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Abstract:

The role of widths of Gaussians in computational models which they generate is investigated. It is shown
that networks with Gaussian kernel units are functionally equivalent merely when they are generated by
kernels with the same widths and have the same number of units which differ merely by a permutation.
Suitability of Gaussian kernel models with fixed widths for regression is proven in terms of their universal
approximation capability.
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1 Introduction

Originally, artificial neural networks were built from biologically inspired computational units. These
units, called perceptrons, compute functions in the form of plane waves and thus they are highly
nonlocal. As an alternative, localized computational units were proposed merely due to their good
mathematical properties. Broomhead and Lowe [1] introduced radial-basis-functions (RBF) and Girosi
and Poggio [6] proposed more general kernel units. In particular, support vector machine (SVM)
built from units defined by symmetric positive semidefinite kernels became very popular [2]. Among
localized computational units, a prominent position is occupied by units induced by the Gaussian
function. RBF units with the Gaussian radial function are the most common type of RBF’s and
Gaussians with fixed widths are typical symmetric positive definite kernels. Both these computational
models, the one with Gaussian units having variable widths (RBF) and the one with Gaussian units
having fixed widths (symmetric positive definite kernels), have their advantages. Gaussian RBF
networks are known to be universal approximators [11]. In addition to their capability to approximate
arbitrarily well all reasonable real-valued functions, model complexity of Gaussian RBF networks is
often lower than complexity of traditional linear approximators, in particular in high-dimensional
tasks (see, e.g., [9, 8, 7] for some estimates). On the other hand, Gaussian kernel models with fixed
widths benefit from geometrical properties of Hilbert spaces which they generate. These properties
allow an extension of maximal margin classification algorithm to data which are not linearly separable
[2], generate suitable stabilizers for modeling of generalization in terms of regularization [5], and lead
to mathematical description of theoretically optimal solutions of learning tasks [3, 12, 10].

In this paper, we investigate the role of widths of Gaussians in computational models which they
generate. First, we show that two networks with Gaussian kernel units are functionally equivalent
merely when they are generated by kernels with the same widths and have the same number of
units which differ merely by a permutation. Thus possibilities of compressions of parameter spaces
are limited to equivalences induced by permutations. Then we show that besides of well-known
classification capabilities of Gaussian kernel models, they are also suitable for regression as even with
a fixed width, they are large enough to approximate all continuous or square integrable multivariable
functions.

The paper is organized as follows. In section 2, notations and basic concepts on one-hidden-layer
networks are introduced. In section 3, it is shown that for two different widths, Gaussian kernel
networks are not functionally equivalent. Section 4 shows that Gaussian kernel networks with fixed
width are universal approximators.

2 Dictionaries of Computational Units

The most widespread computational model used in neurocomputing is a one-hidden-layer network
with one linear output unit. Such networks compute linear combinations of functions computable by
a given type of computational units. The coefficients oflinear combinations are called output weights.
Networks with n units from a dictionary G compute functions from the set

spann G :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
.

One says that n is the number of hidden units. Hence, the set of input-output functions of all such
networks, with an arbitrary number of hidden units, is

spanG :=
∪

{spann G, n ∈ N+ } =

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G,n ∈ N+

}
.

Typically, dictionaries are parameterized families of functions. Let

GK(X,Y ) := {K(., y) : X → R | y ∈ Y } ,

where K : X × Y → R is a function of two variables, an input vector x ∈ X ⊆ Rd and a parameter
y ∈ Y ⊆ Rs. In mathematics, various functions of two variables are called kernels (from the German
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term “kern”, introduced by Hilbert in the context of theory of integral operators). In neurocomputing
and learning theory, the term kernel is often reserved for symmetric positive semidefinite functions.

In this paper, we focus on dictionaries defined in terms of the Gaussian function. The first one
GFd

is induced by the function

Fd(x, (a, c)) := e−∥a(x−c)∥2

: Rd × Rd+1 → R.

Fd : Rd × Rd+1 → R (x, (a, c)) 7→ e−∥a(x−c)∥2

.

