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Introduction

Porous membrane supports and other porous media are in widespread use in many
fields of chemical technology. The pore structure is inherently complex; therefore, many
models of mass transport simply describe pore space as a continuum consistent with its
appearance on a macroscopic scale (therefore a term continuum models is used [17]). Besides
the pore space complexity, a number of fluid phases determine the nature of mass transport.
Even when a relatively simple case of single-phase transport of gases is considered, a variety
of mass transport mechanisms, including ordinary, Knudsen and surface diffusion, and
viscous flow, can occur in pore space. All continuum models of mass transport involve
empirical factors that describe transport characteristics of the pore structure. Note that a term
effective transport parameters of a porous solid is used in the literature. The effective
transport parameters, such as tortuosity, an effective pore radius, and an effective square of
pore radii, have to be determined experimentally, usually from steady transport of inert gases.
Unfortunately, this particular mass transport, which is hardly found in practice, only
guarantees the parameter constancy. For example, it is known that tortuosity depends on the
rate of chemical reaction [7,8].

On the other hand, random pore networks avoid the use of empirical factors and model
the pore space as interconnected pores with random distribution of pore sizes. In addition, the
pore networks naturally describe phenomena associated with multi-phase transport in pore
space, e.g. existence of the percolation threshold [17]. For determination of pore space
geometry and topology, several experimental methods have been developed for the past
fifteen years, e.g. stochastic reconstruction [1,3,4,9-11,16,23,24] and X-ray computed
microtomography [5,22].

The objective of this work is to demonstrate unusual phenomena that are inherent in
transport of multi-component mixtures of ideal gases in porous solids. For this purpose, we
simulated isobaric counter-current diffusion of binary and ternary gaseous mixtures in the
porous membrane support represented by a pore network model. We also simulated non-
isobaric transport of ternary mixtures in order to show the significance of small pressure
gradients on overall mass transport.

1. Pore network models

A pore network was modelled as three-dimensional arrays of chambers connected by
throats (chamber-and-throat network). The network consisted of throats with the constant
rectangular cross-sectional shape (rectangular parallelepiped throats) and cubic or rectangular
parallelepiped chambers. A chamber and three adjacent throats are depicted in Fig. 1.
Cubic or rectangular parallelepiped chambers were hierarchically arranged on nodes of two
cubic arrays [2]. This specific arrangement of chambers enabled the construction of networks
of relatively high total porosity (¢ =0.4292) and a broad chamber size distribution (CSD).
The procedure introduced a positive chamber-to-chamber (c—¢) correlation in the pore net-
work, i.e. large chambers were surrounded by chambers of similar sizes. An algorithm for the
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efficient assignment of throat sizes to network bonds was implemented in such a way that we
were able to introduce positive chamber-to-throat (c~t) correlation of a desired level. In this

Figure 1:  Schematic representation of a cubic chamber of volume ¥, =85’ and three
adjacent rectangular parallelepiped throats. For throat sizes, a, and b,, the following
inequalities hold: a, <5, and b, <5, (an internal consistency limitation). The throat aspect
ratio, A =q, /b, , satisfies the inequality: A=1.

case of overlapping distributions, a certain level of c—t correlation was unavoidable regardless
of the value of input parameters of the algorithm.

When a cubic network is to be of irregular topology, its mean coordination number, Z , must
be reduced by removing bonds at random. Then the coordination number, Z, of each chamber
is equal to a random integer between 1 and 6. In this work Z = 4.0 was estimated from a
skeleton of reconstructed pore space. The chamber size and throat size (TSD) distributions
(Fig. 2) were also derived from replicas of the a-alumina sample that was a subject of
stochastic reconstruction [3]. The throat size distribution was modified using a procedure for
iterative refinement of network parameters [2]. Having assigned chamber sizes to network
nodes and throat sizes to network bonds, and having specified connectivity, the distance
between the centres of gravity of two adjacent chambers was adjusted so that the total
porosity, @, of the network agreed with that of the prototype. Note that both chambers and
throats contributed to the total pore volume. Further details of the network construction can be
found elsewhere [2].
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Figure 2:  Number density functions of CSD, ¢, , and TSD, @, , used in the pore network.

