

with ε = 0.1. Average ML and huberized score moment (H) estimates of σ
are plotted together with their standard deviations against increasing k for
different r in Fig. 5. The ML estimates with increasing k are increasing
linearly, the huberized estimates are much useful, but higher than the true
value, indicating thus a contamination.
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Fig. 5. Estimates of σ of contaminated N (0, 1) under increasing contamination,

left: θ̂H , right: std(θ̂H).

EXAMPLE 5.2. Weibull distribution (Table 2) has the sfd when x → ∞.
Let us take as an inference function the tapered simplified sfd,

ψ(x; τ, c) =

{
(x/τ)c − 1 if x ≤ v

r if x > v,
(35)

where r = (v/τ)c − 1. The first and third members of r.h.s. of (30) are zero.
Denote by λ(d) function

λ(d) =

∫ ∞
v

[(x/τ)c − 1]d
c

τ
(x/τ)c−1e−(x/τ)c dx =

∫ ∞
w

(ξ − 1)de−ξdξ

where w = (v/τ)c. Since Ivk (θ) = rk
∫∞
w

[1 − (1 − eξ)] dξ, the estimation
equations (30) are

1

n

n∑
i=1

((x̃i/τ)c − 1) = −λ(1) + rλ(0) (36)

1

n

n∑
i=1

((x̃i/τ)c − 1)2 − 1 = −λ(2) + r2λ(0).

Set now
v = τ0 + kω0 = τ0(1 + k/c0)

where τ0 = median(x) and ω0 = MADN(x) = MAD(x)/0.675. Then w =
(1 + k/c0)c0 , r = w− 1, λ(0) = e−w, λ(1) = we−w and λ(2) = (1 +w2)e−w so
that the equations turn into

τ c =
1
n

∑n
i=1 x̃

c
i

1− e−w

τ 2c =
1
n

∑n
i=1 x̃

2c
i

2[1− (w + 1)e−w]
.
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By subtracting the second equation from the square of the first, we obtain

by an iterative way ĉH , and then τ̂H =
(

1
n

∑n
i=1 x̃

ĉH
i /(1− ew)

)1/ĉH
. As a

result we obtain the huberized score moment estimates τ̂H of typical value
and ω̂ = τ̂H/ĉH of score deviance as functions of k.

Let us give some results of simulation experiments. We refer the density
of any two-parameter distribution as a function of x∗ (9) and ω (23). In cases
of distributions with support (0,∞), the contaminated distribution was in
the form

fc(x
∗, ω) = (1− ε)f(x∗, ω) + εf(x∗ + k, ω)

with fixed ε = 0.1. Average ML and H estimates are plotted together with
their standard deviations against increasing k for some tuning values r in
Fig. 6. Similarly as in the previous case, ML estimates of a positive random
variable are increasing linearly with increasing k, the huberized estimates
stabilize at certain level, which is, however, higher than the true value, indi-
cating thus contamination.

Fig. 6. Average estimate of typical value and score deviation of contaminated

Weibull distribution and their standard deviations.

Average efficiencies of huberized moment estimates for various combina-
tions of τ and ω are presented in Table IV. The main technical problem
appeared to be the choice of initial values x∗0 and ω0. Estimates successfully
used for contaminated normal (median and MAD) can be used in cases of
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data from skewed distributions from P(0,∞) only in cases that ω is not too
large with respect to x∗, that is, in cases of densities with a relatively sharp
peaks or densities quickly decreasing to zero. In cases where x∗ < ω (in
Table IV marked by “−′′), it is to use other input values. The problem needs
further investigations.

TABLE IV. Comparison of efficiencies of SM and H estimates for Weibull.

x∗ ω 0.5 1 2 3 0.5 1 2 3
1 0.96 0.93 0.93 0.88 0.94 0.93 - -
3 e(x∗) 0.96 0.95 0.94 0.93 0.95 0.95 0.94 0.95
5 0.95 0.95 0.94 0.94 0.95 0.94 0.95 0.94

1 0.78 0.94 0.95 0.99 1.07 0.95 - -
3 e(ω) 0.70 0.72 0.84 0.93 0.74 0.93 1.0 0.96
5 0.66 0.69 0.77 0.81 0.71 0.78 0.99 1.09

EXAMPLE 5.3. The sfd of the Gamma distribution (Table I) is an semi-
bounded function SF (x) = x−x∗

ω2 , x∗ = α/γ and ω = α/γ2. By setting u = 0
and v = x∗0 + kω0, the huberized sfd is

ψ(x) =

{
x− x∗ if x ≤ v
r if x > v.

