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Abstract:

In biology and medical sciences mathematical models play an important role. The role of mathematical
models are then to explain a set of experiments, and to make prediction which will then be tested by further
theoretical and/or experimental approaches. During the last four decades, various neoplasms (tumors and
cysts) models have been developed, analyzed and discussed. Some of these models are based on simple
assumptions ignoring the spatial effects of tumour growth. These models are based on ordinary differential
equations (ODEs) only. On the other hand the models which take spatial effects into considerations lead
to models which are based on formulations using partial differential equations (PDEs). They also need to
take into considerations the facts that the tumor regions are changing in time and that the boundaries are
unknown in advance.

The submitted paper represents an introductory course to study model problems of loaded long bones,
bones of spine (vertebrae) and/or of jaw-bones with cancers. The study will be divided into several parts
and will be concerned with mathematical models of cancers, the mathematical models of loaded bones
with cancers and the models of fracturing as well as microfracturing of bones with tumors and numerical
methods for their solutions.
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1 Introduction

At present cancers are fundamental and social problems as they represent the main causes of morbidity
and mortality in the world. World Health Organization – WHO’s studies show that cancers are leading
causes of death world wide, accounting of about 12–14% of all world’s deaths. Bone tumors represent
a great number of diseases occurred in the human population. Therefore, the fundamental cancer’s
research is needed and advanced countries investing large sums of money into these research programs,
namely to molecular biology, cell biology, drug delivery research, but also into mathematics. The
PubMed bibliographic data base shows that more then 1.5 million papers in the area of cancer research
were written. In the area of the mathematical modelling of cancers the number of present research
results represent of about 100,000 papers. J. E. Cohen characterizes the usefulness of mathematics
in these studies as follows: “Mathematics is Biology’s next microscope, only better”, and moreover,
“Biology is Mathematics’ next Physics, only better.”

The goal of this study is to give an idea, how to better understand of the highly nonlinear processes
passing in the bone tissue during the evolution of cancer under the influence of stresses (pressures and
tensions) in the loaded bone tissue and the influence of the tumour mass onto the bone strength and
its possible resistance to fracturing (i.e., the fracture strengthens). Moreover, the ultimate goal in the
clinical practice is to use mathematical modelling to help design therapeutic strategies. Using analysis
and nonlinear numerical simulations, we investigate, and then in general, we can explore the effects
of the interaction between the genetic characteristics of the tumor and the tumor microenvironment
on the resulting tumor progression and morphology. We will present a model for solid tumor growth
and then the ensuing model of the loaded long bone and/or of the spine and/or of the jaw-bone with
cancers.

Cancer arises from one single cell. The transformation from the normal cell into a tumour cell
is a multistage process. The evolution of a cell is regulated and controlled by the genes contained
in its nucleus. Receptors on the surface of cell(s) can receive signals which are then transmitted to
the cell nucleus. These genes are then activated or suppressed [105]. These processes are in progress
in the sub-cellular scales. But there can be situations that particular signals induce uncontrolled
proliferation or on the other hand induce cell death, the so-called apoptosis and/or induce the
programmed cell death.

A tumour is a mass of tissue that forms when cells divide uncontrollably, i.e., by an overproduction
of cells. A bone tumors are abnormal growth of cells within the bone that are (i) noncancerous, we
speak about benign bone tumors, or (ii) cancerous, and we speak about malignant bone tumors.
Bone tumors are of primary types, originating within the bone tissues, or of secondary types,
which result from the spread cancer cells from the primary tumors located in other tissues in the
human body and we speak about metastasis (see e.g. [36, 31, 69]. Another type of neoplasms are
cysts, except that they are filled by fluid. Growing tumors replace healthy tissue with abnormal
benign or malignant tissues. Benign tumors are not life-threatening, expecting such benign tumors
that are changed into malignant tumors.

Benign bone tumors do not metastasize, that is, they do not spread to other tissues but remain
situated in the bone or in the other tissue. Bone cells, the so-called osteoblasts, produce osteomas,
while cartilage cells, the so-called chondroblasts, produce chondromas. Tumors, which are built
from both types of bone and cartilage cells produce osteochondromas, which are the common type
of benign bone tumors.

There exist many types of benign bone tumors, namely Giant cell tumor, Osteochondroma,
Ecchondroma, Fibrous dysplasia, non-ossifying fibromaunicameral bone cyst (neo-ossifying fibroma),
simple bone cyst, aneurysmal bone cysts, osteoid osteoma, osteoblastoma, osteoma, chondroblastoma,
chondromyxoid fibroma. Benign tumors and cysts are located also in the jaw-bone and that are most
often odontogenic, meaning that they originate from tissue related to the teeth. Another type of odon-
togenic cyst is the so-called odontogenic keratocyst, which are frequently situated in the mandible,
but it is observed also in maxilla. It grows relatively very quickly.

Remark 1 The problems of cysts are studied in the number of papers e.g. [95, 94, 68, 99, 101, 108,
82, 83] and the papers and books quoted here.
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Bone tumors are most classified according to their histogenesis. Tumors are of benign or malig-
nant types. Malignant bone tumors are of primary and secondary types and the secondary types
(metastasis) are frequently occurred than the primary types (≤ 1%). Primary bone cancers, known
as sarcomas, originate in different types of bones or of soft tissues, like cartilage, muscles, nerves,
connective tissues.

Primary bone cancers are different than secondary bone cancers. The most common types of
primary bone cancer are

(i) Multiple Myeloma, which is a malignant tumor of bone marrow; most are observed in patients
between the ages of 50 and 70 years old.

(ii) Osteosarcomas, which are bone-forming sarcoma that develop primarily at the ends of the bones
(children and young adults) and located in the knee, hip and shoulders areas. They are classified
due to the cells of origin, their size, location, and degree of proliferation – mitoses. Surgery
remains the standard for osteosarcomas with adjective systemic chemotherapy.

(iii) Ewing’s Sarcoma develop most frequently in the middle of long bones as the upper and lower
limbs, pelvis, ribs.

(iv) Chondrosarcomas arise from cartilage and are observed in the upper and lower limbs, pelvis and
ribs; they may also develop from benign enchondromas and osteochondromas.

(v) Fibrosarcomas arise from connective tissue – tendons, ligaments or muscles, and may affect the
bone of the jaw and limbs.

(vi) Giant cell tumors (GCTs) are benign but locally aggressive tumors. When they are located
in the spine and sacrum, the surgical resection is complicated and is associated with excessive
blood loss. Moreover, radiotherapy is also complicated.

Bone sarcomas occur in 0.2% of all neoplasms. Cancer registry data with histological stratifica-
tion show that osteosarcoma is the most common primary malignant tumor of bone, which account-
ing ∼ 35% of carcinomas; chondrosarcomas of about ∼ 25% and Ewing sarcoma of about ∼ 16%
of carcinomas. Chordomas and malignant fibrous histiocytoma occur in 8% or 5% of bone tumors,
respectively.

Osteosarcomas occurs predominantly in younger patients, less than 20 years old, and moreover,
in 80% of this sarcomas occur in long bones of the limbs, while a smaller part of cases are located
in other part of the skeleton, that is, in craniofacial bones, the spine, and the pelvis. In the case of
patients older than fifty, osteosarcoma of the limbs occur in ∼ 50% of cases, and in the pelvis and
craniofacial bones it occurs in about of 20% of cases.

Chondrosarcomas, more than 50% of cases, occur in the long bones of the limbs; their incidence
rates show a gradual increase up to age 75. The other their major locations are the pelvis, ribs and
sternum, that are high risk sites for malignant cartilage tumors.

Ewing sarcoma has a epidemiological feature similar to those of osteosarcoma. Ewing sarcoma
mainly occur in the diaphysis of long bones, while the osteosarcomas tend to occur in the metaphyseal
areas of long bones. The incidence mirrors those of osteosarcoma with the major peak occurring
during the second decade of life, with a rapid decrease in incidence after age 20.

The bone cancers were studied in a great number of papers, e.g. [92, 93, 71, 52, 19, 106, 29, 67,
53, 30, 31, 69, 13, 38, 50, 96] and in many other papers.

Some types of bone tumors and other neoplasms can be found e.g. in WHO Classification of Bone
Tumors [91, 98, 13, 86, 75, 55, 27, 85, 87] andhttp//:njms2.umdnj.edu/tutorweb/introductory.htm.