2. Constitutive equations and mass balance in the pore network

Constitutive equations (models) based on the Maxwell-Stefan formulation accurately
describe multi-component transport in pores. Four models of isothermal transport, involving
Knudsen diffusion, ordinary diffusion and viscous flow, are in widespread use: the Dusty Gas
Model [14], the Mean Transport Pore Model (MTPM) [18], the Binary Friction Model [12],
and the Cylindrical Pore Interpolation Model [25]. The recent progress of transport
phenomena theory and numerical methods enabled simulations of non-isothermal multi-
component transport in porous media [6].

Schneider [18] originally derived the MTPM for isothermal multi-component
transport of gases in long cylindrical capillaries. He considered both gradients of mole
fractions (diffusion) and total pressure (forced flow) to evaluate fluxes of individual
components, and also assumed that the contributions of diffusion and forced flow to the net
flux of a component is in a first approximation independent and additive. For the purpose of
pore-scale modelling, we restricted themselves to isothermal transport and adapted the MTPM
and its transport coefficients to the special geometry of single pores of the pore network. A
single pore schematically depicted in Fig. 3 consisted of a throat and the halves of adjacent
chambers. Following Schneider's approach, we made a similar assumption that molar rates of
diffusion and forced flow of individual components in non-cylindrical pores were
independent and additive.

Our pore network calculations were further restricted to steady transport of inert gases,
i.e. molar rates of diffusion and forced flow (not fluxes) were constant along the longitudinal
axis of each single pore. Using this condition of steady state, we integrated constitutive
equations taking into account the variable cross-section area of a single pore. Since driving
forces of mass transport in a single pore were very small, the subsequent linearization of the
integrated expressions in state variables, namely mole fractions and total pressure, was
justified. Finally, molar rates of diffusion and forced flow of individual components as

functions of the state variables located in centres of gravity of chambers (network nodes) were
obtained.



Let ¢} and ¢, be the molar concentrations of the m-th gas in chambers (network nodes) i
and j respectively. The molar rates, 7’1[’;.], of flow between nodes i and j were obtained by

solving a set of linear equations (m =1,...,N,)
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Figure 3: Scheme of a single pore consisted of a rectangular parallelepiped throat and the
two halves of adjacent chambers. '

where ¢, = (c{:.“] - c{’}] )/ 7 is the mean value of the m-th molar concentration in a single pore,

m=1 M

coefficient of the gas pair m—n, and w_ is the mean thermal velocity of molecules of gas
m . Coefficients, S, , related to permeability of a single pore depend on the mean molar

_ Ne - ; : ; —
c =2 ¢ is the mean total molar concentration, Djr is the bulk binary diffusion

concentrations, C,, due to a term consisting of mixture dynamic viscosity, u, and the mean

total molar concentration
RT ¢
K 14
ﬁm =grj wn +g;j (2)
where R and T' are the gas constant (8.314 J mol ! K™) and the thermodynamic temperature,

respectively.
For a single pore (cf. Fig. 3), conductance in the regime of molecular diffusion, g;.’f g

conductance in the Knudsen regime, g, and viscous flow conductance, g, were

respectively given by

-1
1 Ly 1 |
f".’f =4 —p £ +— ;
gfj' [bci at!-’-bt#- b‘-'"jl ( )
-1
W INE 2
grff{ =ar§r'br£r' L= nt i + J; 1y )
byby; 16 Jab,
-1
3 A M
/16 E0), SR | £0) | 5
ba  ayby b

213




| Perry et al. [15] gave a functional relationship between the shape factor, &, and the aspect
ratio of rectangular ducts. We approximated their tabular data using a power expansion in

-] _
Ay = rzr'/ Ay

E(1,)=12+737043 471 + 547478 ;2 +3.60699 A, ©)

To calculate molar rates of flow in individual single pores, mass balances for all network
nodes had to be solved simultaneously. For simulation of steady network flow of inert gases,

the molar rates, n[’;] of flow that entered a network node had to be equal to the molar rates,

ﬁ[’"jk] , leaving the node, i.e. mass had to be conserved
| Zn;;;] -Zﬁ;”jﬂ =0, j=L.,N, @)

where N, is a number of network vertices. The simulated particle had the shape of a cube

with two opposite sides open to the gaseous phase and remaining four sides closed. Boundary
conditions of the Dirichlet type were used in the direction of macroscopic transport, while
periodic boundary conditions were assumed in the other two principal directions. Since the
network was isotropic, the choice of the macroscopic-flow direction was arbitrary. This
arrangement resembled one-dimensional transport in a Wicke-Kallenbach cell, in which bases
of a porous particle were rinsed by two gas streams of different composition [2]. The resulting
system of non-linear equations (7) was solved using a damped Newton method, supplemented
by an iterative solver (stabilised biconjugate gradient method) of the corresponding system of
linear equations.

