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Abstract:

When proposing and processing uncertainty decision making algorithms of various kinds and purposes we
meet more and more often probability distributions ascribing to random events non-numerical uncertainty
degrees. The reason is that we have to process systems of uncertainties for which the classical conditions
like σ-additivity or linear ordering of values are too restrictive to define sufficiently closely the nature of
uncertainty we would like to specify and process. For the case of non-numerical uncertainty degrees at
least the two criteria may be considered. First systems with rather complicated, but sophisticated and
nontrivially formally analyzable uncertainty degrees. E.g., uncertainties supported by some algebras or
partially ordered structures. Contrary, we may consider more easy non-numerical, but on the intuitive level
interpretable relations. Well-known examples of such structures are set-valued possibilistic measures. Some
perhaps interesting particular results in this direction will be introduced and analyzed in the contribution.
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1 Introduction

Since the very origins of modern mathematics, measure theory may be taken as almost the synonymum
for mathematical theory of size quantification with the most general and abstract structures in which
sizes take their values. On the other side, the structures over quantity degrees should be rich and
flexible enough to enable to define and process non-trivial deductions with non-trivial results on
quantity degrees and their relations.

In the measure theory and, consequently, in probability theory, the sizes of sets and uncertainty (in
the sense of randomness as well as of fuzziness and possibility degrees) were quantified by numbers,
going from finite natural numbers to rational and then real (or, perhaps, complex-valued numbers).
The development of real-valued probability theory took their tops by Kolmogorov axiomatic theory
of probability as systematically explained and applied in [4], [6] or elsewhere.

On the other side, the correctness and legality of application of the classical probability theory and
its consequences (mathematical statistics, Shannon entropy and information theory, . . . ) to problems
from real life is based on the assumption that certain non-trivial assumptions are satisfied and verified
(the precise knowledge of apriori probabilities, statistical independence of some random variables
and/or precisely known type and degrees of their dependencies together with the detailed conditional
probabilities, . . . ). Even when enormous lot of work has been done till now within the framework
of classical probability theory and statistics as well as reasonable processing of non-fully given and
known input probabilistic data are processed, the demands for qualitatively different alternative tools
for uncertainty (in the sense of randomness as well as fuzziness) processing are requested.

Qualitatively different models of uncertainty quantification and processing, even if still with nu-
merical degrees, are real-valued fuzzy sets, defined by mappings taking the basic space Ω into the unit
interval [0, 1], hence, extending the binary-valued characteristic functions of standard set, to functions
with values in the closed interval [0, 1].

The pioneering Zadeh’s idea of fuzzy sets emerged in 1965 in [12, 5] and, as soon as in 1967. J. A.
Goguen entered on scene with the further step – fuzzy sets with non-numerical membership degrees.
In particular, J. A. Goguen considered uncertainty, in the sense of fuzziness degrees, as elements of
complete lattice, let us recall that complete lattice is defined as the p.o.set (partially ordered set) in
which for each nonempty subset supremum and infimum are defined.

Till now, we have re-called models for uncertainty quantification and processing where the un-
certainty degrees take their values in more and more general and less intuitive structures (natural
numbers, rationals, real numbers, lattices, semilattices, . . . ), so that set-valued possibility degrees, oc-
curing in the title of this text seem to be a rather strong back step which deserves a rather persuasive
explanation. When quantifying sizes by numbers we have to keep in mind that this introduces into the
model the complete ordering of numbers which need not correspond to sizes of pieces of uncertainty in
question. Among the structures working with uncertainties and keeping in mind the idea to classify as
incomparable also set-quantified degrees of uncertainty with the same values of real-valued measures,
set-valued possibilistic measures seem to be sufficiently elastic and resilient to be taken as intuitively
acceptable non-numerical size-quantifying mathematical model.

Let us survey, very briefly, the contents of particular sections. Our aim will be to minimize the
quantity and complexity of preliminaries necessary for a non-fully oriented reader in order to under-
stand the text. In Section 2 we introduce the structures for quantifying uncertainty (or uncertainties)
by set values. It is perhaps worth being so-called just now that probability measure and probability
theory is based on standard combination of set-valued uncertainty quantification (random events are
sets) with also the standard real-valued quantification of the set-valued random events.