From the etiology point of view bone malignancies are of different origins. While radiation and
chronic inflammantory states were established, other exposures and conditions, like chromium, nickel,
cobalt, aluminium, titanium, methyl-methacrylate as well as polyethylene, have been suspected, but
at present not confirmed. Therefore, at present attentions have been focused on some bone sarco-
mas arising as a consequences of implanted metallic joint prostheses and metallic hardware used in
orthopaedy.
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The clinical features of bone tumors are non-specific, and therefore, during a long time they are not
diagnosed. As the cardinal symptoms that lead to diagnosis of bone tumors are pains, swelling as well
as discomfort of patients and limitation of their mobility and spontaneous fractures of bones. Swelling
may be of very long duration, especially in benign neoplasms with practically no additional difficulties
for patients. Swellings are observed if there are extraosseous parts of the tumors or the bones are
expanded by the tumorous processes. But in malignant tumors, swellings develop more rapidly as the
growth of malignant tumors are of millimeters per day, while in the case of benign tumors the growths
of tumors are millimeters per year. In some cases pathologic fractures are diagnosed. They may occur
with no prior symptoms at all, as they are frequently the cases in juvenile cysts and in some non-
ossifying bone fibromas. But in the cases of malignant bone tumors, fractures are rare primary events,
as they occur in advanced stages for the patients. Diagnoses of tumors are based on the radiological
or CT/MRI and histological criteria. Focal extents and staging are based on MRI because the main
advantages are represented by high contrasts. Bone metastases are best detected on radionuclide bone
scans, on computer tomography (CT) and/or on positron emission tomography (PET), respectively.
Histological gradings are attempts to predict the biological behavior of malignant tumors based on
histological features. The relative amount of cells compared to matrix (known as cellularity), and
nuclear features of the tumor cells are the most important criteria used for grading in bone tumor
analyses. For bone tumors the universal classification TNM staging system used for most carcinomas
is not commonly applied for bone sarcomas because of their special behaviors and their metastasize to
lymph nodes. Therefore, the special staging system (TNM system) was adopted for the musculoskeletal
system.

2 The classification of bone tumors

2.1 The structure and functions of bones

The skeleton is the framework of the body. It supports the softer tissues and provides areas of
attachment for most skeletal muscles. The purpose of the skeletal system is to protect many of the
body’s internal organs, e.g., vertebrae protect the spinal cord, the ribcage protect the heart and lungs,
cranial bones protect the brain, etc., and provide kinematic links and muscle attachment sites, and
facilitate muscle action and body movement. Since skeletal muscles are attached to bones, then when
the associated muscles contract they cause bones to move.

A bone tissue is a connective type of tissue whose solid composition enhances its supportive and
protective roles. It consists of cells and of an organic extracellular matrix of fibres and a ground
substances produced by the cells. Bone tissues store several minerals, including calcium Ca and phos-
phorus P, which are combined intimately with the organic matrix. These inorganic components make
bone tissues hard and rigid; organic components give a bone its flexibility and elasticity. These inor-
ganic components consist of calcium and phosphate in the form of small crystals of Ca10(PO4)6(OH)2.
Bone minerals are embedded in various oriented fibres of the protein collagen, and the inorganic ma-
trix. From a macroscopic point of view bones are divided into two main types of osseous tissue – that
is, (i) cortical or compact bones and (ii) trabecular or spongy or cancellous bones. Cortical bones
form the outer cover of the bones and they have dense structures. Cancellous bones are composed
of thin plates, or trabeculae, in loose mesh structures, where the interstices between the trabeculae
are filled with a red marrow. The cancellous bone tissue is arranged in concentric lacunae-containing
lamellae. Bone tissues behave like composite biomaterials. The red bone marrows are occurred inside
of some larger bones where blood cells are produced. With a bone increase the bone marrow changes
from the red bone marrow to the yellow bone marrow. Bone marrow produces stem cells, such as
erythrocytes, that is, the red blood cells, and the leucocystes, that is, the white blood cells. Yellow
bone marrow consists mainly of adipose cells, and a few blood cells, and it represents an important
chemical energy reserve. For more details see e.g. [43, 47, 24, 86, 38, 70, 85].

Types of bones are the following:

• Axial and appendicular. The appendages are the arms and legs, which contain approximately
of about 30 bones each.
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• The head bones, which contain of about 22 bones.

• The spine, which contain 33 bones; include 7 cervix (neck), 12 thorax, 5 lumbar, 5 sacral,
4 coccyx.

• The pelvic girdle, which is fused to the sacrum at the sacro-iliac joint. The pelvis is the part of
the skeleton that is added onto the spine.

• The thorax (chest) consists of 12 pairs of ribs.

• The shoulder girdle consists of the scapula (shoulder blade) and the clavicle (collar bone).

Categories of bones are the following:

• Long bones, which have greater length than width (e.g., the femur, the tibia, the fibula, the
humerus, the ulna, the radius) and which consist of a shaft and a variable number of extremities
(endings). They are usually somewhat curved for strength.

• Short bones, which are roughly cube-shaped and have approximately equal length and width,
e.g., the ankle or wrist bones.

• Flat bones, which have a thin shape/structure and provide considerable mechanical protection
and extensive surfaces for muscle attachments, e.g., the cranial bones, the sternum and the ribs,
protecting the inner organs in the thorax, and the scapular (shoulder blades).

• Irregular bones, which have complicated shapes. Their shapes are due to the functions they
fulfil in the skeletal body, like the vertebrae protecting the spinal cord, or some facial bones.

• Sesamoid bones, which develop on some tendons in locations where there is considerable friction,
tension, and physical stress, e.g. the patellae (kneecaps).

• Sutural bones, which are classified by their locations rather than by their shapes. They are
small bones located e.g. within the sutural joints between the cranial bones.

Cartilages are related to bones. Bones are caltified cartilages. Long bones originate from cartilage
tissues in limb buds during embryonic development and increase in length through endochondral
ossification in which cartilage tissue is calcified and subsequently replaced by bone matrix near the
ends of the bones. They increase in width by periosteal matrix apposition by osteoblasts; the marrow
space increases in diameter in proportion to the length of the growing bone by endosteal resorption of
cortical bone by osteoclasts. New cancellous, known also as trabecular, bones are laid down rapidly
following resorption of calcified cartilage at the growth plate. Most of them are quickly removed by
osteoclastic resorption to maintain a medullary cavity as the bone grows. Mutations in genes regulate
limb bud development.

Bones grow from their ends - extremities. Under normal circumstances bones stop growing when
the owner reaches teens or early twenties. Bone components are articulatory cartilage, which reduces
friction and absorbs shocks at freely moveable joints; spongy bone; bone marrow; endosteum, which
is membrane that lines the cavity of a bone; compact bone; periosteum, which is a though fibrous
membrane that surrounds the outside of bones whenever they are not covered by articular cartilage;
medullary cavity, that in adults contains fatty yellow bone marrow (Figs 2.1). For the structure of
long bones see e.g. [21, 44, 86, 85].

The ideal reconstructions of long bones with tumors would have biological affinity, resistance to
infection, sufficient biomechanical strength, and durability. Distraction osteogenesis involved three
different procedures – bone transport, shortening distraction, or both combined with the use of an
intramedullary nail. For illustration of useful techniques the treatment of osteosarcoma situated in
the femur is presented. For such type of reconstruction in the diaphysis area the bone transport or
shortening-distraction techniques can be used. Reconstruction of long bones are classified as follows:
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Figure 2.1: Long bones, their structure and locations of bone cancers: (a) cross section through the
tibia - the Diaphysis, Metaphysis, Physis and Epiphysis and its structure, (b) locations of some cancers
in the femur and the tibia.

Type 1. Diaphyseal reconstruction.

Type 2. Metaphyseal reconstruction.

Type 3. Epiphyseal reconstruction.

Type 4. Subarticular reconstruction.

Type 5. Arthrodesis.

The classification of reconstruction by distraction osteogenesis using bone transport or shortening
distraction is presented in [98]. Distraction osteogenesis involved three different procedures – bone
transport, shortening distraction, or both combined with the use of an intramedullary nail. Recon-
struction of femur using distraction osteogenesis is presented at Fig. 2.2 due to [98]. Mathematical
simulations of these types of reconstructions can be based on the modified methods and algorithms
discussed in [78, 79, 80, 81, 82, 83, 84, 85] and also in the next part of the paper.

