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Abstract:

Propagation of elastic waves in fractured media, that is, in broken media with contact boundaries between
bodies being in mutual contacts, and under self-gravity field will be discussed. Such problems are e.g.
problems of global seismology. For numerical solution the spectral-element method can be used with a
great merit.

The paper extends the global seismology results to problems modelling elastic wave propagations in
the global Earth with a fractured lithosphere and under a self-gravitation. Numerical solution of the model
problem, based on its variational formulation and the spectral-element method, is presented.
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1 Introduction

Mathematical modelling of elastic wave propagations play an important role in seismological stud-
ies. Next, we will introduce a mathematical model of elastic wave propagations through the partly
fractured media. In our study the mathematical model of the Earth with broken lithosphere under
self-gravitation will be formulated and discussed. The main aim of the paper is to extend results of the
global seismology to problems modelling propagation of elastic waves in the Earth with a fractured
lithosphere and under a self-gravity field and to outline the numerical method and an idea of algorithm
for a computational realization. The model facilitates to understand movements of the lithospheric
plates and blocks evoked by the bigger earthquake in the sense of the plate tectonic theory as well as
to simulate ensuing aftershocks.

In the global Earth’s model the surface of the Earth is a free surface, therefore, in global seismo-
logical models prescribed loads (nonzero or zero) are only given. The great merit of mathematical
modelling of seismic wave propagation inside the Earth is that there are no absorbing boundaries,
because the Earth’s surface is a free boundary. On the other hand the effects of self gravitation and
rotation on seismic wave propagations, namely for long-period surface waves, need to be taken into
the consideration. Hence, the Earth is modelled by a rotating, self-gravitating layered model, in which
the elastic wave equations are written for the lithosphere and the mantle, for the outer core and for
the inner core. The spectral-element method can be used with a great merit in global seismology
problems. Since the aim of the paper is outside the detailed study of the wave propagation inside
the Earth from the point of view of the global seismology, we will introduce the main ideas of the
global Earth’s model with partly fractured lithosphere and then discuss the model and method for its
numerical solution. The readers, who are interested in these problems, will find the detailed studies
namely in the books regarding problems of the global seismology, inclusive methods of their solutions,
e.g. in Dahlen and Tromp (1998), Chaljub (2000), Liu (2006) and in special papers as e.g. Anderson
(1987), Rouchi et al. (1996), Seriani (1998), Komatitsch and Tromp (1999), (2002a,b), Komatitsch
et al. (2000a,b), (2002), (2003), (2005), Capdeville et al. (2003), Chaljub et al. (2003), Chaljub and
Valette (2004). For algorithms see e.g. Canuto et al. (1988), Quarteroni et al. (1988), Dahlen and
Tromp (1998), Komatitsch and Tromp (1999). In all problems discussed in these papers and books
the contact boundaries between two different parts of the Earth, like the different lithospheric blocks
being divided by the deep faults as well as the lithospheric plates and the mantle that being in mutual
contacts and along which they can mutually shift, are not assumed. In this paper we will assume the
existence of contact boundaries between the neighboring lithospheric plates and the neighboring litho-
spheric blocks in the broken up lithosphere as well as the contact boundary between the lithosphere
and the mantle and the existence of the friction acting at these contact boundaries, because from the
plate tectonic point of view the lithospheric plates and blocks mutually collide, and therefore, they
can move one to another. These movements can be also evoked by earthquakes. In our study we will
assume the existence of the non-penetrability conditions (known as the Signorini type conditions) and
the Coulomb friction acting on these contact boundaries. These non-penetrability conditions describe
the facts (i) that the relative normal displacement on the common contact part of the contact bound-
ary cannot be larger than the distance d between the bodies (lithospheric plates and blocks) being in
mutual contact; (ii) that by contact only compressive normal forces can be transmitted; (iii) that nor-
mal forces can be transmitted only if there is contact, that is, if d = 0. The existence of the friction at
the contact boundaries, which is described by the Coulomb law of friction, is possible only if colliding
bodies are in mutual contact, i.e., if d = 0. The frictional forces acting on the contact boundaries
are, in their absolute value, proportional to the normal stress component, where the coefficient of
proportionality is the coefficient of Coulomb friction. Then, due to the tangential and frictional forces
acting at the contact boundary, we have two cases: (i) if the absolute value of tangential forces is less
than the frictional forces, then the frictional forces preclude the mutual shifts of both bodies being
in contact and thus in the collision area stresses are further accumulated; (ii) if the tangential forces
are equal in their absolute value to the frictional forces, then there are no forces that can preclude
the mutual movements of both elastic bodies. Thus the contact points change their position in the
direction opposite to that in which the tangential stress component acts. This is one mechanism of
the earthquake origin as well as the mechanism of the possible aftershocks.
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2 The model

The Earth is the spherical-like body occupying the domain Ω ∈ R3, where Ω = Ω
L∪Ω

M ∪Ω
OC ∪Ω

IC
,

and where ΩL represents the domain occupied by the lithosphere, ΩM is the domain occupied by the
mantle, ΩOC and ΩIC are the domains occupied by the outer core and the inner core, respectively.
The surface of the Earth is denoted by ∂Ω and represents the free boundary. The interface boundary
between the lithosphere and the mantle is denoted by ΓLMc = ∂ΩL∩∂ΩM , and the interface boundaries
between the mantle and the outer core is denoted by ΓMOC

c = ∂ΩM ∩ ∂ΩOC and between the outer
core and the inner core by ΓOICc = ∂ΩOC ∩ ∂ΩIC , respectively. The lithosphere ΩL is assumed to

be occupied by a system of bodies of arbitrary shapes ΩLι, Ω
L

= ∪ri=1Ω
Lι
. The contact boundaries

Γsmc between the neighboring lithospheric blocks ΩLι, ι = s,m ∈ [1, r] , being in common contacts,
are defined as Γsmc = ∂ΩLs ∩ ∂ΩLm, s 6= m, s,m ∈ [1, r] . Let I = (0, tp) , tp > 0, be a time interval.

Let n denote the outer normal vector to the boundary, v be the displacement vector, τ be the stress
tensor, vn = vini, vt= v−vnn, τn = τ ijnjni, τ t = τ−τnn be the normal and tangential components
of displacement vector v = (vi) and stress vector τ = (τi) , τi = τ ijnj , i, j = 1, 2, 3. Let us denote by
v′ = dv

dt the velocity vector. Let us denote by [w]
sm

= ws − wm the jump of function w across the
contact boundary between neighboring bodies Ωs and Ωm.

To formulate the contact and friction conditions, let us introduce at each point of Γsc the vec-
tors tsi , i = N − 1, N = 3, spanning in the corresponding tangential plane. Let {ns, tsi} , i = 1, 2,
be an orthogonal basis in RN for each point of Γsc. To formulate the non-penetration condition we
use a predefined relation between the points of the possible contact zones Γc. Therefore, we in-
troduce a smooth mapping R : Γsc → Γmc such that R (Γsc) ⊂ Γmc , and we will assume that the
mapping R is well defined and maps any x ∈ Γsc to the intersection of the normal on Γsc at x
with Γmc . Then [v]

sm
:= vs (x) − vm (R (x)) , [vn]

sm
:= [v]

sm
.ns is the jump in normal direction,

[vt]
sm

= (vs (x)− vm (R (x))) − [v]
sm

.ns and τsn = (ns)
T
τ s (x) ns = (ns)

T
τm (R (x)) ns is the

boundary stress in normal direction on the possible contact part, and moreover, (tsi )
T
τ s (x) tsi =

(tsi )
T
τm (R (x)) tsi , i = N − 1, must be ensured.