In Section 3 we introduce three alternative ways how to define mappings keeping at least some
properties of conditional probabilities. This problem seems to be promising for some new and interest-
ing results In Section 4 we define and analyze set-valued entropy function over set-valued possibilistic
function with the aim to solve the problem arising when the possibilistic distribution takes the max-
imum value 1T (= X) for at last two different arguments. Analogously to the case of real-valued
probability measure the Shannon entropy function [10] takes the maximum value 1T (= X) so that
the qualities of this entropy function cannot be used as a tool for neither a partial ordering of different
alternatives of possibilistic distrubution when choosing the best one for the application in question.
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Very roughly speaking, the idea is to modify the space of values in which set-valued entropy function
takes its values, in such a way that the supremum value of the set-valued entropy function is taken
for just one value ω0 from the basic space Ω of the possibilistic distribution in question. This goal
will be achieved by introducing a sophisticated equivalence relation on the basic possibilistic space of
our model, such that in the resulting factor space the supremum is reached in only one value, so that
the case of unit entropy value for the entropy function does not menace our application of set-valued
entropy functions.

Finally, in Section 5 we consider the compositions of set-valued possibilistic distributions.

2 Set-valued possibilistic distributions

Let Ω and X be nonempty sets, let P(X) be the set of all subsets of X (the power-set over X), let
π : Ω → P(X) be a mapping ascribing to each ω ∈ Ω a subset π(ω) ⊂ X (i.e., π(ω) ∈ P(X)). The
mapping π is called set-valued possibilistic distribution on Ω, if

∪
ω∈Ω π(ω) = X.

For each A ⊂ Ω, set Π(A) =
∪

ω∈A π(ω). The mapping Π : P(ω) → P(X) is called the P(X)-
valued possibilistic measure induced on P(Ω) by the set-valued possibilistic distribution π on Ω. The
important characteristic of the P(X)-valued possibilistic distribution π (and of the related P(X)-
valued possibilistic measure Π induced by π) is the so called possibilistic (or Sugeno) entropy defined
by the Sugeno integral I(π). For the particular case of the set-valued possibilistic distribution π on Ω
defined as above the definition reads as follows:

I(π) =
∪
ω∈Ω

[Π(Ω− {ω}) ∩ π(ω)] ⊂ X. (2.1)

E.g., in the most simple case when Ω = X and π(ω) = {ω}, we obtain that Π(A) =
∪

ω∈A π(ω) =∪
ω∈A{ω} = A. For the entropy I(π) we obtain that

I(π) =
∪
ω∈Ω

[Π(Ω− {ω}) ∩ π(ω)] =
∪
ω∈Ω

((Ω− {ω}) ∩ {ω}) = ∅ (2.2)

let us recall that the empty subset of X denotes the zero element of the complete lattice (complete
Boolean algebra, as a matter of fact) ⟨P(X),⊆⟩.

Fact 2.1 Let Ω and X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possibilistic distribution
on Ω such that, for each ω1, ω2, ω1 ̸= ω2, π(ω1)∩π(ω2) = ∅ holds. Then for each A,B ⊂ X,A∩B = ∅,
we obtain that Π(A) ∩Π(B) = ∅ holds.

Proof: An easy calculation yields that

Π(A) ∩Π(B) =

(∪
ω∈A

π(ω)

)
∩

( ∪
ω∈B

π(ω)

)
=

=
∪

ω1∈B

[( ∪
ω∈A

π(ω)

)
∩ π(ω1)

]
=
∪

ω1∈B

∪
ω∈A

(π(ω1) ∩ π(ω)) = ∅, (2.3)

as the sets A and B are disjoint. The assertion is proved. 2

Lemma 2.1 Let Ω and X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possibilistic distri-
bution on Ω. Then I(π) = ∅ iff π(ω1) ∩ π(ω2) = ∅ for each ω1, ω2 ∈ Ω, ω1 ̸= ω2.