Between bone tumors primary vascular tumors of bone, which represent a heterogeneous
group of bone entities, are also observed. Vascular tumors of bone consist of a wide variety of different
clinicopathologic entities, ranging from begin lesions on one hand and malignant tumors at the other
hand [38]. Vascular tumors of bone are of

(A) benign type, that are

(i) Hemangioma, that are cavernous and capillary; located in the skull or vertebrae;

(ii) Hemangiomatosis, that are

∗ non-aggressive and regional;

∗ non-aggressive, disseminated (cystic angiomatosis);

∗ aggressive or massive osteolysis and/or Gorham Stout’s Disease;

(B) intermediate (locally aggressive, rarely metastasizing) type, that is, Epithelioid hemangioma;
located in long tubular bones;

(C) malignant type, that are,
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Figure 2.2: Some reconstruction of bones after Osteosarcoma in the femur and distraction osteo-
genesis. Schematic figure of distraction osteogenesis based on shortening-distraction with using an
intramedullary nail (modified after [98]).

(i) Epithelioid hemangioendothelioma; located in long tubular bones of extremities;

(ii) Angiosarcoma, located in long tubular bones of extremities and in spine; that are

∗ Primary;

∗ Irradiation-induced;

∗ Bone infraction associated.

Secondary bone cancers originate when malignant (tumor) cells from primary cancer locations in
bones spread, that is, metastasize to another site(s) in bone(s) and the tumor malignant cells are
those of the original tumor. It can also metastasized to the jaw-bones. Most cancers, like prostate,
lung, breast, etc., can metastasize. The primary tumors cannot reach a size of about few mm3 without
nourishment from new blood vessels. Tumor angiogenesis is a necessary proliferation of a network of
blood vessels that penetrates into cancerous tissues and supplies nutrients, that is, the glucose and
oxygen, and remove waste products. An undesirable consequence is that neovascularization favors
cancer cells metastasis. Metastatic areas can develop hypervascularization. Bone metastases are often
hypervascularized [39, 59].

Tumor metastases to bone are not a random process, but rather a result of anatomical factors,
tumor cell phenotype, and suitability of the metastatic site for tumor growth. Blood flows from the
primary sites are significant determinant of the sites of metastases. Metastasis is a very complicated
process that consists of a cascade of linked sequential events. Mechanisms of tumor cell metastasis
to bone consists of several stages, that are, (i) a tumor cell(s) is detached from the primary site;
(ii) creation of new vessel system and ensuing circulation and invasion of tumor cells; (iii) survive
host immune response and physical force in the circulation; (iv) arrest in distant capillary bed in
bone; (v) escape the capillary bed; (vi) tumor cell proliferation and creations metastases in bone.
Cancer metastasis to bone tissue causes bone destruction or osteolysis. When localized in the bone
marrow, tumor cells release growth factors and cytokineses that can modify the microenvironment
and the bone remodelling, that is, parathyroid hormone-related protein (PTHrP), transforming growth
factor beta (TGFβ), colony stimulating factor (CSF-1), granulocyte-monocyte CSF (GC-CSF), and
chemokineses and other growth factors and cytokineses [49, 77]. Since bones are composed of hard
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mineralized tissues, they are more resistent to destruction than other soft tissues. The bone matrix
is a favorable microenvironment, rich in sequestered growth factors, that is, bone morphogenetic
proteins (BMPs) insulin-like growth factors (IGF-1) and transforming growth factor beta (TGFβ).
Bone matrix degradation by osteoclasts releases the entrapped growth factors that promote tumor
cell proliferation. The vasculature in the bone marrow consists of sinusoidal capillaries that have a
larger diameter than capillaries of other tissues. The sinusoidal capillaries have discontinuous walls
made of endothelial cells with no tight junctions, therefore, the structure of the marrow sinusoids and
the blood flow make an advantageous ability for tumor cells to invade the bone marrow.

Since bone tissues are mainly composed of hard mineralized tissues, and therefore, they are more
resistant to destruction of bone tissues, thus they must possesses the capacity to cause bone destruction
for cancer cells to grow in bone [52]. A production of bone – resorbing factors depends on the type
of malignancies in which bone metastases occur. Several tumor types, such as prostate, lung, renal
cell, and thyrozoid, are associated with osteolytic lesions, while osteoblastic metastases are more often
manifest in prostate cancer. Mixed osteolytic and osteoblastic lesions are often observed in breast and
prostate cancers [67, 49, 31, 105].

The detailed discussions about all these above mentioned problems see e.g. in [65, 66, 62, 37, 36,
98, 14, 49, 31, 69, 15, 63, 38, 76, 75, 40, 105] and in the references presented here.

Limbs with sarcomas are treated by chemotherapy, radiological evaluation and surgical techniques.
The last one is connected with the implants and with the technology of materials for hardware.
Complications such as deep infections, fractures, bone resorption, and breakage of prostheses still
occur.

2.2 Classification of bone tumors

The classification of tumors is based on the matrix produced by the tumor and the cytologic findings.
Several systems have been introduced for classifying tumors of bones, based on morphologic differences
between different lesions or based on clinical and radiographic parameters or on histologic differences
as well as etiology, respectively, that will be modified with our knowledge in regard to the primary
tumors of bones. Ewing [34, 35], Budd and McDonald [17], Coley [23]) modified the classification of
bone tumors of the Registry of Bone Sarcoma and later the classification of tumors arising in bones was
introduced by Lichtenstein [65]. This classification, reflecting current concepts of his time, provides
within its framework a place for all known primary neoplasms of bone including pathological entities
known in his time. His classification includes the benign as well as the malignant primary tumors.
Significant progress has been made in the histological and genetic typing of bone tumors, introduced
by the WHO Classification of Bone Tumors [38], where the morphology code of the International
Classification of Diseases for Oncology (ICD-O) and the Systematized Nomenclature of Medicine (see
http://snomed.org) are used.

WHO Classification of Bone Tumors:

A. Cartilage Tumors

1. Osteochondroma

2. Chondroma
a. Enchondroma
b. Periosteal chondroma
c. Multiple chondromatosis

3. Chondroblastoma

4. Chondromyxoid fibroma

5. Chondrosarcoma
a. Central, primary, and secondary
b. Peripheral
c. Dedifferentiated
d. Mesenchymal
e. Clear cell
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B. Osteogenic tumors

1. Osteoid osteoma
2. Osteoblastoma
3. Osteosarcoma

a. Conventional
- chondroblastic
- fibroblastic
- osteoblastic

b. Telangiectatic
c. Small cell
d. Low grade central
e. Secondary
f. Parosteal
g. Periosteal
h. High grade surface

C. Fibrogenic tumors
1. Desmoplastic fibroma
2. Fibrosarcoma

D. Fibrohistiocytic tumors
1. Benign fibrous histiocytoma
2. Malignant fibrous histiocytoma

E. Ewing sarcoma/primitive neuroectodermal tumor
1. Ewing sarcoma

F. Hematopoietic tumors
1. Plasma cell myeloma
2. Malignant lymphoma, NOS

G. Giant cell tumor
1. Giant cell tumor
2. Malignancy in giant cell tumor

H. Notochordal tumors
1. Chordoma

I. Vascular tumors
1. Hemangioma
2. Angiosarcoma

J. Smooth muscle tumors
1. Leiomyoma
2. Leiomyosarcoma

K. Lipogenic tumors
1. Lipoma
2. Liposarcoma

L. Neural tumors
1. Neurilemmoma

M. Miscellaneous tumors
1. Adamantinoma
2. Metastatic malignancy

N. Miscellaneous lesions
1. Aneurysmal bone cyst
2. Simple cyst
3. Fibrous dysplasia
4. Osteofibrous dysplasia
5. Langerhans cell histiocytosis
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6. Erdheim-Chester disease
7. Chest wall hamartoma

O. Joint lesions
1. Synovial chondromatosis.

Malignant bone tumors are classified, e.g., in the American Joint Commission on Cancer (AJCC)
tumor-node-metastasis (T-N-M) staging system as follows:
T0 – no tumor, T1 – tumors ≤ 8cm, T2 – tumors ≥ 8cm, T3 – tumors in more locations on the same
bone;
N0 – no spread, N1 – spread to lymph nodes;
M0 - no distant spreading, M1 - distant metastasis.

For alternate group T-N-M staging system the Roman numeral I-IV (ranging from the absence
of incremental increases in metastasis) or assigns G1-G4 (lower numbers indicate low-grade tumors,
higher numbers indicate high-grade tumors) are used.

Odontogenic tumors are either of epithelial, mesenchymal, or of unknown origins [64].