To introduce the wave equation for the global model of the Earth the law of conservation of
momentum will be used. The differential form of the law of conservation of momentum is of the
following form

ρ
d2v

dt2
= ∇.τ + f in I × Ω, (2.1)

where ρ is the density, τ is the stress tensor, f is the body forces, where f may be written in terms of
the moment tensor M or of the moment-density tensor m (Dahlen and Tromp (1998), Komatitsch et
al. (2005)) and where df

dt = ∂f
∂t + (v.∇) f . Since the Earth rotates and the geological structure of the

Earth depends with depth, the wave equations will be different in the lithosphere, the upper and lower
mantle and in the outer and inner core, and therefore, the effects of self gravitation and rotations on
seismic wave propagation inside the Earth′s body can also be taken into the consideration (Cathles
III (1975), Dahlen and Tromp (1998)). Then the wave equation in the lithosphere and the upper and
lower mantle can be written as

ρ

(
d2v

dt2
+ 2ω̂ × ∂v

∂t

)
= ∇.τ +∇ (ρv.g)− ρ∇Φ−∇. (ρv) g + f , (2.2)

where ρ is the density, ω̂ is the Earth′s angular rotation vector, g is the gradient of the geopotential,
i.e., ∇Φ = −g, τ is the stress tensor, which can be defined by the generalized Hooke′s law in elasticity
or visco-elasticity with short or long memories or by the generalized Hooke′s law in a special nonlinear
(thermo-visco-) elasticity, where the deformation energy is the non-linear function of a strain, that is,

W = (cijkl (x,v) eij (v) ekl (v))
λ
, τ ij = ∂W/∂eij , and where λ is some parameter, that covered up

elastic properties of rocks (if λ = 1), their hardening (if λ > 0) and softening (if λ < 0) properties
and/or their partly melted areas characterized by soften rocks. This last rheology can be useful because
it can describe the rheology in all places of the Earth. The visco-plastic Bingham rheology can also be
used with a great merit (Nedoma (1998), (2006), (2010), (2012)). In this paper we limit ourselves to
the elastic rheology for solid parts of the Earth only and to the fluid rheology for the outercore. The
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earthquake source is simulated by the body force f given in terms of the moment-density tensor m for
a source of finite size, such as a fault plane

∑
source, that is, f = −m (xs, t) .∇δ (x− xs) on

∑
source,

or in terms of the moment tensor M for a point source, that is, f = −M.∇δ (x− xs) .S (t) , where
xs denotes the locations of the source, S (t) is the source-time function and δ (x− xs) is the Dirac
distribution located at xs. The perturbed gravitational potential Φ is given by the Poisson equation
within the Earth and the Laplace equation in the space outside the Earth, respectively, that is,

∇2Φ = −4πG∇ · (ρv) within the Earth,

∇2Φ = 0 outside the Earth, (2.3)

where G is the gravitational constant.
The Laplace equation is defined in all of the space, then solving (2.2) in conjunction with the

Poisson′s and Laplace’s equations bring some numerical problems. Therefore, the so-called Cowling′s
approach (see Cowling (1941), Valette (1987), Dahlen and Tromp (1998), Chaljub (2000), Chaljub
et al. (2003)) is used, where perturbations Φ in the gravitational potential are ignored while the
unperturbed gravitational potential is reduced and the convective term can also be ignored. Then
(2.2) leads to

ρ

(
∂2v

∂t2
+ 2ω̂ × ∂v

∂t

)
= ∇.τ +∇ (ρv.g)−∇. (ρv) g + f . (2.4)

The outer core does not transmit S-waves (Jeanloz (1990), Jacobs (1992)), which is interpreted in
such a way that the outer core is strongly plastic close to liquid state, while the inner core is solid. In
the outer core the equation of motion is of the form

ρ

(
∂2v

∂t2
+ 2ω̂ × ∂v

∂t

)
= ∇ (k∇.v+ρv.g)− ρ∇Φ−∇. (ρv) g, (2.5)

where k is the bulk modulus of the fluid. Since before the earthquake event the environment of the
outer core is assumed to be in a hydrostatic equilibrium, the equation of motion (2.5) can be of the
following form (Komatitsch et al. (2005))

∂2v

∂t2
+ 2ω̂ × ∂v

∂t
= ∇

(
ρ−1k∇.v + v.g − Φ

)
+ ρ−1g−2k (∇.v) Ñ2g, (2.6)

where Ñ2 =
(
ρ−1∇ρ− ρk−1g

)
.g, g = |g| , Ñ is the Brunt-Väisälä frequency (Valette (1986), Dahlen

and Tromp (1998), Chaljub and Vallete (2004), Komatitsch et al. (2005)); if Ñ2 = 0 then the outer
core is assumed to be stably stratified and isentropic (i.e., of the same entropy), studied e.g. by
Komatitsch and Tromp (2002b), who also assumed that Φ ≡ 0, that is, the case without perturbation
in gravity, based upon the Cowling approximation. The case if Ñ2 6= 0 represents the case of a fluid
in self-gravity field (Chaljub and Vallete (2004)), where the Cowling approximation is not required.
Let us decompose the displacement field v into the scalar potential ϕ and a vector field ψ as

v = ∇ϕ+ψ, (2.7)

where ϕ and ψ remain to be determined, and then substitute them into (2.6). Thus we obtain

∇
(
∂2ϕ

∂t2

)
+ 2ω̂ ×∇

(
∂ϕ

∂t

)
+
∂2ψ

∂t2
+ 2ω̂ × ∂ψ

∂t
=

= ∇
(
ρ−1k∇2ϕ+ g.∇ϕ+ ρ−1k∇ ·ψ + g ·ψ − Φ

)
+

+ρ−1g−2k
(
∇2ϕ+∇.ψ

)
Ñ2g. (2.8)

Eq. (2.8) can be decomposed into the system corresponding to the scalar potential ϕ and the vector
ψ, which are the unknown functions (Komatitsch and Tromp (2002a,b)). Thus ϕ and ψ satisfy

∂2ϕ

∂t2
= ρ−1k∇. (∇ϕ+ψ) +g. (∇ϕ+ψ)− Φ, (2.9)
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and

∂2ψ

∂t2
+ 2

(
ω̂ × ∂ψ

∂t

)
=

= −2ω̂ ×∇
(
∂ϕ

∂t

)
+ g−2

(
∂2ϕ

∂t2
− g. (∇ϕ+ψ) + Φ

)
Ñ2g. (2.10)

Since the seismic data indicate that the inner core is solid, the equation of motion is the same as in
the lithosphere and the mantle, that is,

ρ

(
∂2v

∂t2
+ 2ω̂ × ∂v

∂t

)
= ∇.τ +∇ (ρv.g)−∇. (ρv) g, (2.11)

and because any earthquakes are not generated in the inner core, thus f = 0.
Now we need to determine the boundary, interface and initial conditions. Since the surface of the

Earth ∂Ω is the free boundary, therefore, the traction forces τ .n vanish, that is,

τ .n =0 on I × ∂Ω, (2.12)

where n is the unit outward normal to ∂Ω.

Remark 1 In a generalized case the resulting movements of water in the oceans and seas are also
assumed.

At the interface boundary ΓLMc between the lithosphere and the mantle we will assume the non-
penetration contact conditions together with (or without) the Coulomb law of friction, that is, on
ΓLMc (t) = I × ΓLMc ,

(i) the non− penetration contact conditions

[vn]
LM ≤ dLMn , τLn = τMn ≡ τLMn ≤ 0,

(
[vn]

LM − dLMn
)
τLMn = 0,

(ii) the Coulomb law of friction

[v′t]
LM

= 0 =⇒
∣∣τLMt ∣∣ ≤ FLMc (0)

∣∣τLMn ∣∣ ,
[v′t]

LM 6= 0 =⇒ τLMt = −FLMc
(

[v′t]
LM
) ∣∣τLMn ∣∣ [v′t]

LM∣∣∣[v′t]LM ∣∣∣ , (2.13)

are prescribed, as well as on the contact boundaries between lithospheric plates and blocks, divided
by the deep faults and being in mutual contacts, the non-penetration contact conditions together with
(or without) the Coulomb law of friction, that is, on Γc(t) = I × ∪s,mΓsmc ,

