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Abstract:

We describe a rectangle in complex plane which encloses all eigenvalues of an interval matrix.
Special cases of symmetric and skew-symmetric interval matrices are also considered.1

Keywords:
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matrix.

1Above: logo of interval computations and related areas (depiction of the solution set of the system
[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

In this report we describe a rectangle in complex plane enclosing all eigenvalues of an interval
matrix (Theorem 1 and Corollary 2). Special cases of a symmetric or skew-symmetric interval
matrix are handled in Corollaries 3 and 4. These results are obtained as simplifications of
Theorem 2 in [2].

2 The results

Our main result is formulated as follows.

Theorem 1. Let A = [Ac − ∆, Ac + ∆] be a square interval matrix. Then for each
eigenvalue λ of each A ∈ A we have

λmin(A′c)− %(∆′) ≤ Reλ ≤ λmax(A′c) + %(∆′), (2.1)

− σmax(A′′c )− %(∆′) ≤ Imλ ≤ σmax(A′′c ) + %(∆′), (2.2)

where

A′c = 1
2(Ac + AT

c ),

A′′c = 1
2(Ac −AT

c ),

∆′ = 1
2(∆ + ∆T ).

Proof. In [2, Thm. 2] it is proved that under the current assumptions and notation there
holds

λmin(A′c)− %(∆′) ≤ Reλ ≤ λmax(A′c) + %(∆′),

λmin(A′′′c )− %(∆′′) ≤ Im λ ≤ λmax(A′′′c ) + %(∆′′),

where

A′c = 1
2(Ac + AT

c ),

∆′ = 1
2(∆ + ∆T ),

A′′′c =
(

0 A′′c
A′′c

T 0

)
,

∆′′ =
(

0 ∆′

∆′T 0

)
.

This proves (2.1). To prove (2.2), we shall use the Jordan-Wielandt theorem [3, Thm. 4.2]
according to which a matrix (

0 B
BT 0

)

(with B ∈ Rn×n) has eigenvalues σ1(B) ≥ · · · ≥ σn(B) ≥ −σn(B) ≥ . . . ≥ −σ1(B). Thus
λmax(A′′′c ) = σmax(A′′c ), λmin(A′′′c ) = −σmax(A′′c ), and %(∆′′) = σmax(∆′) = %(∆′) (because ∆′

is symmetric and nonnegative), whereby we are done. 2
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For other formulations, let us introduce the following notation for the set of all eigenvalues:

Λ(A) = {λ ∈ C | Ax = λx, x ∈ Cn, x 6= 0, A ∈ A }.

Notice that Λ(A) is symmetric with respect to the real axis because, as well known, each
A ∈ A together with an eigenvalue λ = a + bi also possesses the eigenvalue λ = a− bi.

Corollary 2. For each square interval matrix A = [Ac −∆, Ac + ∆] there holds

Λ(A) ⊆ [λmin(A′c)− %(∆′), λmax(A′c) + %(∆′)]× [−σmax(A′′c )− %(∆′), σmax(A′′c ) + %(∆′)],

where A′c, A′′c and ∆′ are as in Theorem 1.

This is merely a reformulation of Theorem 1 expressing the set of all eigenvalues of A as
a subset of a rectangle in complex plane. This rectangle is also symmetric with respect to
real axis.

For an interval matrix A, its transpose is defined by

AT = {AT | A ∈ A }.

A square interval matrix A is called symmetric if AT = A, and it is said to be skew-
symmetric if AT = −A. It is not difficult to prove that A = [Ac −∆, Ac + ∆] is symmetric
if and only if both Ac and ∆ are symmetric, and that it is skew-symmetric if and only if Ac

is skew-symmetric and ∆ is symmetric.
The next two corollaries describe enclosures of sets of eigenvalues of symmetric and skew-

symmetric interval matrices, respectively.

Corollary 3. For a symmetric interval matrix A = [Ac −∆, Ac + ∆] we have

Λ(A) ⊆ [λmin(Ac)− %(∆), λmax(Ac) + %(∆)]× [−%(∆), %(∆)].

Proof. Obviously, in this case A′c = Ac, A′′c = 0 and ∆′ = ∆, from which the result
follows. 2

Corollary 4. For a skew-symmetric interval matrix A = [Ac −∆, Ac + ∆] we have

Λ(A) ⊆ [−%(∆), %(∆)]× [−σmax(Ac)− %(∆), σmax(Ac) + %(∆)].

Proof. This is a consequence of the facts that A′c = 0, A′′c = Ac, and ∆′ = ∆. 2

Notice that in the latter case the enclosure of the eigenvalue set is symmetric with respect
to the origin.
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