Classification of odontogenic tumors:

A. Benign epithelial odontogenic tumors:
1. Tumors producing minimal inductive change in the connective tissue:

a. Ameloblastoma;
b. Calcifying epithelial odontogenic tumor, the so-called Pindborg tumor;
c. Odontogenic adenomatoid tumor, that is, adenomeloblastoma, adenomatoidodontogenic

tumor;
d. Calcifying odontogenic cyst, the so-called Gorlin’s cysts;

2. Tumors producing extensive change in the connective tissue:
a. Ameloblastic fibroma;
b. Ameloblastic fibroodontoma;
c. Ameloblastic odontoma, the so-called odontoameloblastoma;
d. Odontoma;
- Compound-composite odontoma;
- Complex odontoma.

B. Mesenchymal odontogenic tumors
l. Odontogenic fibroma;
2. Odontogenic myxoma;
3. Cementoma:

a. Periapical cemental dysplasia;
b. Cementifying fibroma;
c. Benign cementoblastoma;

4. Dentinoma.

C. Tumors of unknown origins:
1. Melanotic neuroectodermal tumor of infancy.

D. Malignant odontogenic tumors:
1. Primary interosseous carcinoma;
2. Ameloblastic fibrosarcoma;
3. Ameloblastic dentisarcoma;
4. Ameloblastic odontosarcoma.

Bones in the human skeleton are renewed by the process known as remodelling, which is generally
heterogeneous, with regular but asynchronous cycles, so that every bone in the skeleton is periodically
remodelled. Moreover, bone-remodelling depends on external loads, which produce stress and strain
patterns in the bone, which are considered as mechanical stimuli [102, 103, 33]. Bone contains sensor-
cell detecting mechanical stimuli. The intensity of the stimuli then affect the activity of the osteoclasts
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and osteoblasts. Together with genetic, metabolic and hormonal factors, that is, the mechanism by
which the morphology (density) of the bone changes. Normal loading and consequently a normal
stimulus distribution lead to the homeostatic equilibrium with normal bone density, in which the
amount of bone formation is in balance with the amount of bone resorption. Unnatural load evoke
the stimulus patterns and the adaptive bone-remodelling leads to a new equilibrium state. In the case
of cancer disease, e.g., the multiple myeloma, patients have abnormal remodelling, where formation
and resorption are out of balance, resulting in the end that bone formation decreases and bone
resorption increases. Carcinoma cells are occurred in close association with locations of active bone
resorption, and their ability to stimulate osteoclast formations and activities are characteristic. Since
the cancer disease progresses in time, bone formation rapidly decreases, that can result bone fracture
during loading of this part of the skeleton. This problem will be also of our interest in this paper and
will be discussed in the next part of this study.

The paper will be divided into several parts and will be concerned with evolutions of a tumors and
their growth, with mathematical models of loaded bones with cancers and mathematical methods and
algorithms for their solutions. The bone-remodelling, microfracturing and fracturing of bones will be
also studied and shortly discussed.

3 Cancer evolution

Cancer evolution is characterized by several stages of development. The first stage of development,
known as carcinogenesis, is characterized by a sequence of genetic mutations, i.e., many gene muta-
tions take place in the human body during one humans’ lifetime or epigenetic mutations, that creates
the first single abnormal cell(s), that gives rise to a tumor. These gene mutations arise increase of
oncogeneses, circumvent apoptotis, that is, inactivation or less of tumor suppressor genes. There are
two ways by which a gene start to be abnormal, firstly, a stimulating gene turns to be hyperactive, or
upregulated, and we speak about oncogenes; and secondly, an inhibitory gene turns to be inactive,
or downregulated, and we speak about tumor suppressive genes. Such gene is, e.g., the p53 gene
that controls the initiation of the cell cycle.

A first tumor cell(s) starts to indirectly divide (Figs 3.1), we speak that a cell(s) undergoesmitosis,
the new cells born and start to press the neighboring cells, that generates displacements of these
neighboring cells. This stage is devoted as carcinogenesis. In this stage the nutrition of cells
depends on the nutriment in neighboring cells.

Figure 3.1: Evolution of tumor cells: (a) initial state; (b) mitosis and pressure acting on the neigh-
boring cells; (c) cell movements and the pressure field evoked by mitosis.

This leads to growth of the tumor [18, 90] and many others. The tumor is not surrounded by
capillaries. The early mitosis can be studied in laboratory by culturing tumor cells. Further, the
tumor cells proliferate and form an in situ tumor. The nutrition of tumor cells, because the tumor
is not surrounded by capillaries, are depended on the nutriment from the neighboring cell area. The
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tumor tends to assume a limit radius corresponding to a situation with balance between mitosis and
disintegration (decomposition) of tumor cells into some waste products and water. The tumor cells
produce chemical factors that diffuse into the tumor mass (tissue) and into the surrounding tissue.
These chemical factors are the so-called growth inhibitor factor (GIF) and the so-called tumor
angiogenesis factor (TAF). The former has an influence onto the mitotic rate of tumor cells,
that arises the proliferation of endothelial cells. The diffusion of tumor angiogenesis factor initiates
a new phase, called tumor angiogenesis. The endothelial cells within a TAF release some enzymes
degrading their basement membrane – the matrix-degrading enzymes, and subsequent degradation of
the extracellular matrix (ECM) play a main role in providing some space for the tumor to expand
into the surrounding tissue [4, 5].

This stage is the second stage of tumor development and is characterized by its avascular phase
and we speak about the avascular growth of tumor.

Nutrients, e.g. glucose and oxygen, are still received by diffusion through the surrounding tissue.
With the further increasing of the tumor less nutrient reaches the inner central part of the tumor, the
interior cells begin to die and we speak about necrotic cells, which are broken up by enzymes. The
necrotic cells in the interior of the tumor balances with cell proliferation on the boundary, and thus
the tumor reach a certain diffusion-limited size ∼ 2–4 mm of a spherical or irregular shapes (firstly the
tumors can be observed if they reach a size of about ∼1 mm, which obtain approx. 1.0 × 106 cells).
When tumor cells are in a high nutrient environment, they proliferate, in low nutrients the tumor cells
trigger cell death – called apoptosis, in intermediate nutrient levels the tumor cells stay quiescent
(Fig. 3.2). Therefore, we see that tumor cells consume nutrients, which diffuse into the tumor tissue
from the surrounding tissue in the avascular stage. If the tumor is very large, then the nutrients cannot
reach the inner parts of the tumor and the cells become gradually extinct and creak the necrotic tissue
of the tumor. Only in the relatively thin layer being in a contact with healthy tissues the tumor cells
proliferate, because their tumor cells are in a high nutrient environments, while below this layer the
tumor cells are in intermediate nutrient environments, and therefore, they are quiescent.

Figure 3.2: Tumor – schematic cross-section.

The third stage of tumor evolution is characterized by the development of neovasculature by
the process described above and known as angiogenesis. A tumor-induced neovasculature grows,
capillary sprouts then form by accumulation of endothelial cells. If first capillary sprouts reach the
tumor surface and penetrate through it into the tumor interior, the tumor obtain much more nutrient
and the tumor cells become to be very aggressive, their mitotic rate strongly increase and the tumor
rapidly growth (Figs 3.3) [51, 57].

The final stage of the tumor evolution is the called vascular phase or vascular growth, which
is characterized by a dense system of capillaries that provide the tumor by large amounts of nutrients,
e.g. the glucose and oxygen.

The cancers are distinguished by the tissue from which they originate and by the cell types of their
involvement. Therefore, we speak about leukemia, which is a cancer of white blood cells, or about
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Figure 3.3: The tumor angiogenesis: (a) production of TAF factors; (b) stimulation of proliferation
of endothelial cells with invasion of the extracellular matrix and migration towards the tumor cells;
(c) formation of new capillary sprouts.

sarcoma, which is a cancer originating in connective and muscle tissues, or about carcinoma, which
is a cancer originating from epithelial cells.

We saw that the tumor – the neoplasm, is a growing mass of abnormal cells. The tumor is said
to be benign if the mass of abnormal cells remains clustered together and confined to the cavity. The
tumor is said to be malignant if the tumor has emerged out of the cavity, by breaking out through
the basal membrane and proliferating into extracellular matrix, and/or stroma. When the cancer cells
invade into the blood vessels or into the lymphatic vessels, then they are transported into the other
localities, where they create new cancer deposits, the secondary tumors, while about the tumors in
the initial localities we speak as about the primary tumors. The process of creation of the secondary
tumors is denoted as metastasis. A solid tumor of a ∼ 1 cm size obtain 109 cells, tumor and normal
cells. It is a size when the solid tumor can be reliably detected.