(i) the non− penetration contact conditions

[vn]
sm ≤ dsmn , τ sn = τmn ≡ τsmn ≤ 0, ([vn]

sm − dsmn ) τsmn = 0,

(ii) the Coulomb law of friction

[v′t]
sm

= 0 =⇒ |τ smt | ≤ Fsmc (0) |τsmn | ,

[v′t]
sm 6= 0 =⇒ τ smt = −Fsmc

(
[v′t]

sm) |τsmn | [v′t]
sm

|[v′t]
sm|

, (2.14)

are prescribed, where dLMn and dsmn are gaps between the lithosphere and the mantle and/or between
the contact boundaries between lithospheric plates (subduction and collision zones) and/or between
blocks ΩLs and ΩLm if exist, FLMc and Fsmc are coefficients of friction that in general depend on
the tangential components of the displacement-velocity vector v′ = dv

dt as well as on the material
properties (Nečas et al. (1980), Haslinger et al. (1996), Nedoma (1998), Eck et al. (2005)). The
lithospheric plates and blocks start to mutually move if the tangential force is much more bigger than
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the normal force |τn| . The proportionality coefficient F (1)
c is called coefficient of friction. The friction

creates a tangential force |τ t| opposite to the moving velocity with magnitude again proportional

to the normal force, |τ t| = F (2)
c |τn|. The proportionality coefficients F (1)

c and F (2)
c in general are

different. For simplicity we will assume that F (1)
c = F (2)

c ≡ Fc, and moreover, we will assume that the
coefficient of friction Fc depends on the sliding displacement vt, while in the general case it depends
on the sliding displacement-velocity v′t. For the existence result the admissible coefficient of friction
is given in dependence of the constants in the special trace estimates (Nečas et al. (1980), Haslinger
et al. (1996), Eck et al. (2005) and the references presented here). But it is particularly important
for applications to know their precise values. For more details and for special estimates of the friction
coefficients see Nečas et al. (1980), Haslinger et al. (1996), Nedoma (1987), (1998), Eck et al. (2005),
therefore, for special cases

∥∥FLMc ∥∥
L∞(ΓLMc )

(
or ‖Fsmc ‖L∞(Γsmc )

)
<

(
3

4

c0
c1

)1/2

<

(
3− 4ν

4− 4ν

)1/2

,

∥∥FLMc ∥∥
L∞(ΓLMc )

(
or ‖Fsmc ‖L∞(Γsmc )

)
<

(
cs
cp

)1/2

,

where c0, c1 > 0 are some constants (i.e., coefficients of ellipticity c0 and upper bounds c1 e.g. of the
Hooke tensor), ν is the Poisson’s ratio and cs and cp are velocities of S and P waves (Nedoma (1987),
(1998)). For the case without Coulomb friction the Coulombian friction coefficient Fsmc (.) ≡ 0, that
can be used because the contact zones between geological blocks and lithospheric plates being in
mutual contacts are partially melted. The above estimates can be presumed also in our case, because
we assume the elastic rheology.

Remark 2 According to the results presented in the above mentioned references, the dynamic multi-
body contact problems are in general open problems, some results are known for the static and quasi-
static contact problems. It was shown that the admissible coefficient of friction for the existence results
are given in dependence of the constants in the special trace estimates (e.g. based on the shift tech-
nique, see Eck et al. (2005), Section 1.7 and Section 3.3). The existence of these constants is known,
but it is important for applications to derive their precise values depending on material properties
of the rocks. Unfortunately, these estimates were derived for special problems only. It is possible to
derive optimal lower bounds for these constants only. But it must be pointed out that at present the
existence results were proved for special problems only. Therefore, the above mentioned estimates are
introduced for some orientation only.

The non-penetration conditions can be approximated as

τn = −1

ε

(
[vn]

LM − dLMn
)

+
, ε > 0, ε→ 0, on ΓLMc

τn = −1

ε
([vn]

sm − dsmn )+ , ε > 0, ε→ 0, on Γsmc (2.15)

which means that the support of the lithosphere is assumed to be not as perfectly rigid and smooth, but
infinitely resistent to compression, perfectly yielding in tension and shear and adhesively ”stuck” on the
lithosphere. Thus it leads to the idea of regarding it as a limit of supports perfectly yielding in tension
and shear whose resistance to compression subsequently increases. The symbol (z)+ = max {0, z}
denotes the non-negative part of z. The non-penetration contact conditions between the neighboring
lithospheric plates and the neighboring lithospheric blocks being in mutual contacts are approximated
by the similar way as above.

Let us assume that the Coulombian law of friction in every time level is approximated by its
value gLMc from the previous time level, i.e., gLMc ≡ FLMc |τLMn (v,v′)|) (t − ∆t), in the case of the
contact between the lithosphere and the mantle, and in the case of fractured lithosphere it is approx-
imated by its value gsmc from the previous time level, i.e., gsmc ≡ Fsmc |τsmn (v,v′)|) (t − ∆t). Thus
gLMc is a non-negative functions and has a meaning of a given friction limit (or a given friction bound,
representing the magnitude of the limiting friction traction at which slip originates), and where −gLMc

5



has a meaning of a given frictional force, and ∆t is a time element. Similarly, gsmc are non-negative
function and have a meaning of given friction limits (or given friction bounds, representing the magni-
tudes of the limiting friction tractions at which slips at contacts between lithospheric blocks originate),
and where −gsmc have a meaning of given frictional forces in the case of fractured lithosphere. Thus
the problem investigated will be approximated by another problem in which in every time level we
will solve the dynamic contact problem with the given friction. In this case we speak about the
Tresca model of friction. Therefore, it is evident that for a variational formulation and for numerical
computations the so-called Tresca model of friction can be used with a great merit.

At the interface boundary between the mantle and the outer core ΓMOC
c the normal component

of displacement vn is continuous and the normal stress component (traction) τn at the bottom of the
mantle is equal to the traction pn at the top of the outercore, where the outercore is assumed to be
the fluid, p denotes the perturbed pressure in the fluid. Thus

v.n|(∂ΩM ) = v.n|(∂ΩOC), τ .n|(∂ΩM ) = −pn|(∂ΩOC) on ΓMOC
c . (2.16)

At the boundary between the mantle and the outer core ΓMOC
c we need to exchange pressure p

between the solid mantle and the fluid outer core. Since v =∇ϕ+ψ and using Eq. (2.9) we find

p = −k∇.v = −ρ
[
∂2ϕ

∂t2
− g. (∇ϕ+ψ) + Φ

]
. (2.17)

At the interface ΓOICc between the outer core and the inner core the interface conditions are similar
to that of (2.16), that is,

v.n|∂ΩOC = v.n|∂ΩIC , p.n|∂ΩOC = τ .n|∂ΩIC on ΓOICc . (2.18)

Moreover, under the assumption that the medium is initialy at rest, the initial conditions are

v(x, 0) = v′(x, 0) = 0, x ∈ Ωs, ϕ(x, 0) = ϕ′(x, 0) = 0, ψ(x, 0) = ψ′(x, 0) = 0, x ∈ ΩOC , (2.19)

are given (Chaljub et al. (2003)).
To complete the set of boundary and initial conditions, the conditions for the Eulerian perturbation

of the gravitational potential (PGP, known also as the mass redistribution potential (MRP)) Φ at the
interface boundaries are as follows: the PGP must be continuous across these boundaries, that is,
[Φ] = 0, and the normal derivative of Φ have a jump [∇Φ.n] = −4πG [ρv.n] , where [.] ≡ [.]

+
− denotes

the jump operator across the interface boundary, defined in accordance with the unit normal vector
n, pointing from the ”-” side to the ”+” side, say between the mantle and the outer core as well as
between the outer core and the inner core, that is,

[Φ] = 0, [∇Φ.n] = −4πG [ρv.n] on ΓLMc and/or on ΓMOC
c ∪ ΓOICc . (2.20)

Under the assumption that there is no perturbation of the gravitational potential in the initial
configuration, thus Φ (x, 0) = 0.

Remark 3 Since the Earth’s crust in some of its parts is covered by a water in the oceans and seas,
therefore, the effects of moving waters in oceans and seas may be also taken into consideration. On the
other hand, the problem may be simplified of some effects as rotation or self-gravity field can be omitted
(see e.g. Komatitsch and Tromp (2002b), Dahlen and Tromp (1998), Komatitsch et al (2005)).
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3 Variational formulation of the problem

In order to suggest the spectral-element method, we firstly introduce the variational formulation of
the problem.

To formulate this generalized model problem variationally then due to (2.13) and (2.14) the problem
leads to solve the hyperbolic variational inequality problem. But it must be noted that to prove the
existence of the solution of this above mentioned generalized problem as well as its simplified versions
in their continuous formulations are at the present open problems.