By observing that E(x−x∗)2 = ω2, we tried to use simplified equations (29)

1

n

∑
(x̃i − x̂∗H) = 0

1

n

∑
(x̃i − x̂∗H)2 = ω̂2

H ,

where x̃i are given by (31). Surprisingly, even biased solutions from these
simple equations (Fig. 7) are reasonably efficient.
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Fig. 7. Average estimate of typical value and score deviation of contaminated

gamma distribution.

Fig. 8 shows the ML and H estimates and 10% and 20% trimmed mean
of typical value x∗ of the gamma distribution contaminated by the same
way as in Example 5.2. x̂∗ML is approximately linearly increasing and the
trimmed mean depends on the “guessed” percent of contamination. Trimmed
mean is a very unstable estimate, which documents the behavior of standard
deviations.

Fig. 8. Robust estimates under increasing contamination.

Fig. 9. shows that the assumption on the underlying distribution is impor-
tant. Distributions gamma(x∗, ω) and Weibull(x∗, ω), in case x∗ = 1, ω = 1
identical, are rather different distributions if x∗ = 3, ω = 2. The data gen-
erated from both distributions with these values were estimated by both
huberized gamma and huberized Weibull estimators. Average values of x̂∗

exhibit a large bias when using an improper model.
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Fig. 9. Using the proper and improper estimator. Data are generated from a

distribution stated in the headline.

A comparison of models F and G can be based on the score divergence,
a function of θ suggested in a slightly different form as core divergence by
Fabián and Vajda (2003),

DFG =

∫
X

(SG(x; θ)− SF (x; θ))2 f(x; θ) dx,

where SF and SG are the corresponding sfd’s.

EXAMPLE 5.4. K=2 000 samples of length n=50 were generated both
from Weibull(x∗ = 1, ω) and gamma(x∗ = 1, ω) for increasing ω, and their
parameters were estimated under assumption of both F : Weibull and G :
gamma. Fig. 10 shows the empirical distance

DFG(ω) =
1

Kn

K∑
k=1

n∑
i=1

[
ĉ

τ̂
((xi/τ̂)ĉ − 1)− xi − x̂∗

ω̂2

]2

as functions of increasing score deviation ω of the generated samples. Esti-
mates were determined by both ML and SM method. For samples from the
Weibull, the SM method affords indiscernibly worse efficiencies, but is much
more robust if the data originate from the gamma.
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Fig. 10. Observed score divergence of the Weibull and gamma distributions as

functions of ω.

6. CONCLUSIONS

Score function of distribution (sfd) is a function describing relative in-
fluence of an observation on central characteristic of the given model with
support X . The concept is based on a finding that any density formula can
be explained as a product of some transformed basic form and Jacobian of
the transformation η : X → R. In the paper, we developed this concept in a
general way.

Sfd’s can be used for parametric estimation by means of the general mo-
ment method. The score moment estimates are often not efficient, but in
cases of bounded sfd’s (a characteristic property of heavy-tailed distribu-
tions) robust for all the components of parametric vector. By using inference
function in the form of a huberized sfd, one can obtain a suitable tradeoff
between efficiency and robustness of estimators even if light-tailed distribu-
tions are highly non-symmetric. As an unsolved problem remains the choice
of initial values of parameters of iterative procedures.

Further, the estimates of parameters of the assumed parametric model
need not be final results of parametric inference. The more interesting values
are the sample score mean (as a typical value of the sample), the sample vari-
ance (as a variability of the sample) and, perhaps, the higher score moments,
as functions of estimated parameters, which enable comparing of results of
estimation under various differently parametrized models.
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Marrona, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust statistics.
Theory and methods. Wiley, Chicester.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics,
Wiley.

Sen, P.K., Singer J.M., Pedroso da Lima, A. (2010). From finite sample to
asymptotic methods of statistics. Cambridge univ. press, New York.
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