4 Mathematical models of tumor growth

In the mathematical oncology mathematical modelling and simulation of tumor growth play an im-
portant role and can have a great influence on the quality of the patient’s life and also for better
understanding of processes concerning with the evolutions of tumors as well as for the development
of the applied mathematics. Applied mathematics can provide better interpretation of experimen-
tal data, and qualitative analysis of external actions to control tumor growth. The development of
mathematical theories might not only provide a detailed description of the spatial evolution of the
tumor in time, but can help to understand of the processes concerning with the evolution of tumors.
Such studies are aimed on processes on the sub-cellular and cellular scale and on processes on the
macroscopic scale, that is, on the organism, when the tumor grows and spreads.

Processes in the sub-cellular scale are processes of the cells evolution, which are regulated
by the genes contained in their nuclei, cell proliferation or cell death (the so-called apoptosis) and
programmed cell death. Unregulated proliferations induce interactions between tumors cells and host
cells with the activation or inactivation of immune cells.

Processes in the cellular scale are processes concerning with the cell-cell interactions. These
interactions represent the main elements at the stages of tumor formations, that is, among tumor cells
and host cells, or among tumor cells themselves.
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Processes on the macroscopic scale are processes such as blood vessel formation, invasion, vital
continuation tumor growth. The angiogenic process occurs through migration, proliferation, and cell-
cell signalling, that is, through processes at the cellular scale, but nevertheless this process is studied
from the macroscopic point of view. After vascularization the tumor continuously grows and becomes
to build a heterogeneous tissue (Fig. 4.1), created by proliferating layer, quiescent layer, necrotic
inner nuclei and always the islands of non-cancerous tissues. In each of these layers, interactions
between tumor and immune cells and blood vessels have the meaningful role in the growth of the
tumor and in its malignant progress. At this stage the overlaps of phenomena at the cellular level and
of phenomena of macroscopic behaviors, such as the diffusion, the mass balance or tumor size, are
stated. All these processes are mathematically simulated and analyzed. While the processes on the
cellular scale lead to study systems of coupled ordinary differential equations or Boolean networks,
the multicellular systems lead to study (i) nonlinear integro-differential equations, similar to those in
the nonlinear kinetic theory, based on solutions of the Boltzman equation, or (ii) partial differential
equations for systems concerning with the internal structures, and then to study the corresponding
discrete solutions. The processes on the macroscopic scale lead to solve (i) systems of nonlinear partial
differential equations, and the corresponding discrete solutions, (ii) discrete models, such as cellular
automata. Models at the cellular scale are based namely on the population dynamics, the population
dynamics with internal structure, the kinetic theory for active particles as well as variety of these
theories and methods. For more details see [104, 97, 32, 10, 105, 9] and the references in these papers
and books.

Figure 4.1: Heterogeneous tissue of the tumor – mathematical model of the tumor.

Models at the macroscopic scale are models which link the cellular tissue scale to the macroscopic
tissue scale and typically macroscopic properties of the tumors, e.g. tumor malignancy, sustained
angiogenesis, and tissue invasion as well as metastasis. The reality is much more complicated due to
genetic cell mutations and evolutionary selection. These processes are situated by using two types of
models: (i) the discrete models, that allows to study the behavior of individual cells such as e.g.
cellular automata, random walk, etc.; (ii) the continuum models, that allow to study the average
behavior of the densities of populations or components.

These types of models are studied by a great number of mathematical methods, which allow to
describe phenomenological interactions between cells or mechanical interactions based on measuring
stresses and strains of the system. In both types of models the methods require some a priori as-
sumptions about cells behaviors, e.g. that cells move through a process like diffusion, or the cellular
components act like (visco-)elastic fluid. For more details see e.g. [48, 45, 100, 6, 88, 89, 11, 12, 4, 5, 20].
The detailed history of the study of solid tumor growth and mathematical modelling with wide liter-
ature is presented in the paper of Araujo and McElwain ([7]).

Another class of models views the tumor tissue as a mixture of cells living in porous medium
made of extracellular matrix (ECM) and filled by extracellular liquid, where the Darcy’s law is used
to model both fluid flow and cell motion ([46, 9]).

13



One of the most useful methods based on the continuum models are the moving boundary models,
representing problems with the free boundary and firstly introduced by [48, 1, 3]. In these models
it is assumed that growth of solid tumors occurs in an environment, where nutrients nurture their
development under the influence of chemical factors that inhibit growth, while the immune system
restrains growth of tumors ([28, 88, 89, 11, 41, 42]).

4.1 Advection-diffusion models of tumor growth

Multicell models describe the evolution of tumor growth from the avascular stage to the vascular stage.
A primary tumor grows up to cca 1 mm size without new nutriments. By the angiogenic process,
described in Section 3 about evolution of the tumor, the tumor vascularized and we speak about the
vascular phase. With new nutriments the tumor further grows.

The model problem is composed from a system of partial differential equations of parabolic types,
describing the evolution of the densities of viable cells (proliferating and quiescent cells, that is, living
cells), nutrients, capillaries and growth inhibitory factor as well as tumor angiogenesis factor. To
this system of parabolic equations a hyperbolic equation, describing the evolution of the density of
death cells, is added. This system of equations is defined on a time varying domain, representing
the whole domain, inside the tumor, that is, the viable and necrotic regions and/or outside the
tumor, that is, the non-cancerous tissues, with boundaries between them, that are boundaries of
free types. More precision three of them are defined in the whole domain, and remaining three
equations are defined inside the tumor, that is, inside the viable and necrotic parts of the tumor.
The boundaries between non-cancerous (healthy) tissue(s) and the tumor tissue(s) and between the
viable and necrotic tissues, and moreover, the boundary between the proliferating and quiescent cells
regions, are the free boundaries that change in time. To derive the model we introduce the density of
cells u =(uV , uD, uC , uGIF , uTAF , uN ), where

uV is the density of living (viable) tumor cells,
uD is the density of dead tumor cells,
uT is the density of tumor cells, uT = uV + uD,
uC is the density of new capillaries,
uGIF is the density of growth inhibitory factor - GIF,
uTAF is the density of tumor angiogenesis factor - TAF,
uN is the density of nutrient (glucose and oxygen).

The variable uV , uD and uC are connected with cells, while the variables uGIF , uTAF and uN are
referred to macro-molecules. The derivation of the mathematical model will be based on the mass
balance law in its integral form.

In our mathematical models of tumor growth we will define the number of a certain type of cells
as well as of chemical factors, we denote them as N(x, t), contained in a volume V fixed in a space by

N(x, t) =

∫

V

u (x, t) dx, (4.1)

and their density n (x, t) by
n (x, t) ∼ N (x, t) dx, (4.2)

where x = (xi), i = 1, . . . , N , N = 2, 3, is a point in the tumor region and t is time. These quantities
can change due to these facts:

- advective flux through the boundary ∂V of V related to cells moving with velocity v;

- diffusive flux through the boundary ∂V of V related to random motion of cells;

- generation and destruction of cells.

To develop the governing equations the mass balance equation in integral form due to above
mentioned facts will be used. Thus

d

dt

∫

V

udx = −

∫

∂V

uv · nds−

∫

∂V

J · nds+

∫

V

Γdx−

∫

V

Ludx, (4.3)
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where n is the outward normal to ∂V , Γ represents the proliferating term and L is the death coefficient.
Using the Gauss theorem, then, under the regularity assumptions, we obtain

∂u

∂t
= −∇ · (vu)−∇ · J+ Γ− Lu, (4.4)

representing the mass balance equation in its differential form, setting J = −D∇u, where D corre-
sponds to diffusion processes, then Eq. (4.4) leads to

∂u

∂t
+∇ · (vu) = ∇ · (D∇u) + Γ− Lu. (4.5)

Eq. (4.5) is the advection-diffusion partial differential equation and it describes the advection-
diffusion models, that determine the diffusion, proliferation, death and movement (drift) processes,
therefore, the diffusion (D), proliferation (Γ), death (L) and movement (drift) (v) coefficients must
be specified, and, their dependence of the state variables must be given.