It is known that the Eulerian perturbation of the gravitational potential (PGP) Φ satisfies the
Laplace equation outside the Earth’s surface ∂Ω, and that it tends to zero for distances r tend to
infinity (Dahlen and Tromp (1998)). Let r,Θ, φ be the spherical coordinates. Due to the asperities of
the Earth’s surface ∂Ω, we cannot study the harmonic behavior of Φ. Therefore, we firstly construct
a spherical ball Σ of radius ”a” containing the Earth with asperities, that is, Ω ⊂ Σ, and let ∂Σ be its
boundary. Let Φint denote the PGP interior to Σ, and let its expansion onto the orthonormal basis
of real spherical harmonics Yml be as follows

Φint (a,Θ, φ) =

∞∑
l=0

l∑
m=−l

Φintlm (a)Yml (Θ, φ) ; Φintlm (a) =

∫
∂Σ

ΦintYml ds,

where Yml (.) is the complex spherical harmonics of degree l and of order m (Dahlen and Tromp
(1998)).

Let us denote by Φext a potential satisfying the Laplace equation outside a ball Σ and vanishing
at infinity. Thus, to extend Φint continuously to a potential Φext, we have

Φext (r,Θ, φ) =

∞∑
l=0

l∑
m=−l

(a
r

)l+1

Φintlm (a)Yml (Θ, φ) , r ≥ a. (3.1)

Differentiating Eq. (3.1) with respect to r, then for the normal derivative of Φext we have

∇Φext.n (a,Θ, φ) = −1

a

∞∑
l=0

(l + 1)

l∑
m=−l

Φintlm (a)Yml (Θ, φ) , (3.2)

which relates the normal derivative of the potential to the potential itself, representing the so-called
Dirichlet-to-Neumann (DtN) operator on the spherical boundary. The conditions that the normal
derivative of a given field is proportional to the field at the surface are known as the Robin boundary
conditions.

Because we approximated the non-penetration conditions by (2.15a,b) then the hyperbolic varia-
tional inequality problem leads to solve the hyperbolic variational equation problem. It can be shown
that the corresponding (penalty) functionals

PLM (v) =
1

2

∫
ΓLMc

((
[vn]

LM − dLMn
)

+

)2

ds,

P sm (v) =
1

2

∫
Γsmc

(
([vn]

sm − dsmn )+

)2
ds

have the Gâteaux differentials, that are Lipschitz continuous, and that PLM (v) and P sm (v) are
monotone functionals. About such functionals we speak as penalty functionals or penalties and about
corresponding problems we speak as penalized problems.

The conditions of Coulomb friction (2.13)-(2.14) in the variational formulations lead to non-
differentiable functionals. The smoothing of the frictional functionals are done by replacing the non-
differentiable norms |.| in the frictional terms by differentiable and convex approximations. For details
see later.
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The solution v of the problem in the solid part of the Earth is searched in the space of kinematically
admissible displacements

V (t) =
{
w (x, t) ∈ H1,N (Ωs) : Ωs × I → RN , N = 3

}
,

where H1,N (Ωs) =
[
H1 (Ωs)

]N
, where H1 (Ωs) is the Sobolev space of square-integrable functions

with square-integrable generalized first derivatives, where Ωs = ΩL ∪ ΩM ∪ ΩIC , and ΩL = ∪rι=1ΩLι.
Further, let

V =
{
w ∈ H1,N (Ωs) : Ωs → RN , N = 3

}
,

be the space of test functions. In the fluid part of the Earth the solution will be searched in the spaces

V OCfs (t) =
{
w (x, t) ∈ H1,1

(
ΩOC

)
: ΩOC × I → RN , N = 3

}
for the admissible scalar potential and

V OCfv (t) =
{
w (x, t) ∈ H1,N

(
ΩOC

)
: ΩOC × I → R, N = 3

}
for the admissible vector potential and

V OCfs =
{
w ∈ H1,1

(
ΩOC

)
: ΩOC → R, N = 3

}
,

V OCfv =
{
w ∈ H1,N

(
ΩOC

)
: ΩOC → RN , N = 3

}
for the spaces of test functions.

In the case of the Eulerian perturbation of the gravitational potential (PGP) (i.e., of the mass
redistribution potential (MRP)) the solution will be searched in the space of admissible potential

Vp =
{
ψ ∈ H1,1 (Ω) : Ω→ RN , N = 3

}
,

because applying the Dirichlet-to-Neumann DtN operator that is equivalent to use a Robin condition.
To formulate the corresponding variational problem, we firstly multiply Eq. (2.4) by an arbitrary

test vector function w ∈ V , integrate by parts over ΩL ∪ ΩM with ΩL = ∪rι=1ΩLι, use the stress-free
condition on the Earth’s surface and the contact conditions on ΓLMc and Γsmc , then we obtain∫

ΩL∪ΩM
ρw.

∂2v

∂t2
dx +

∫
ΩL∪ΩM

2ρw.

(
ω̂ × ∂v

∂t

)
dx =

= −
∫

ΩL∪ΩM
∇w :

(
τ + G

)
dx +

∫
∑
source

m (xs, t) : ∇w (xs) ds+

+
1

ε

∫
ΓLMv

wn

(
[vn]

LM − dLMn
)

+
ds+

1

ε

∫
∪s,mΓsmc

wn ([vn]
sm − dsmn )+ ds+

+jLM (w) + j (w)−
∫

ΩL∪ΩM
ρv.H.wdx+

∫
ΓMOCc

pn.wds,

(3.3)

where the second term denotes the Coriolis’ term, xs denotes the co-ordinates of the elastic wave
source, and where G and H are the second-order tensors defined by

G = ρ
[
vg− (v.g) I

]
,H = ∇g, (3.4)

where G is the non-symmetric tensor, I the identity tensor and since the gravitational acceleration g
is the gradient of a geopotential Φ, i.e., g = −∇Φ, thus H is a symmetric second-order tensor. In the
case, if frictions on the contact boundaries are assumed to be operated, then the functionals jLM (w)
and j (w) , defined by
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jLM (w) =

∫
ΓLMc

FLMc
(

[vt]
LM
) ∣∣τLMn (v,v′)

∣∣ . ∣∣∣[wt]
LM
∣∣∣ ds,

j (w) =
∑
s,m

jsm (w) , s,m ∈ [1, ..., r] , where

jsm (w) =

∫
Γsmc

Fsmc ([vt]
sm

) |τsmn (v,v′)| . |[wt]
sm| ds

for the generalized Coulombian friction case and

jLM (w) =

∫
ΓLMc

gLMc

∣∣∣[wt]
LM
∣∣∣ ds ≡ 〈gLMc ,

∣∣∣[wt]
LM
∣∣∣〉

ΓLMc

,

j (w) =
∑
s,m

jsm (w) , s,m ∈ [1, ..., r] , where

jsm (w) =

∫
Γsmc

gsmc |[wt]
sm| ds ≡ 〈gsmc , |[wt]

sm|〉Γsmc ,

gLMc ≡ FLMc
(

[vt]
LM
) ∣∣τLMn (v,v′)

∣∣ (t−4t) ,
gsmc ≡ Fsmc ([vt]

sm
) |τsmn (v,v′)| (t−4t) ,

for the Tresca model of friction,

(3.5)

are introduced, where the coefficients of friction Fc will be assumed to be a function of sliding displace-
ments vt (in a general case friction coefficients Fc depend on the sliding velocities v′t), 〈., .〉Γ denotes
the L2 (Γ)-scalar product, and 4t denotes the time element. Both these functionals are non-smooth.
The smoothing of these functionals are done by replacing the non-differentiable norms |.| ≡ Ψ in these
friction functionals by a smooth and convex approximation Ψδ (.) , δ > 0, where δ is a small regular-
ization parameter. The function Ψδ : R3 → [0,+∞) is a convex C1-function having its minimum at
x = 0 and satisfying the approximation property |Ψδ (x)− |x|| ≤ δ and ∇Ψδ (0) = 0 (see Eck et al.
(2005)), thus j (w) ∼ jδ (w) , where jδ (w) is a convex regularization of j (w). Thus

jLM (w) '
∫

ΓLMc

FLMc
(

[vt]
LM
) 1

ε

(
[vn]

LM − dLMn
)

+
∇Ψδ

(
[vt]

LM
)
. [wt]

LM
ds,

j (w) =
∑
s,m

jsm (w) , s,m ∈ [1, ..., r] , where

jsm (w) '
∫

Γsmc

Fsmc ([vt]
sm

)
1

ε
([vn]

sm − dsmn )+∇Ψδ ([vt]
sm

) . [wt]
sm

ds,

for the generalized Coulombian friction case and

jLM (w) =

∫
ΓLMc

gLMc

∣∣∣[wt]
LM
∣∣∣ ds ' ∫

ΓLMc

gLMc ∇Ψδ

(
[wt]

LM
)
ds,

j (w) =
∑
s,m

jsm (w) , s,m ∈ [1, ..., r] , where

jsm (w) =

∫
Γsmc

gsmc |[wt]
sm| ds '

∫
Γsmc

gsmc ∇Ψδ ([wt]
sm

) ds,

for the Tresca model of friction, where gLM
c and gsm

c were defined above.