3. Results and discussion
In this section, simulations of transport of binary and ternary gaseous mixtures in pore
networks are presented. All runs were performed on the same network with the only exception

of the network size, N,. Transport properties of gases and their mixtures were always

evaluated at the constant temperature of 297 K. Molar rates, 7y, of flow in a plane

perpendicular to a direction of macroscopic flow were summed and divided by an area of a
cubic particle side. Resulting molar fluxes are presented as functions of the total pressure, P.
Here, macroscopic flow was oriented along the x-principal direction.
3.1  Effect of network size

A pore network has to be sufficiently large to minimise finite size effects whilst

making efficient use of computing time. The minimum network size (N, =50x50x50

nodes) above which simulations were almost free of network size effects was deduced from
repeated constructions of networks of variable sizes and from network constructions with
different seeds of random number generators. To ensure excellent statistical stability of

results, we used the network size of N, =100x100x100 nodes as a reference case. This

network corresponded to a cubic particle (particle side length, L = 4.4 mm), size of which
was close to a real cylindrical pellet (height x diameter = 4.5 mm x 4.8 mm).
3.2  Effect of total pressure on isobaric diffusion -

Transport of gases in porous solids is strongly dependent on total pressure. When a
porous medium is given (i.e. pore size distribution is fixed), the total pressure determines the
Knudsen number and the character of mass transport. A combination of narrow pores and low
total pressure results in free-molecule transport, while wide pores and high total pressure
imply ordinary diffusion and viscous flow. If there is no gradient of total pressure and if
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transport of inert gases is only considered, the molar fluxes, J_, must satisfy the Graham law
generalised for the N _-component mixture

iJm VM, =0 | ®)

where M, is the molar mass of a gas m. Transport of gases under the conditions that imply

the validity of (8) is usually called counter-current isobaric diffusion.
Constitutive equations based on the Maxwell-Stefan theory, such as MTPM, are capable of
predicting the smooth transition between free-molecule flow (Knudsen region) and continuum
flow. Molar fluxes in the Knudsen region are proportional to total pressure, while molar
fluxes at the continuum limit are independent of total pressure. In the following sections,
isobaric diffusion in the transition region is studied.
3.2.1 Binary mixtures

The molar fluxes, J, and J,, as functions of the total pressure, P, were simulated
using counter-current isobaric diffusion of hydrogen (subscript = 1) and nitrogen (subscript
=2). In all simulation, runs the constant mole fractions of H, were assumed at the left-hand

boundary (0.95) and at the right-hand boundary (0.05) of the particle. The results shown in
Fig. 4 represent an example of “experimental” data that would enable very precise estimation
of effective transport parameters of a porous solid, particularly tortuosity and the mean pore
radius. The wide pressure interval in which the data were “measured” ensures that no
transport mechanismprevails. Real experimental data, often found in the literature, are mea-
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Figure 4. Molar fluxes of H, and N; as functions of the total pressure, P . Isobaric counter-
current diffusion.
sured in a very narrow interval of total pressure, which can be a cause of some transport
mechanism dominance and, therefore, of strong correlation between two estimated parameters
[19-21].
3.2.2 Ternary mixtures

Transport in ternary or multi-component mixtures of ideal gases is surprisingly
complex. The complexity stems from coupling of component fluxes. It is generally accepted
that the Maxwell-Stefan formulation (e.g. MTPM given by eq. (1)) provides a very general
approach for describing these unusual phenomena, and is superior to Fick's first law [13]. In
order to demonstrate coupling of fluxes, we simulated counter-current isobaric diffusion in a
ternary mixture of Hy (=1), N2 (=2) and CO, (=3), i.e. the gases were numbered in
ascending order of their molar masses. The mole fractions of H,, N, and CO, at the left-hand
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- particle boundary were respectively 0.49, 0.5 and 0.01, and the mole fractions of the same
components at the right-hand particle boundary were respectively 0.01, 0.5 and 0.49, i.e. there
was no Fickian driving force for diffusion of Nj. This choice of composition resembled
Duncan and Toor's classical experiment, which was reviewed by Krishna and Wesselingh
[13].