For the generalized model of tumor evolution we will assume the following:

- mitosis of the tumor cells is occurred when a sufficient amount of nutriments exists for survival
of their existence;

- proliferation is generated by the so-called growth inhibitory factor (GIF), that inhibits mitosis
and by the amount of nutriment;

- with insufficient nutriments the tumor cells die, they do not move; they disintegrate into waste
products, namely water; outside tumor the dead tumor cells are consumed by macrophages;

- there exists close packing overall density – a threshold density u, characterized by the fact
that if the total density of all cells in a point is above it, then tumor cells are pressed by their
neighboring cells and tend to migrate towards a region with lower total density;

- living (viable) cells produce the chemical factors, that is, growth inhibitory factor (GIF) and
tumor angiogenesis factor (TAF), that diffuse in the region occupied by the tumor and in the
neighboring non-cancerous tissue and their diffusion mechanism is the same and depend on the
effective overall density, and it can be different inside and outside the tumor, and moreover, the
chemical factors can degrade;

- angiogenesis is influenced by such a way that when stimulated by TAF endothelial cells prolifer-
ate; proliferation decreases with the density of new capillaries. New-born endothelial cells move
randomly and migrate toward the source of angiogenic stimulus and formate capillary sprouts,
and thus, they undergo natural deaths and old capillaries are constantly replaced. Proteins (e.g.
angiostatins) are assumed to have the ability of stopping the proliferation of endothelial cells.

- nutrient diffusion is a main way how to nourish the cells after the first stage of evolution (i.e.,
carcinogenesis). Since the tumor lacks a vasculature, nutriments (glucose and oxygen) in this
avascular state of evolution are received by diffusion from the neighboring tissue. Later nutrients
are mainly carried by the capillary system and smaller part of nutriments diffuse through the
environment outside the capillary system. Nutriment is absorbed by living tumour cells.

The movement of cell, located in the place x due to the above assumption, is related to the total
density u of cells around it and on its local gradient. The total density of cells u is the sum of
densities of living tumor cells uV , dead tumor cells uD, new capillaries uC as well as of pre-existing
capillaries uC0

u = uV + uD + uC + uC0
, uV = up + uq, (4.6)

where the density of living tumor cells uV is the sum of the density of proliferating cells up and the
density of quiescent cells uq. In the undeformed tumor all cells are assumed to be a sphere of the same
radius, the threshold density u corresponds to the close packing density of monodisperse mixture
of spherulites; if the radii are different, then the threshold density u corresponds to a polydisperse
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mixture of spherulites [28]. But in the reality the situation is much more complicated, because the
dead cells occupy the other space than the living cells, and moreover, the shape of cells that are
pressed by resulting pressures evoked during mitosis also produce deformable spheres, then (4.6) can
be modified as

u = uV + ε1uD + ε2 (uC + uC0
) , uV = up + uq,

where εi 6= 0 or εi = 0, i = 1, 2.
When a new tumor cells are generated (see Fig. 3.1), we saw that the pressures generate a motion

of the neighboring cells. In absence of other phenomena, the new steady configuration will have u = u

everywhere.
Let p be the pressure mentioned above, then it can be taken as a function of the local density of

the cells u (see [28]). The pressure p is equal to zero for u = u, that is, if the total density u is equal
to the close packing overall density (threshold density); it is positive for u > u, corresponding to the
repulsive forces in compression; it is negative for u < u, corresponding to the attractive forces among
the cells (Fig. 4.2), uM is the maximal density achieved by compressing the cells. Fig. 4.2 describes
the pressure-overall density relation determining cell motion.

Figure 4.2: The pressure p as a function of the local density of the cells (modified after [28]).

Since in real situations u does not differ from the threshold density u, then

p (u) = γ (u− u) ,

where γ is the curve slope of p (u) at the point u = u. The velocity v of moving cells in the tumor,
we denote it as vT , due to the phenomenological relation ([28])

hvT = −∇p = −p′ (u)∇u,

where p′ (u) is a derivation of p (u), can be written as

vT = −
γ

h
∇u, (4.7)

being similar to the Darcy law. If the effective overall density u has a stationary point, that is, if
∇u = 0, then vT = 0.

Due to the above assumptions, cells will proliferate if they have sufficient amount of nutriments uN ,
that is, uN ≥ uNuV , where uN is a threshold of nutriment, and it is increasing with available nu-
triments, and it is decreasing under the presence of GIFs. Proliferation is made by mitosis of living
tumor cells, then the growth term is proportional to the density of living tumor cells

ΓT = λTuV , (4.8)
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where λT is the nutriment uptake rate by proliferating tumor cells.
In the case, if the nutriment uN is insufficient for nutriment of tumor cells, that is, uN < uNuV ,

where uN is a threshold of nutriment, then tumor cells will die, and then a death coefficients LT is
defined as follows:

LT = λDuV ,

where λD is a nutrient decay rate.

Evolution of avascular and vascular tumors

Next, we limit ourselves to model evaluation of avascular and vascular tumors only that being sufficient
for our further investigations.

Let a tumor occupy a region Ω (t) with boundary ∂Ω (t) at time t and let Ω (t) = Ω × t, t ∈
[t0, tp] ≡ I, Ω = ΩV ∪ΩD ∪ΩH , where ΩV is a region occupied by a viable (living) part of the tumor,
that is, a region, where nutriments, oxygen and glucose, are sufficient for a tumor cell viability; ΩD is
a necrotic region, that is, a region occupied by dead tumor cells and their cellular debris due to low
nutriments and enzymes that break down to some wastes and water, and ΩH is a region occupied
by a healthy, non-cancerous, tissue (Fig. 4.1), which contains the extracellular matrix (ECM) and a
mixture of non-cancerous cells, fluid, and cellular debris.

The nutriment is governed by the reaction-diffusion equation. Denoting by D = D (x, t) the
nutrient diffusivity, by λV the nutrient uptake rate by proliferating tumor cells, by λD the nutrient
decay rate and because in ΩH there is only little cellular debris, therefore, we can assume that there
is no nutrient decay in this region ΩH and because tumor cells uptake nutrient at a greater rate
than non-cancerous cells, then in ΩH the nutrient uptake can be omitted. Then for the nutriment in
Ω (t) = (ΩV ∪ ΩD ∪ ΩH)× t, t ∈ [t0,tp], the governing equations in the case of avascular tumors are
as follows

ε0
∂uN

∂t
= ∇ · (D∇uN )− λ (x, t) uN , x ∈ Ω, t ∈ I, (4.9)

where u = (uN , uD, uH)
T

≡ (up, uq, uD, uH)
T
, and where for t ∈ I the coefficient of nutriment

diffusivity is defined as

D (x, t) ≡ D =







DV for x ∈ ΩV ≡ {x ∈ Ω;u ≥ u} , DV = {Dp, Dq} , t ∈ I,

DD for x ∈ ΩD ≡ {x ∈ Ω;u < u} , t ∈ I;
DH for x ∈ ΩH ≡ {x ∈ Ω \ ΩV \ ΩD} , t ∈ I,

(4.10)

where Dp is the coefficient of nutrient diffusivity in proliferating region of the tumor, Dq is the
coefficient of nutriment diffusivity in quiescent region of the tumor, and where

λ (x, t) ≡ λ =







λV , (x, t) ∈ ΩV (t) = ΩV × I, λV = {λp, λq} , ΩV = Ωp ∪ Ωq,

λD, (x, t) ∈ ΩD (t) = ΩD × I,

0, (x, t) ∈ ΩH (t) = ΩH × I = (Ω \ ΩV \ΩD)× I.

(4.11)

Because nutrient diffusion (uptake, absorption) and decay all occur much more quickly than tumor
growth, then ∂u

∂t
≃ 0, and the problem can be studied as quasi-steady problem. In general λ =

λ (x, t, u) because the region ΩD = ΩD (u, t) depends on nutriment, therefore, it is a function of u
and t. In practice the problem can be simplified by its linearization, that is, putting λD = λV , then
λ = λV in (ΩV ∪ ΩD) × I. In some models the ratio of the nutrient diffusion time scale Tdiff to the
tumor growth time scale Tgrowth, denoted as ε0, is small as ε0 = Tdiff

Tgrowth
≪ 1, because Tdiff ∼ 1 minute,

Tgrowth ∼ 1 day. In a general case of the model of tumor evolution Eq. (4.9) is a nonlinear equation,
and therefore, the model is also nonlinear.

For vascular tumors Eq. (4.9) will be replaced by

ε0
∂uN

∂t
= ∇ · (D∇uN ) + ΓB (uV T − uN )− λuN , (4.12)

where uV T is the nutrient density (concentration) in the vasculature, ΓB is the rate of the blood-tissue
transfer. The term ΓB (uV T − uN) represents the nutrient density (concentration) after the process
of angiogenesis.
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Let us denote by ΣTH the boundary between the tumor and the healthy, non-cancerous, cellular
tissues, and by ΣDV the boundary between the necrotic (ΩD) and viable cellular (ΩV ) tissues. Further,
let us denote by [w]sm = w|Ωs

− w|Ωm
the jump across the boundary Σsm = Ωs ∩ Ωm, s 6= m.