(3.6)

Remark 4 Since the functional j (w) is not Gâteaux differentiable, therefore, we have to consider the
function Ψδ : R→ R defined by

Ψδ (x) =
√
x2 + δ2 − δ ,

which regularizes the function x → |x|. The function Ψδ is twice differentiable and the following
inequality

|Ψδ (x)− |x|| ≤ δ, ∀x ∈ R, δ > 0,
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holds. Moreover, the function (Eck et al. (2005))

Ψδ (x) : x 7→


|x| , |x| ≥ δ,

−|x|
4

8δ3
+

3 |x|2

4δ
+

3

8
δ, |x| < δ,


or other functions of the above desired properties can be used.

Remark 5 For non-symmetric tensors A = (Aij) and B = (Bij) the double dot product is defined
by A : B = AijBij .

The variational formulation corresponding to the fluid outer core will be derived by using Eqs (2.9)
and (2.10), that will be multiplied by arbitrary test functions w ∈ V OCs or w ∈ V OC , respectively,
then integrate by parts over ΩOC and using corresponding interface conditions (2.16), we obtain∫

ΩOC
ρk−1w

∂2ϕ

∂t2
dx = −

∫
ΩOC

(∇w) . (∇ϕ+ψ) dx+

+

∫
ΩOC

ρk−1w [g. (∇ϕ+ψ)− Φ] dx +

∫
ΓMOCc

wn.vds−
∫

ΓOICc

wn.vds

(3.7)

and ∫
ΩOC

w.
∂2ψ

∂t2
dx =

= −2

∫
ΩOC

w.

[
ω̂×

(
∂ψ

∂t
+∇

(
∂ϕ

∂t

))]
dx−

∫
ΩOC

ρ−1g−2pÑ2w.gdx,

(3.8)

where (2.17) was used.

Remark 6 The problem can be simplified setting Φ = 0, Ñ = 0 and ignoring the rotation and self-
gravitation (see Komatitsch et al. (2005)).

The variational formulation corresponding to the inner core is similar to that of the lithosphere-
mantle case and it is as follows∫

ΩIC
ρw.

∂2v

∂t2
dx +

∫
ΩIC

2ρw.

(
ω̂ × ∂v

∂t

)
dx = −

∫
ΩIC
∇w :

(
τ + G

)
dx−

−
∫

ΩIC
ρv.H.wdx−

∫
ΓOICc

pn.wds.

(3.9)

The coupling between the inner core and the outer core is given through the surface integrals over
the interface boundary ΓOICc in Eqs ( 3.9) and (3.7) as well as continuity in traction and continuity
of the normal component of displacement and velocity.

To formulate the problem (2.3) with (2.20) variationally, the so-called Dirichlet-to-Neumann (DtN)
operator on the spherical boundary will be introduced. Eq. (2.3a) is valid within the solid parts of
the Earth, in the fluid part of the Earth Eq. (2.3a) using (2.7) leads to

∇2Φ = −4πG∇. (ρ∇ϕ+ ρψ) . (3.10)

Multiplying (2.3) with (3.10) by ϕ̃ ∈ Vp, integrating over Ω by parts, then∫
Ω

∇Φ.∇ϕ̃dx−
∫
∂Ω

∇Φ.nϕ̃ds =

= −4πG

[∫
ΩL∪ΩM∪ΩIC

ρv.∇ϕ̃dx−
∫
∂Ω

ρv.nϕ̃ds+

∫
ΩOC

ρ (∇ϕ+ψ) .∇ϕ̃dx
]
.

(3.11)

It can be shown that the jump condition (2.20b) across the solid-fluid interfaces is naturally taken into
account in (3.11). Therefore, the potential decomposition (2.7) in the fluid is defined in displacements
and not in velocities. Note that the term

∫
∂Ω
∇Φ.nϕ̃ds is unknown.
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We know that Φ satisfies the Laplace equation outside the Earth’s surface ∂Ω and that it tends to
zero for distances r tends to infinity (Dahlen and Tromp (1998)). It can be shown that applying the
DtN operator the obtained problem is a well-posed problem.

Then taking into account the asperities on the Earth’s surface and the jump condition (2.20b)
across the spherical boundaries then we have the following variational formulation of the Poisson-
Laplace equation (Chaljub and Valette (2004))∫

Σ

∇Φ.∇ϕ̃dx−
∫
∂Σ

∇Φext.nϕ̃ds =

= −4πG

[∫
ΩL∪ΩM∪ΩIC

ρv.∇ϕ̃dx +

∫
ΩOC

ρ (∇ϕ+ψ) .∇ϕ̃dx
]
,

(3.12)

where Σ is a spherical ball with the radius ′′a′′ defined above and where∫
∂Σ

∇Φext.nϕ̃ds = −1

a

∞∑
l=0

(l + 1)

l∑
m=−l

Φintlm (a) ϕ̃ml (a) .

Since the effect of self-gravitating onto propagation of seismic waves is small, therefore, it can be
omitted.

4 Numerical solution

Let I = [0, tp] be a time interval. Let m > 0 be an integer, then 4t = tp/m, ti = i4t, i = 0, ...,m,
vh (ti) is the value of vh at time t = ti. Let the domain Ω ⊂ R3, with the boundary ∂Ω, be

approximated by Ωh with the boundary ∂Ωh, where Ωh = Ω
L

h ∪ Ω
M

h ∪ Ω
OC

h ∪ Ω
IC

h , be a polyhedral
domain, that is, Ωh is an open bounded connected subset such that Ωh is the union of a finite number
of polyhedra (hexahedra),

Ωh = ∪Thi∈ThThi, i = 1, ....,M,

such that two arbitrary neighboring tetrahedra (hexahedra) have either no common point or have a
common vertex, and a common edge or a common face. Such a partition of region Ωh will be called
the division and it will be denoted by Th, where h = max1≤i≤M (diam Thi) is the largest edge of the
division Th. Let ϑh denote the size of a minimal angle in the division Th, defined as the minimal of all
angles between the faces and between the edges of all tetrahedra (hexahedra) of Th. Then the system
{Th} , h→ 0, is called regular if there exists a positive number ϑ0 > 0 such that minh→0 ϑh ≥ ϑ0. In
the sequel we will assume that each element Thi ∈ Th can be obtained as Thi = Tr (Th0) , where Th0

is a reference polyhedron (cube) and Tr is a suitable invertible affine map. The used mesh can be
also composed by hexahedral elements and honors the main discontinuities that are observed inside
the Earth. Then a reference element Th0 in this case is the cube.

For a solution the h-version or hp-version of finite element methods, the mortar approach or the
spectral-element method can be used. Next, we introduce the main idea of the spectral-element
method frequently used in seismology.

In seismology a spectral-element method frequently uses Lagrange polynomials of degree 4 to 10
for the interpolation of functions and Gauss-Lobatto–Legendre (GLL) quadrature, because the GLL
quadrature together with the Lagrange interpolants give an exactly diagonal mass matrix. In this
choice each spectral element contains a grid of (n+1)3 Gauss-Lobatto-Legendre points, and each edge

of an element contains a grid of (n+ 1)
2

Gauss-Lobatto-Legendre points, that is, e.g. for n = 2 the
spectral element contains 27 GLL points and the edge contains 8 GLL points.