So
GFd

(X) := {Fd(., (a, c)) : X → R | a > 0, c ∈ Rd}

consists of functions on X computable by Gaussian RBF units with varying centers c and varying
widths 1

a .
The second dictionary GKa

d
is induced by the Gaussian of a fixed width 1

a ,

Ka
d (x, c) := e−∥a(x−c)∥2

: Rd × Rd+1 → R.

So
GKa

d
(X) := {Ka

d (., c) : X → R | c ∈ Rd}

consists of functions on X computable by Gaussian RBF units with varying centers c and fixed width
1
a . Thus we have GFd

(X) :=
∪

a∈R+
GKa

d
(X).

3 Functionally Equivalent Gaussian RBFs

In this section, we investigate functional equivalence of Gaussian kernel networks with different num-
bers of hidden units and different widths. We show that two Gaussian RBF networks compute the
same input-output function merely when when they have the same numbers of hidden units with the
same centers, widths, and output weights which differ merely by a permutation.

Two neural networks are called functionally equivalent if they compute the same input-output
function. Functional equivalences of neural networks can be studied in terms of linear dependencies
of dictionaries. Recall that a set of functions F is linearly independent if for any finite subset of its
elements {f1, . . . , fm} and real numbers w1, . . . , wm,

∑m
i=1 wi fi = 0 implies wi = 0 for all i = 1, . . . ,m.

A point x ∈ X is a limit point of X if every neighborhood of x contains at least one point of X different
from x itself. If a dictionary is linearly independent, then two networks are functionally equivalent
only when they have the same number of units with the same parameters which can only differ by
permutation. We show that the dictionary of Gaussian RBFs on any open subset of Rd is functionally
equivalent.

Theorem 3.1 For every positive integer d, the dictionary

GFd
(Rd) = {exp(−a2∥.− c∥2) : Rd → R | a ∈ R+, c ∈ Rd}

is linearly independent.

Proof. We show that no nontrivial linear combination of elements of GFd
(Rd) is equal to zero. Let

m be a positive integer, w1, . . . , wm be non zero real numbers, and {(aj , cj) ∈ R+×Rd | j = 1, . . . ,m}
be a set of distinct pairs. To prove the statement by contradiction, assume that for all x ∈ Rd

m∑
j=1

wje
−a2

j∥x−cj∥2

= 0. (3.1)

Without loss of generality we can suppose that 1 = max{aj | j = 1, . . . ,m} (otherwise we change
scale) and that 1 = a1 = . . . = ak > ak+1 ≥ ... ≥ am > 0. We may also assume that c1 = 0 (otherwise
we change system of coordinates). In addition we can assume that ∥c2∥ ≥ ∥ci∥ for all j = 3, . . . , k.
As the pairs (1, c1), . . . , (1, ck) are distinct, so are c2, . . . , ck.
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Thus we have for all j = 3, . . . , k,
c2 · (c2 − cj) > 0. (3.2)

Indeed, c2 · cj = ∥c2∥ ∥cj∥ cos(α(c2, cj)), where α(c2, cj) denotes the angle between the vectors c2 and
cj . For those j for which ∥cj∥ < ∥c2∥, we have ∥cj∥ cos(α(c2, cj)) < ∥c2∥ and so c2 · (c2 − cj) > 0. For
those j for which ∥cj∥ = ∥c2∥, we have cos(α(c2, cj)) < 1 because cj ̸= c2 and so c2 · (c2 − cj) > 0.