The courses of J, (P), iy (P) and J, (P) are depicted in Fig. 5. The positive flux of hydrogen
indicated its diffusion from the lefi-hand boundary to the right-hand boundary. Carbon
dioxide diffused in the direction opposite to that of hydrogen, i.e. both components behaved
normally and moved down their respective composition gradients. When we examine J, (P),
we see a curious phenomenon. In a low-pressure range, the molar flux of nitrogen was very
small, conforming to transport in the Knudsen region. (Note that each component diffuses
independently of others in the Knudsen region.) As the total pressure increased, the function
Js (P) grew more steeply than the functions J| (P) and J3(P). For example, dividing their

values  calculated at the lowest and  highest pressure, we  obtained
J,(512000)/,(15.625)=103, /(512 000)/.7,(15.625)~103 and J,(512000)/J,(15.625)~

=~ 8940. It clearly showed that the course of .J, (P) was strongly influenced by flux coupling.

Nitrogen had the negative molar flux that was a result of frictional drags exerted by carbon
dioxide and hydrogen on it. Obviously, the frictional drag of carbon dioxide was larger then
that of hydrogen. However, the frictional drag of the heaviest component on a component of
the middle molar mass need not be dominant. For example, counter-current isobaric diffusion
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Figure 5 Molar fluxes, J,.» as functions of the total pressure, P. Isobaric counter-current
diffusion. Top: Hz, N» and CO,; bottom: Hy, N, and Ar.
in a ternary mixture of Hy, N, and Ar under the same conditions resulted in the positive molar
flux of Ny, indicating the major role of the frictional drag exerted by hydrogen on nitrogen (cf.
Fig. 5).
3.3 Effect of total pressure gradient on transport

The effect of the gradient of total pressure on transport in a ternary mixture of Hy, N,
and CO, was also evaluated. The composition of gaseous mixtures at the particle boundaries
was chosen to be the same as in section 3.2.2. However, the values of total pressure were
respectively 100 kPa and 101 kPa at the left-hand boundary (x =0) and at the right-hand
boundary (x = L).
Concentration profiles of H, Ny, and CO, are shown in Figs. 6 and 7. The pressure difference
of +1 kPa reversed the sign of ./, (see Table 1) and forced hydrogen to move up its large con-
Table 1:  Effect of the total pressure gradient on the molar fluxes of H, (=1),N2(=2),and
CO, (=3).

AP, kPa J,molm? s J,,molm™ s Jy,molm? s
0 +4.078x1072 . —-4.093x107° —-8.694x10°

1 ~5.615x10” —0.2645 -0.2579

\\

Y P

Figure 6  Profiles of the molar concentrations of H, and CO,. The spatial coordinate, y, has
a constant value of y/L =0.5. Non-isobaric transport.

Figure 7 Profile of the molar concentration of N». The spatial coordinate, y, has a constant

value of y/L = (0.5. Non-isobaric transport.

centration gradient (up-hill flow). The concentration profile and molar flux of CO, were fully
consistent with the Fickian expectations, because carbon dioxide moved down its
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macroscopic concentration gradient. While the concentration profiles of H, and CO, were
normal, the profile of N, had a minimum in the direction of macroscopic flow. Since the
molar flux of Ny was negative, its flow could be termed normal (down-hill) between the x-
coordinate of the minimum and the right-hand boundary. In the remaining part of the x-
variable domain, however, up-hill flow of N, was observed.

The molar fluxes calculated for the isobaric and non-isobaric conditions are compared
in Table 1. Absolute values of J_ implied that viscous flow prevailed in wide pores of the

network. Its interaction with diffusion flow was the cause of the observed unusual
phenomena, particularly up-hill flow.

The molar concentrations shown in Figs. 6 and 7 are not smooth functions of the
spatial coordinates x, y and z. Microscopic fluctuations of state variables are a typical feature
of pore network models of flow. They are also consistent with the discrete nature of porous
media and irregular topology of their pore space. Pore network models contrast with
continuum models of flow in porous solids. Continuum models neglect the influence of
microscopic fluctuations of state variables on flow, i.e. state variables are smooth functions of
the spatial coordinates.

4. Concluding remarks

In this paper, we developed a pore network model of multi-component mass transport
in porous solids. Constitutive equations applied on the pore-scale level were based on the
Maxwell-Stefan formulation. Fitting effective transport parameters like tortuosity was
completely avoided. Essential information about pore sizes was extracted from the pore
network model. It was shown that conditions for unusual phenomena, particularly up-hill
flow, can be found quite often in practice. Pore network models also appear to be a very
convenient tool for estimation of optimal conditions of diffusion experiments.
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