The n+1 Lagrange polynomials of degree n are defined in terms of n+1 nodal points −1 ≤ ξα ≤ 1,
α = 0, ..., n, via the standard Lagrange interpolation condition θnα (ξβ) = δαβ , where δ is the Kronecker
delta, by

θnα (ξ) = u0≤β≤n
β 6=α

(ξ − ξβ)

(ξα − ξβ)
, α = 0, ..., n. (4.1)
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In a spectral-element method (SEM), the nodal points ξα,α, α = 0, ..., n, in (4.1) are taken as the
n + 1 Gauss-Lobatto-Legendre points, which are the roots of

(
1− ξ2

)
P ′n (ξ) = 0, where P ′n denotes

the derivatives of the Legendre polynomial of degree n (see Canuto et al. (1988), Šoĺın (2006)).
Then functions f on an element are interpolated by using triple products of Lagrange polynomials

by

f (x (ξ, η, ζ)) =

ηα,ηβ ,ηγ∑
α,β,γ=0

fαβγθα (ξ) θβ (η) θγ (ζ) , (4.2)

where fαβγ = f (x (ξα, ηβ , ζγ)) represents the value of the function f at the Gauss-Lobatto-Legendre
points x (ξα, ηβ , ζγ) and where for simplicity we omitted the index n of the Lagrange polynomial

θnα (ξ) . The gradient of the function f of (4.2), that is, ∇f =
∑3
i=1 exi

∂f
∂xi

, evaluated at the Gauss-
Lobatto-Legendre point x (ξα, ηβ , ζγ) , is then as follows

∇f (x (ξα′ , ηβ′ , ζγ′)) =

3∑
i=1

exi[(∂iξ)
α′β′γ′

ηα∑
α=0

fαβ
′γ′
θ′α (ξα′) +

+ (∂iη)
α′β′γ′

ηβ∑
β=0

fα
′βγ′

θ′β (ηβ′) + (∂iζ)
α′β′γ′

ηγ∑
γ=0

fα
′β′γθ′γ (ζγ′)],

(4.3)

where exi, i = 1, 2, 3, are unit vectors in the directions of increasing xi, i = 1, 2, 3, respectively, and
∂i, i = 1, 2, 3, denote partial derivatives in these directions, and a prime (”′”) denotes derivatives of
the Lagrange polynomials (i.e., θ′α (ξ) , etc.). The matrix ∂ξ

∂x will be obtained by inverting the matrix
∂x
∂ξ , as this inverse exists (Canuto et al. (1988)).

To approximate the variational (weak) formulation we firstly give the expressions for the displace-
ment vector vh and the test functions wh by the Lagrange polynomials, thus

vh (x (ξ, η, ζ) , t) '
3∑
i=1

exi

ησ,ητ ,ην∑
σ,τ,ν=0

vστνhi (t) θσ (ξ) θτ (η) θν (ζ) ,

wh (x (ξ, η, ζ)) '
3∑
i=1

exi

ησ,ητ ,ην∑
α,β,γ=0

wαβγhi θα (ξ) θβ (η) θγ (ζ) .

(4.4)

Based on a Gauss-Lobato-Legendre (GLL) integration rule, because it leads to a diagonal mass
matrix when used together with the GLL interpolation points, we have∫

Thi

f (x) dx =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f (x (ξ)) JThi (ξ) dξ'
ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

fαβγ , (4.5)

where ξ = (ξ, η, ζ) , −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, −1 ≤ ζ ≤ 1, dx = JThidξ, JThi =
∣∣∣∂x∂ξ ∣∣∣ =

∣∣∣∂(x1,x2,x3)
∂(ξ,η,ζ)

∣∣∣
and where JαβγThi

= JThi (ξα, ηβ , ζγ) is the Jacobian, ωα > 0, ωβ > 0, ωγ > 0, α, β, γ = 0, ..., n, denote
the weights of the GLL quadrature associated with ξ, η and ζ, and moreover,∫

∂Thi

f (x) ds =

∫ 1

−1

∫ 1

−1

f (x (ξ, η)) J∂Thi (ξ, η) dξdη'
ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

fαβ , (4.6)

where ∂Thi denotes a surface of the element Thi, located on the interface (solid-fluid) boundaries and

Jαβ∂Thi = J∂Thi (ξα, ηβ) is the surface Jacobian, as the normal n to a boundary ∂Thi of the element Thi
is given by

n =
1

J∂Thi

(
∂x

∂ξ
× ∂x

∂η

)
, J∂Thi =

∥∥∥∥∂x

∂ξ
× ∂x

∂η

∥∥∥∥ .
Furthermore, ds = J∂Thidξdη and dx = JThidξ, where J∂Thi and JThi are the surface Jacobian

and the Jacobian of the used mappings Tr.
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Then, we will derive the individual terms in the variational formulations (3.3)- (3.11), based on the
SEM-Galerkin method, where we use the same basis functions for approximations of the displacement
and the test vectors, and the Gauss-Lobato-Legendre quadrature. The first term on the left-hand side
(3.3) using (4.4) gives ∫

ΩLh∪ΩMh

ρhwh.
∂2vh
∂t2

dx '
∑
Thi

∫
Thi

ρhwh.
∂2vh
∂t2

dx,

∫
Thi

ρhwh.
∂2vh
∂t2

dx =

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

ρh (x (ξ)) wh (x (ξ)) .
∂2vh (x (ξ) , t)

∂t2
JThi (ξ) dξ '

'
ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

ραβγh

3∑
i=1

wαβγhi

∂2vαβγhi (t)

∂t2
,

(4.7)

where ραβγh = ρh (x (ξα, ηβ , ζγ)) . Since the variational formulation hold for any test function w, we

can put factors wαβγh1 = wαβγh2 = wαβγh3 = 0. We see that the acceleration component ∂2vhi(t)
∂t2 at each

nodal point (ξα, ηβ , ζγ) is multiplied by the factor ωαωβωγJ
αβγ
Thi

ραβγh , where JαβγThi
is the value of the

Jacobian at the nodal point (ξα, ηβ , ζγ) , where ωα > 0, ωβ > 0, ωγ > 0, α, β, γ = 0, ...., n, are the
weights of the Gauss-Lobatto-Legendre quadrature (Canuto et al. (1988)). Thus the mass matrix is
diagonal.

For the Coriolis’ term in (3.3)-(3.9) then we have∫
ΩLh∪ΩMh

2ρhwh.

(
ω̂×∂vh

∂t

)
dx '

∑
Thi

∫
Thi

2ρhwh.

(
ω̂×∂vh

∂t

)
dx,

∫
Thi

2ρhwh.

(
ω̂×∂vh

∂t

)
dx =

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

2ρh (x (ξ)) wh (x (ξ)) .

(
ω̂×∂vh (x (ξ))

∂t

)
JThi (ξ) d ξ '

' 2ω̂

ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

ραβγh

3∑
i,j=1

wαβγhi εi3j
∂vαβγhj

∂t
,

(4.8)

where εijk is the alternating tensor of the third order. The effect of this term can be neglected, because
the effect of rotation of the Earth on the wave propagation through the Earth is very small, as it was
mentioned above.

For the first term of the right-hand side of (3.3)-(3.9), which represents the stiffness matrix for the
lithosphere-mantle part, we find ∫

ΩLh∪ΩMh

∇wh : τhdx '
∑
Thi

∫
Thi

∇wh : τhdx,

∫
Thi

∇wh : τhdx =

∫ 1

−1

∫ 1

−1

∫ 1

−1

 3∑
i,k=1

Fik
∂whi
∂ξk

 JThidξ '
'
ηα,ηβ ,ηγ∑
α,β,γ=0

3∑
i=1

wαβγhi ωβωγ

ηα′∑
α′=0

ωα′Jα
′βγ

Thi
Fα

′βγ
i1 θ′α (ξα′) +

+ωαωγ

ηβ′∑
β′=0

ωβ′Jαβ
′γ

Thi
Fαβ

′γ
i2 θ′β (ηβ′) + ωαωβ

ηγ′∑
γ′=0

ωγ′Jαβγ
′

Thi
Fαβγ

′

i3 θ′γ (ζγ′) ,

(4.9)

where we put Fik =
∑3
i,j=1 τ ij

∂ξk
∂xj

, F στνik = Fik (x (ξσ, ητ , ζν)) represents the value of Fik at the GLL

point x (ξσ, ητ , ζν) .
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In the solid parts of the Earth when the term of self-gravitation is taken into consideration, then
the tensor τh is replaced by τh +Gh, where Gh = ρh

[
vhgh− (vh.gh) I

]
. The stress tensor τh will

be expressed at the GLL points as

τh (x (ξα, ηβ , ζγ) , t) = c (x (ξα, ηβ , ζγ)) : ∇vh (x (ξα, ηβ , ζγ) , t) , (4.10)

where the gradient of displacement vector ∇vh (x (ξα, ηβ , ζγ) , t) at the GLL points follows from (4.4a)
upon differentiation (see e.g. Komatitsch and Tromp (2002)).