Multiplying both sides of the equation (3.1) by e∥x∥
2

we get for all x ∈ Rd,

w1 +
k∑

j=2

w̄je
2cj ·x +

m∑
j=k+1

w̄je
∥x∥2(1−a2

j )+2a2
jcj ·x = 0,

where w̄j = wje
−c2j for j = 2, . . . ,m. For all j = k+1, . . . ,m, 1− a2j < 0 and so w1+ lim∥x∥→∞

∑k
j=2

w̄je
2cj ·x = 0.
If k = 1, we have a contradiction with the assumption that w1 ̸= 0. If k > 1, we set x = tc2 and

so we obtain w1 + limt→∞
∑k

j=2 w̄je
2tcj ·c2 = 0. Thus we get

limt→∞ w1e
−2t∥c2∥2

+ w̄2+ limt→∞
∑k

j=3 w̄je
−2tc2·(c2−cj) = 0. As c2 · (c2− cj) > 0 for all j = 3, . . . , k,

both limits in this equation are equal to zero and thus we get a contradiction with w2 ̸= 0. 2

Theorem 3.1 implies that functionally equivalent Gaussian kernel networks must have the same
width, the same number of hidden units and can differ merely by a permutation of hidden units. It also
shows that the only reduction of parameter spaces of Gaussian RBF networks based on their functional
equivalence is induced by permutations of hidden units. Search in such reduced parameter spaces might
be implementable for genetic algorithms which operate with strings of vectors of parameters.

4 Universal Approximation Property

In this section, we show that although Gaussian kernel units with fixed widths have much less free
parameters than Gaussian radial units with varying widths, they still generate classes of input-output
functions large enough to be universal approximators. Recall that a class of one-hidden-layer networks
with units from a dictionary G is said to have the universal approximation property in a normed linear
space (X , ∥.∥X ) if it is dense in this space, i.e., clX spanG = X , where clX denotes the closure with
respect to the topology induced by the norm ∥.∥X . Function spaces where the universal approximation
has been of interest are spaces (C(X), ∥.∥sup) of continuous functions on subsets X of Rd (typically
compact) with the supremum norm and the space (L2(Rd), ∥.∥L2) of square integrable functions on

Rd with the norm ∥f∥L2 =
(∫

Rd f(y)
2dy

)1/2
.

Theorem 4.1 Let d be a positive integer and a > 0, then
(i) for X ⊆ Rd Lebesgue measurable, spanGKa

d
(X) is dense in (L2(X), ∥.∥L2);

(ii) for X ⊂ Rd compact, spanGKa
d
(X) is dense in (C(X), ∥.∥sup).

Proof. First, assume that X = Rd. Suppose that clL2spanGKa
d
(Rd) ̸= L2(Rd). Then by Hahn-

Banach Theorem [13, p. 60] there exists a linear functional l on L2(Rd) such that for all f ∈
clL2spanGKa

d
(Rd), l(f) = 0 and for some f0 ∈ L2(Rd) \ clL2spanGK(Rd), l(f0) = 1. By Riesz Repre-

sentation Theorem [4], there exists h ∈ L2(Rd), such that for all g ∈ L2(Rd), l(g) =
∫
Rd g(y)h(y)dy.

Thus for all f ∈ clL2spanGKa
d
(Rd),

∫
Rd f(y)h(y)dy = 0. Denoting ka(x) = e−a2∥x∥2

, we get for all

x ∈ Rd,
∫
Rd h(y)k

a(x−y)dy = h∗ka(x) = 0. Thus by Plancherel Theorem [13, p.188], ∥ĥ ∗ ka∥L2 = 0.

As ĥ ∗ ka = 1
(2π)d/2

ĥ k̂a [13, p.183], we have ∥ĥ k̂a∥L2 = 0. As ̂e−a2∥.∥2 = (
√
2a)−de−(1/a2)∥.∥2

[13,

p.186], we obtain ∥ĥ∥L2 = 0. So by Plancherel Theorem, ∥h∥L2 = 0. Hence we get 1 = l(f0) =∫
Rd f0(y)h(y)dy ≤ ∥f0∥L2 ∥h∥L2 = 0, which is a contradiction.
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Now, let X ⊂ Rd, be an arbitrary Lebesgue measurable set. We obtain (i) by extending functions
from L2(X) to L2(Rd) by setting their values equal to zero outside of X and restricting their ap-
proximations from spanGK(Rd) to X. For X compact, C(X) ⊂ L2(X) and so the statement follows
directly from (i). 2
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