Let n be the outward unit normal across the boundaries ΣTH and ΣCV . Across these boundaries
the nutriment and nutrient flux are continuous, that is,

[uN ] = 0,
[D∇uN · n] = 0,

x ∈ Σ = ΣTH ∪ ΣDV , t ∈ I. (4.13)

In a sufficiently large distance from the tumor (that is, at the boundary
∑

0) the nutriment is constant,
that is,

uN = uN0
, x ∈ Σ0 ≡ ∂ (ΩV ∪ ΩD ∪ ΩH) , (4.14)

as we can assume that nutrient delivery by the blood and uptake by non-cancerous cells are in balance
outside the region ΩV ∪ ΩD ∪ ΩH .

The cells and the extracellular matrix in the host tissue ΩH and the viable tumor tissue ΩV are
affected by a variety of forces, that is, these forces evoke the cellular velocity field v. Proliferating
tumor cells in ΩV evoke hydrostatic stresses, called oncotic mechanical pressure, that also exert
forces on the surrounding non-cancerous tissue in ΩH . But tumor and non-cancerous cells as well as
the extracellular matrix (ECM) can respond to these oncotic pressure variations by overcoming cell-
cell and cell-extracellular matrix adhesion and moving within the skeleton (framework) of collagen
and fibroblast cells (that is, created the ECM) that provided structure to the host tissue; the resulting
ECM in ΩH can be deformed in response to the oncotic pressure. Since these tissues are assumed to
be a porous medium, then the response of the cells and the ECM to the oncotic pressures is described
by the Darcy’s law

v = −βm∇p, x ∈ ΩV ∪ ΩH , t ∈ I, βm = βm (x) , (4.15)

where βm > 0 is the cellular mobility, measuring the overall ability of tissue to respond to the
oncotic pressure as well as the permeability of the tissue to tumor cells. By the adhesion is meant a
concrescence of neighboring tissues.

The outward normal velocity vn of the tumor boundary ΣTH is as follows

vn = v · n = −βm∇p · n, (4.16)

and similarly for ΣDV . These outward normal velocities over ΣTH and ΣDV are assumed to be
continuous across these boundaries, i.e., [v · n] = 0. Next, we will see, that in the case of the
boundary

∑

DV this assumption is not wholly correct.

Due to proliferation of cells the number of tumor cells increases, and therefore, the volume of
the viable region ΩV also increases. But on the other hand, apoptosis decreases the total volume of
the viable region ΩV at a constant rate λapt. In the healthy tissue (ΩH) birth and death of cells are
practically to be in balance, so that, the total volume of the healthy region ΩH is not changed [25]. The
volume loss in ΩD can be made due to the enzymatic breakdown of necrotic tumor cells throughout
the necrotic core ΩD at a constant rate λN . Thus

∫

∑
DV

v · nds = −

∫

∑
DV

(βm∇p · n) ds = −λN |ΩD| ,

where |ΩD| represents the volume of ΩD and n is the normal to
∑

DV with positive direction directed
from ΩV into ΩD. Thus

∇ · v =







βmuN − λapt, x ∈ ΩV ,

0, x ∈ ΩH ,

−λN , x ∈ ΩD,

(4.17)

where βapt is a constant related to the tumor cell mitosis rate. We saw above that the interface
boundary ΣDV between ΩD and ΩV is determined by the level of nutriments. Therefore, it is not
a material boundary. To determine the correct volume change in the necrotic tumor region ΩD the
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extension of the velocity field v can be advantageously used, and moreover, the extension of the
pressure continuously into the necrotic tumor region ΩD will be assumed. Thus, we have

v = −βm∇p, x ∈ ΩD,

[p] = 0, x ∈ ΣDV ,

[−βm∇p · n] = 0, x ∈ ΣDV .

(4.18)

The condition [p] = 0 across ΣDV characterizes low cellular adhesion and it is consistent with increased
cellular mobility observed in hypoxic cells. From conditions (4.18a,b,c) the condition [v · n] = 0
on ΣDV follows immediately. Moreover, conditions (4.18a,b,c) are satisfied for any C1-smooth solu-
tion p.

Remark 2 Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. It can
also be a result of the high degree of cell proliferation undergone in tumor tissue which causes a higher
cell density and thus taxes the local oxygen supply ([16]).

4.2 A free boundary problem modelling tumor growth

In this model problem we will assume that the tumors contain three types of cells: (i) proliferating
cells with density up (x, t), quiescent cells with density uq (x, t), and dead cells with density uD (x, t).
A death of living cells comes by (ii) apoptosis, representing certain self-destruction with ensuing
suicide when it receives some signals from the outside, or when it becomes aware of unrepairable
damage to its machinery, i.e., its DNA, (iii) necrosis, representing a death of living cells owing to an
insufficiency (lack) of nutrients. Apoptosis decreases the total volume of the viable region ΩV at a
(constant) rate KA (uN). The quiescent cells become proliferating at a rate Kp (uN ) depending on
the density (concentration) of nutrients uN , and can be necrotic or can go into apoptosis at death
rate KD (uN ). Moreover, we will assume that proliferating cells become quiescent at a rate KQ (uN)
and that their death rate is KA (uN ). The density of proliferating cells increases due to proliferation
at a rate KB (uN ). We also assume that dead cells are removed from the tumor, because of their
decomposition, at a constant rate KR.

We saw that proliferation and removal of cells evoke a continuous motion of cells within the
tumor, which we denoted by v. To derive the governing equations the conservation of mass laws for
the densities of the proliferating cells up, the quiescent cells uq, and the dead cells uD within the
tumor region ΩT (t) = ΩD (t) ∪ ΩV (t) = ΩD (t) ∪ Ωp (t) ∪ Ωq (t) are used, and then we have

∂up

∂t
+ div (vpup) = (KB (uN)−KQ (uN)−KA (uN))up +Kp (uN )uq in ΩV (t) ,

∂uq

∂t
+ div (vquq) = KQ (uN)up − (Kp (uN) +KD (uN ))uq in ΩV (t) , (4.19)

∂uD

∂t
+ div (vDuD) = KA (uN )up +KD (uN )uq −KRuD in ΩD (t)

where vp and vq are the velocity of proliferating cells and quiescent cells and vD is the velocity due
to removal of cells. The functions KB (uN), KQ (uN), Kp (uN) and KD (uN ) can be defined, e.g., as
linear functions:

KB (uN) = kBuN ; KQ (uN ) = kQ (uN0 − uN) ;

Kp (uN) = kpuN ; KD (uN ) = kD (uN0 − uN ) , (4.20)

where uN0 = const. > 0, and the coefficients kB, kQ, kp and kD can be defined as follows

kB = 1; kQ = 0.9; kp = 0.05; kD = 0.1.

The velocities vp and vq are mutually related by the relation ([26])

vq = vp + χ∇uN ,
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where χ is a chemotactic sensitivity coefficient and is assumed to be a nonnegative constant. This last
assumption is based on some evidence that proliferating cells seem to be less motile as they undergo
mitosis ([58]). Introducing up + uq + uD = N (i.e., numbers of proliferating, quiescent and dead cells
per unit volume, that is, their densities), that is, the cell density within the tumor is constant, say N ,
then we can introduce the mean velocity as

v =
1

N
(upvp + uqvq + uDvD) ,

and using (4.19a,b,c) we have

∇.v =
1

N
(KB (uN )up −KRuD) in Ω (t) .

Remark 3 Assuming that the velocity field in a tumor is uniform, then vp ≡ vq ≡ vD ≡ vT .

Nutrient (oxygen and glucose) with concentration uN is diffusing in ΩT (t) and affects the transition
of cells from one type of cells to another, that is,

up → uq at rate KQ (uN ) ,
uq → up at rate Kp (uN ) ,
up → uD at rate KA (uN) ,
uq → uD at rate KD (uN ) ,
up → up at rate of proliferation KB (uN) .

Necrotic cells are removed from the tumor at constant rate KR.
For simplicity we can put βm = 1 in (4.15) and N = 1. Thus

v =−∇p, p is a pressure.

Let us assume that the total density is constant

up + uq + uD = const = 1.

Adding (4.19a,b,c), then
−div (∇p) ≡ −∆p = KB (uN)up −KRuD.