The wave source term in (3.3) will be approximated as follows∫
ΣhSOURCE

mh (xs, t) : ∇wh (xs) ds '
∑
∂Thi

∫
∂Thi

mh (xs, t) : ∇wh (xs) ds,∫
∂Thi

mh (xs, t) : ∇wh (xs) ds =

=

∫ 1

−1

∫ 1

−1

mh (x (ξαs , ηβs , ζγs) , t) : ∇wh (x (ξαs , ηβs , ζγs)) J∂Thi (ξ, η) dξdη '

'
3∑
i=1

wαβγhi [ωβ

ηα∑
αs=0

ωαsJ
αsβ
∂Thi

gαsβγi1 θ′α (ξαs) +

+ωα

ηβ∑
βs=0

ωβsJ
αβs
∂Thi

gαβsγi2 θ′β (ηβs) + ωαωβJ
αβ
∂Thi

gαβγsi3 θ′γ (ζγs)],

(4.11)

where gik =
∑3
j=1mhij

∂ξk
∂xj

, J∂Thi is the surface Jacobian of the transformation.

Remark 7 The wave source term can be also assumed to be evoked by a point source, where f =
−M.∇δ (x− xs) . (t) , for details see Dahlen and Tromp (1998).

Let
[
vαβhn

]LM
'
[∑3

i=1 v
αβ
hi n

αβ
i

]LM
,
[
vαβhn

]sm
'
[∑3

i=1 v
αβ
hi n

αβ
i

]sm
denote the approximations of

the jumps in the normal directions and since vht= vh − vhnn, then we can determine [vht]
LM

and
[vht]

sm
.

Then the penalty terms in (3.3) will be approximated as follows

1

ε

∫
ΓLMch

whn.
(

[vhn]
LM − dLMn

)
+
ds ' 1

ε

∑
∂Thi

∫
∂Thi

whn.
(

[vhn]
LM − dLMn

)
+
ds,

1

ε

∫
∂Thi

whn.
(

[vhn]
LM − dLMn

)
+
ds =

=
1

ε

∫ 1

−1

∫ 1

−1

whn (x (ξ, η))
(

[vhn (x (ξ, η))]
LM − dLMn

)
+
J∂Thi (ξ, η) dξdη '

' 1

ε

ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

([
vαβhn

]LM
−
(
dαβn
)LM)

+

3∑
i=1

wαβhi n
αβ
i ,

1

ε

∫
Γsmch

whn. ([vhn]
sm − dsmn )+ ds '

1

ε

∑
∂Thi

∫
∂Thi

whn. ([vhn]
sm − dsmn )+ ds,

1

ε

∫
∂Thi

whn. ([vhn]
sm − dsmn )+ ds =

=
1

ε

∫ 1

−1

∫ 1

−1

whn (x (ξ, η)) ([vhn (x (ξ, η))]
sm − dsmn )+ J∂Thi (ξ, η) dξdη '

' 1

ε

ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

([
vαβhn

]sm
−
(
dαβn
)sm)

+

3∑
i=1

wαβhi n
αβ
i ,

(4.12)
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and for the frictional functionals we have

jLMh (wh) '

'
∫

ΓLMch

FLMch
(

[vht]
LM
) 1

ε

(
[vhn]

LM − dLMhn
)

+
∇Ψδ

(
[vht]

LM
)
. [wht]

LM
ds,

jh (wh) =
∑
s,m

jsmh (wh) , s,m ∈ [1, ..., r] , where

jsmh (wh) '

'
∫

Γsmch

Fsmch ([vht]
sm

)
1

ε
([vhn]

sm − dsmhn )+∇Ψδ ([vht]
sm

) . [wht]
sm

ds,

for the generalized Coulombian friction case and

jLMh (wh) =

∫
ΓLMch

gLMch

∣∣∣[wht]
LM
∣∣∣ ds ' ∫

ΓLMch

gLMch ∇Ψδ

(
[wht]

LM
)
ds,

j (wh) =
∑
s,m

jsmh (w) , s,m ∈ [1, ..., r] , where

jsmh (w) =

∫
Γsmch

gsmch |[wht]
sm| ds '

∫
Γsmch

gsmch ∇Ψδ ([wht]
sm

) ds,

for the Tresca model of friction,

(4.13)

referring to the GLL points, where gLMch and gsmch are approximations of gLMc and gsmc that were defined
above, and where in the terms jLMh (wh) and jh (wh) we replaced the norms in the frictional terms
by the differentiable, convex approximations Ψδ (.) satisfying |Ψδ (.)− |.|| ≤ δ and ∇Ψδ = 0 as usual
(Eck et al. (2005)). In our study we will use the Tresca model of friction.

Thus

jLMh (wh) '
∫

ΓLMch

gLMch ∇Ψδ

(
[wht]

LM
)
ds '

∑
∂Thi

∫
∂Thi

gLMch ∇Ψδ

(
[wht]

LM
)
ds,

∫
∂Thi

gLMch ∇Ψδ

(
[wht]

LM
)
ds =

∫ 1

−1

∫ 1

−1

gLMch ∇Ψδ

(
[wht]

LM
)
J∂Thidξdη '

'
ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

(
gLMch

)αβ
.

3∑
i=1

exi(∂iξ)
α′β′γ′

ηα∑
α=0

Ψαβ′γ′

δ θ′α (ξα′) + (∂iη)
α′β′γ′

ηβ∑
β=0

Ψα′βγ′

δ θ′β (ξβ′) + (∂iζ)
α′β′γ′

ηγ∑
γ=0

Ψα′β′γ
δ θ′γ (ξγ′)

 ,
(4.14)

referring to the GLL points, and where Ψαβ′γ′

δ ≡ Ψδ

(
[wht (ξα, ηβ′ , ζγ′)]

LM
)

, etc. Similar expressions

we will obtain for the frictional term jsmh (wh) .
The gravity terms lead to the form∫

ΩLh∪ΩMh

ρhvh.Hh.whdx '
∑
Thi

∫
Thi

ρhvh.Hh.whdx,

∫
Thi

ρhvh.Hh.whdx '
ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

ραβγh

3∑
i,j=1

wαβγhi H
αβγ

hij v
αβγ
hj

(4.15)

and the terms coupling between fluid and solid regions lead to∫
phn.whds '

ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

pαβh (t)

3∑
i=1

wαβhi n
αβ
i . (4.16)
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To approximate the weak formulation of the problem in the outer fluid core, we introduce the
approximation of the potential ϕh in terms of Lagrange polynomials as follows

ϕh (x (ξ, η, ζ) , t) '
ησ,ητ ,ην∑
σ,τ,ν=0

ϕστνh (t) θσ (ξ) θτ (η) θν (ζ) , (4.17)

and the scalar test function wh by

wh (x (ξ, η, ζ)) '
ησ,ητ ,ην∑
α,β,γ=0

wαβγh θα (ξ) θβ (η) θγ (ζ) . (4.18)

Then the first term on the left-hand side in (3.7) corresponding to the weak formulation of the
wave equation for the outer core can be written as

∫
ΩOCh

ρhk
−1
h wh

∂2ϕh (t)

∂t2
dx '

∑
Thi

∫
Thi

ρhk
−1
h wh

∂2ϕh (t)

∂t2
dx,

∫
Thi

ρhk
−1
h wh

∂2ϕh (t)

∂t2
dx '

ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

ραβγh

(
kαβγh

)−1

wαβγh

∂2ϕαβγh (t)

∂t2

(4.19)

and the corresponding ”mass” matrix for the element Thi is diagonal from the same reason as in the
elemental ”mass” matrix derived above.

The first term on the right-hand side of (3.7) (i.e., the term
∫

ΩOCh
∇wh.∇ϕhdx '

∑
Thi

∫
Thi
∇wh.∇ϕhdx)

after approximation in terms of Lagrange polynomials can be written as

∫
Thi

∇wh.∇ϕhdx '
ηα,ηβ ,ηγ∑
α,β,γ=0

wαβγh [ωβωγ

ηα′∑
α′=0

ωα′Jα
′βγ

Thi

(
∂ϕh
∂x1

)α′βγ

θ′α (ξα′) +

+ωαωγ

ηβ′∑
β′=0

ωβ′Jαβ
′γ

Thi

(
∂ϕh
∂x2

)αβ′γ

θ′β (ξβ′) + ωαωβ

ηγ′∑
γ′=0

ωγ′Jαβγ
′

Thi

(
∂ϕh
∂x3

)αβγ′

θ′γ (ξγ′)],

(4.20)

where

(
∂ϕh
∂xi

)αβγ
=

ηα∑
α=0

ϕαβ
′γ′

h θ′α (ξα′)
∂ξ

∂xi
+

ηβ∑
β=0

ϕα
′βγ′

h θ′β (ηβ′)
∂η

∂xi
+

ηγ∑
γ=0

ϕα
′β′γ
h θ′γ (ζγ′)

∂ζ

∂xi
.

The second term in (3.7) will be approximated in terms of Lagrange polynomials as

∫
Thi

ρhk
−1
h wh [gh. (∇ϕh +ψh)− Φh] dx '

'
ηα,ηβ ,ηγ∑
α,β,γ=0

ωαωβωγJ
αβγ
Thi

ραβγh

(
kαβγh

)−1

wαβγh .

3∑
i=1

gαβγih

[(
∂ϕh
∂xi

)αβγ
+ψαβγhi − Φαβγh

]
,

(4.21)

where the Cowling approximation was applied.
The further two coupling terms in (3.7) will be approximated as follows∫

phn.whds '
∑
∂Thi

∫
∂Thi

phn.whds,

∫
∂Thi

phn.whds '
ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

pαβh (t)

3∑
i=1

wαβhi n
αβ
i ,

(4.22)
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∫
wh.n.vhds '

∑
∂Thi

∫
∂Thi

wh.n.vhds,

∫
∂Thi

wh.n.vhds '
ηα,ηβ∑
α,β=0

ωαωβJ
αβ
∂Thi

wαβh

3∑
i=1

vαβhi n
αβ
i ,

(4.23)

referring to the GLL points, where Jαβ∂Thi is the surface Jacobian J∂Thi .
In the variational formulation (3.8) the separate terms can be approximated by a similar way as

in the cases of similar terms introduced above.
Let ϕ̃h be an admissible potential test function which is continuous throughout the approximated

interfaces ∂Ωh ∪ Γch, where by Γch we denote the approximations of all interface boundaries inside
the Earth, then ∫

Σh

∇Φh.∇ϕ̃hdx−
∫
∂Σh

∇Φexth .n.ϕ̃hds =

= −4πG

[∫
ΩLh∪ΩMh ∪ΩICh

ρhvh.∇ϕ̃hdx +

∫
ΩOCh

ρh (∇ϕh +ψh) .∇ϕ̃hdx

]
,

(4.24)

where ∫
∂Σ

∇Φexth .nϕ̃hds = −1

a

∞∑
l=0

(l + 1)

l∑
m=−l

Φinthlm (a) ϕ̃mhl (a) .

In realization the infinite sum can be limited by some l = lmax (see Chaljub and Valette (2004)).
Then, after the approximations in terms of Lagrange polynomials, the problem leads to the second-

order ordinary equation at each GLL point with diagonal ”mass” matrix (see e.g. Komatitsch et
al. (2005), Chaljub and Valette (2004)), which can be solved by numerical methods for systems of
ordinary differential equations (see e.g. Hartman (1973), Butcher (1987), Wood (1990), Belytschko
et al. (2000)). We saw that the choice of the Gauss-Lobatto-Legendre integration is very useful for
numerical computation because the matrix representations of the L2-scalar products lead to diagonal
matrices, that are advantageous of the used algorithms. The equation (4.24) will be approximated by
the Galerkin-SEM method.

Let Ush denote the displacement vector of the global solid parts of the Earth, Uϕh and Uψh denote
the nodal values of the displacement potential and of vector field in the fluid of the outer core and
Φh stand for the nodal values of the Eulerian perturbation of the gravitational potential (the PGP)

and let Uh = (Ush,Uϕh,Uϕh,Φh)
T

denote the global vector of the nodal values in the Earth. Then
after the spatial discretization we have to solve a system of ordinary differential equations in time
with coupling terms

MshU
′′
sh (t) + KshUsh (t) + CsfhU′′ψh (t) + CGhΦh (t) = F̂h (t) ,

MfhU
′′
ψh (t) + Kfh (Uψh,Uϕh) (t) + CfshUsh (t) = 0,

MfhU
′′
ϕh (t) + CψϕΦh

(
U′′ψh,Uψh,Uϕh,Φh

)
(t) = 0,

KΦhΦh (t) = Csψϕh (Ush,Uψh,Uϕh) (t) ,

(4.25)

where Msh is the matrix representation of the L2-scalar product weighted by the density (the mass
matrix in the solid parts of the Earth); Mfh is the matrix representation of the scalar product in
the fluid part of the Earth with the weight ρ−1

h kh representing the corresponding speed of sound;
Ksh, Kfh are the stiffness matrices arising from the space approximations of the volume integrals in

the variational formulations; F̂h (t) = Fh (t) + Jh (Ush (t)) is the approximation of the acting forces,
that is, the approximations of earthquake source term Fh (t) and of the frictional and penalty terms
summed in Jh (.) . Discretizating the surface integrals in the variational formulations then that yield
to the solid-fluid coupling matrices Csfh and Cfsh; CGh is the matrix representation of the gradient
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term, and moreover, KΦh and Csψϕh correspond to the matrix representation of the Poisson-Laplace
operator and of the divergence operator, where Csψϕh contains the factor 4πρhG. Moreover, CψϕΦh

corresponds to the discretization of the volume integral in terms of fluid outer core and involves the
operation on U′′ψh, Uψh, ∇Uϕh and Φh.

Completing the system of ordinary differential equations (4.25) we then obtain the global second-
order system of the form

MhU
′′
h (t) + KhUh (t) + ChUh (t) = Fh (t) (4.26)

Since the global mass matrix is diagonal, then the time discretization of the second-order ordinary
differential equation (4.26) can be based on a classical explicit second-order finite-difference scheme

of the Newmark β-method (β ≥ 1
4

(
γ + 1

2

)2
, γ ≥ 1

2 ) with acceptable values γ = 1, β ≥ 9
16 (Hughes

(1987), Ward (1990), Belytschko et al. (2000)). These schemes are conditionally stable, and that the
Courant criterion is valid, that is, the Courant stability condition gives the relation between the size
of mesh steps ”h” and the longitudinal wave velocity ”cL” crossing the element,

4t ≤ 4tcrit ∼ δ
h

cL
, (4.27)

where δ ∈ (0.2, 0.9) is a reduction factor which was determined from the numerical experiments,
which is necessary because of the destabilizing effect of round-off and the possibility of rapidly varying
material properties.

Note that in the global algorithm the last equation of (4.25) due to the coupling terms, that are
unknown at time ti of the Newmark algorithm, will be solved firstly in every time step of the Newmark
algorithm by using some of iterative methods (e.g. conjugate gradient method (CGM), preconditioned
CGM, etc.). Subsequently the wave equation corresponding to the outercore will be solved, because
the coupling term CsfhU′′ψh is unknown at time ti of the Newmark algorithm (for more details see
Belytschko et al. (2000), Deville et al. (2002)).
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(in French).

[8] Chaljub, E., Capdeville, Y. & Vilotte, J.-P. (2003). Solving elastodynamics in a fluid solid hetero-
geneous sphere: a parallel spectral element approximation on non-conforming grids. J. Comput.
Phys., 187, 457-491.

[9] Chaljub, E. & Valette, B. (2004). Spectral element modelling of three-dimensional wave propa-
gation in a self-gravitating Earth with an arbitrarily stratified outer core. Geophys. J. Int. 158,
131-141.

[10] Cowling, T. G. (1941). The non-radial oscillations of polytropic stars. Mon. Not. Roy. Astron.
Soc. 101, 369-373.

[11] Dahlen, F.A. & Tromp, J. (1998). Theoretical Global Seismology. Princeton University Press,
Princeton, NJ.

[12] Deville, M.O., Fischer, P.F. & Mund, E.H. (2002). High-Order Methods for Incompressible Fluid
Flow. Cambridge University Press, Cambridge.
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