We can eliminate the equation for uD putting

uD = 1− up − uq

in the equation for p. Then

∆p = −KB (uN)up +KR (1− up − uq) = − (KB (uN) +KR)up −KRuq +KR = −h (uN , up, uq) .
(4.21)

Then Eq. (4.9), Eqs (4.19a,b,c) and Eq. (4.21) lead to the following system of equations in
ΩT , t > 0 ([42]):

ε0
∂uN

∂t
= ∇ · (DV uN )− λ (x, t)uN , x ∈ ΩT , t > 0, t ∈ I,

∂up

∂t
−∇p · ∇p = f (uN , up, uq) , x ∈ ΩT , t > 0, t ∈ I,

∂uq

∂t
−∇p · ∇q = g (uN , up, uq) , x ∈ ΩT , t > 0, t ∈ I,

∆p = −h (uN , up, uq) , x ∈ ΩT , t > 0, t ∈ I, (4.22)

and where

f (uN , up, uq) = [KB (uN)−KQ (uN)−KA (uN)]up +Kp (uN) uq − h (uN , up, uq)up,

g (uN , up, uq) = KQ (uN)up − [Kp (uN) +KD (uN )]uq − h (uN , up, uq)uq,

h (uN , up, uq) = [KB (uN) +KR]up +KRuq −KR.
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On the boundary ΣTH = ∂ ((ΩV ∪ ΩD) ∩ ΩH) we have the following conditions

uN |T = uN |H = uN on ΣTH (t) , t > 0,

[p]
H

T = s0K on ΣTH (t) , t > 0,

[βm∇p · n]HT =

[

∂p

∂n

]H

T

= −vn on ΣTH (t) , t > 0, (4.23)

where uN is a concentration of nutrients, s0 is the surface tension coefficient, K is the mean curvature.
The condition (4.23b) shows that the surface tension maintains a compact solid tumor together, and
it is attributed to cell-to-cell adhesiveness. The condition (4.23c) represents the kinematic condi-
tion ([18]), i.e., Eq. (4.16).

Cellular proliferation and death at a distance sufficiently far away from the tumor, that is from
the boundary ∂ΩTH , we denoted it as Σ0, then

p = pΣ0
, (x, t0) ∈ Σ0t0 . (4.24)

On the boundary ΣDV we have the conditions

v = −βm∇p, (x, t) ∈ ∂ (ΩD ∩ ΩV )× I = ΣDV × I;

[p] = 0, (x, t) ∈ ΣDV × I,

[−βm∇p · n] = 0, (x, t) ∈ ΣDV × I. (4.25)

The condition (4.25c) automatically satisfies [v · n] = 0, (x, t) ∈ ΣDV × I. The condition (4.25b), that
is, the jump of p across ΣDV models low cellular adhesion and is consistent with an increased cellular
mobility, known in the case of hypoxic cells (see [56, 72])).

Moreover, the initial conditions

uN (x, t0) = uN0 (x) in Ω (0) , uN0 (x) ≥ 0,

up (x, t0) = up0 (x) in Ω (0) , up0 (x) ≥ 0,

uq (x, t0) = uq0 (x) in Ω (0) , uq0 (x) ≥ 0,

uD (x, t0) = uD0 (x) in Ω (0) , uD0 (x) ≥ 0, (4.26)

and where up0 (x) + uq0 (x) + uD0 = N (≡ 1).
The problem (4.22)-(4.26) is studied in a simpler case by Cui and Friedman ([26]) and Fried-

man ([42]). They assume the radially symmetric tumor, containing only living cells. In this special
case of two types of cells, proliferating and quiescent, they proved that there exists a unique spherically
symmetric stationary solution of the problem.

In Section 3 about cancer evolution we saw that two important factors (from many chemical factors
produced by tumor cells), which diffuse both in the tumor tissue as well as in the surrounding tissue
in a space and time, are meaningful. These two main factors, the growth inhibitory factor (GIF)
and the tumor angiogenesis factor (TAF), in the surrounding tissue evoke a tumor angiogenesis phase
of tumor evolution. Let us denote by uGIF the density of GIF and by uTAF the density of TAF.
Active tumor cells produce both chemical factors GIF and TAF by constant rates γGIF and γTAF and
decay at rates δGIF and δTAF and they move by random movements inside the tumor region ΩT and
diffuse into the neighboring tissue region ΩH . Namely the diffusion of TAF is important in the role of
generation of new capillaries (see Fig. 3.3c) during the angiogenesis phase of tumor evolution. When
the endothelial cells interact with the TAF factor, they proliferate and the new-born cells tend to
migrate towards the source of TAF with formation of capillary sprouts by accumulation of endothelial
cells. We will assume that the diffusion mechanisms of both factors are the same, and therefore, the
coefficient of diffusion is also the same, we denote it as KGT (u), and in general it depends on the
effective overall density. Moreover, it is different inside and outside the tumor.

The evolution of GIF and TAF are described by

∂uGIF

∂t
= ∇ · (KGT (u)∇uGIF) + γGIFχTuV − δGIFuGIF,

∂uTAF

∂t
= ∇ · (KGT (u)∇uTAF) + γTAFχTuV − δTAFuTAF, (4.27)
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where χT = χT (x, t) is the characteristic function of ΩT (t). In a special case, in which the diffusion
coefficient KGT is constant, we denote it as kGT, then

∂uGIF

∂t
= kGT∆uGIF + γGIFχTuV − δGIFuGIF,

∂uTAF

∂t
= kGT∆uTAF + γTAFχTuV − δTAFuTAF, (4.28)

where γGIF is the production coefficient of GIF from living tumor cells, γTAF is the production coef-
ficient of TAF from living tumor, δGIF is the degradation coefficient of GIF, δTAF is the degradation
coefficient of TAF. Since TAF diffuses from the solid tumor into the tumor-free neighboring region ΩH

the endothelial cells interact with the TAF, thus these cells proliferate and the new-born cells migrate
towards the source of angiogenic stimulus and the accumulated endothelial cells formate capillary
sprouts, which further in the next phase develop the vascular system of the tumor.

The balance equation then leads to

∂uc

∂t
+ vc∇ (uc∇uTAF ) = kc△uc + γcuTAF (uc − uc)+ (uc + ûc)− δcuc, (4.29)

where uc is the density of new capillaries, and where we assumed that the diffusion and drift terms
are constant, and where

(f)+ =

{

f for f > 0;
0 otherwise.

The second term on the left-hand side is the drift term, which, in general, is given by vc = vc (u)∇uTAF

and is directed towards the source of angiogenic stimulus, and the second term on the right-hand side
represents the growth term, that is, Γc = γcuTAF (uc − uc)+ (uc + ûc), where ûc = ûc (x) represents
the density of pre-existing capillaries, which is time-independent, fixed in space and naturally space
dependent, uc is the threshold overall density above which capillaries are not generated, kc is the
diffusion coefficient of capillary sprouts, vc is the migration coefficient of capillary sprouts towards
the source of angiogenic stimulus, δc is the natural death coefficient of endothelial cells, γc is the
proliferative coefficient of capillary sprouts.

When the tumor is developed then the nourishment is made by the diffusion of nutriment inside
the tumor though the capillaries. Therefore, the coefficient of diffusion depends on uc and increase
with increasing of uc. The balance equation under the existence of the uptake from the living tumor
cells then gives

∂uN

∂t
= ∇ · ((kE + kN (uc + ûc))∇uN )− δNuV uN in ΩT , (4.30)

where uN is the density of nutriment, uc is the density of new capillaries, ûc is the density of the
pre-existing capillaries from which new capillaries start to generate, uV is the density of living tu-
mor cells, kE is the diffusion coefficient of nutriment outside the capillary network inside the tumor,
kN is the diffusion coefficient of nutriment through the capillary network inside the tumor and δN is
the absorption coefficient of nutrient from active tumor cells. Outside ΩT , that is, in ΩH , the cap-
illary network is assumed to increase linearly with its density. So that on

∑

TH = ∂ΩT ∩ ∂ΩH the
corresponding interface condition can be written as

uN = εN + βN (uc + ûc) on ∂ΩT ∩ ∂ΩH = ΣTH or on its part, (4.31)

where εN and βN are some constants.

Remark 4 The state variables uGIF, uTAF and uc are defined in the whole environment Ω (t), while
the variables uV , uD and uN are defined in the tumor ΩT (t).

Remark 5 The free boundary problems were studied, e.g., by Chen and Friedman [22], Bazaliy and
Friedman [8], Friedman [41, 42] and many others.
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