Proof: If π(ω1) ∩ π(ω2) = ∅ for each ω1, ω2 ∈ Ω, ω1 ̸= ω2, then

I(π) =
∪
ω∈Ω

[π(Ω− {ω}) ∩ π(ω)] =
∪
ω∈Ω

[π(Ω− {ω}) ∩Π({ω})] = ∅ (2.4)

holds, due to Fact 2.1.
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On the other side, let ω1, ω2 ∈ Ω, ω1 ̸= ω2, be such that π(ω1) ∩ π(ω2) ̸= ∅ Then ω2 ∈ Ω − {ω1}
holds, so that

Π(Ω− {ω1}) ∩ π(ω1) ⊃ π(ω2) ∩ π(ω1) ̸= ∅, (2.5)

consequently,

I(π) ⊃ Π(Ω− {ω1}) ∩ π(ω1) ⊃ π(ω2) ∩ π(ω1) ̸= ∅, (2.6)

follows. The assertion is proved. 2

Theorem 2.1 Let Ω and X be nonempty sets, let π1, π2 be P(X)-valued possibilistic distributions
such that, for each ω ∈ Ω, π1(ω) ⊂ π2(ω) holds. Then I(π1) ⊂ I(π2) holds.

Proof: By definition,

I(π1) =
∪
ω∈Ω

[π1(Ω− {ω}) ∩ π2(ω)]. (2.7)

For each ω ∈ Ω, the inclusion

Π1(Ω− {ω}) =
∪

ω∗∈Ω−{ω}

π1(ω
∗)

⊂
∪

ω∗∈Ω−{ω}

π2(ω
∗) = Π2(Ω− {ω}) (2.8)

is valid, as π1(ω
∗) ⊆ π2(ω

∗) holds for each ω∗ ∈ Ω. Consequently, the inclusion

Π1(Ω− {ω}) ∩ π1(ω) ⊂ Π2(Ω− {ω}) ∩ π2(ω) (2.9)

holds for each ω ∈ Ω, so that the inclusion I(π1) immediately follows. The assertion is proved. 2

The following fact is almost trivial, but perhaps worth being explicitly recalled. In the space of
set-valued possibilistic distributions it may easily happen that π1(ω) ⊂ π2(ω) holds for each ω ∈ Ω,
at least for some ω ∈ Ω this inclusion is strict (i.e., π1(ω) ̸= π2(ω), but the identity

∪
ω∈Ω π1(ω) =∪

ω∈Ω π2(ω) = X is valid.
This property qualitatively differs from finite probability distributions, where the inequality p1(ωi) ≤

p2(ωi) for each i = 1, 2, . . . , together with
∑n

i=1 p1(ωi) =
∑n

i=1 p2(ωi) = 1 implies that the probability
distributions p1 and p2 are indentical on {ω1, ω2, . . . , ωn}.

Lemma 2.2 Let Ω, X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possibilistic distribution.
If there are ω1, ω2 ∈ Ω, ω1 ̸= ω2, such that π(ω1) = π(ω2) = X, then I(π) = X = 1P(X).

Proof: Let ω1, ω2 ∈ Ω, ω1 ̸= ω2, be such that π(ω1) = π(ω2) = X, consider the set Π(Ω−{ω1})∩π(ω1).
Then ω2 ∈ Ω− {ω1} holds, hence,

Π(Ω− {ω1}) =
ω∗∈Ω−{ω1}∨

π(ω∗) ⊃ π(ω2) = X (2.10)

holds and Π(Ω−{ω1}) = X follows. Replacing mutually ω1 and ω2 we obtain that Π(Ω−{ω2}) = X
holds as well, hence,

X = Π(Ω− {ωj}) ∩ π(ωj) =
∪
ω∈Ω

[Π(Ω− {ω}) ∩ π(ω)] = I(π) (2.11)

holds for any j and the assertion is proved. 2
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Denote by Q the set of all P(X)-valued possibilistic distributions on Ω. If π1, π2 are P(X)-
possibilistic distributions on Ω such that π1(ω) ⊂ π2(ω) holds for each ω ∈ Ω, we write π1 ≤ π2

and say that π1 is majorized by π2 or that π2 is an upper bound for π1. As proved in Theorem 2.1 if
π1 ≤ π2 holds, then I(π1) ⊆ I(π2) holds as well.

The universe implication does not hold in general, i.e., if I(π1) ⊆ I(π2) is valid, then π1 ≤ π2 need
not hold. Indeed, let Ω = {ω1, ω2}, let π1(ω1) = π2(ω2) = X,π1(ω2) = π2(ω1) = ∅, so that neither
π1 ≤ π2 nor π2 ≤ π1 holds. For entropy I(π1) we obtain that

I(π1) =
∪
ω∈Ω

[Π1(Ω− {ω}) ∩ π2(ω)] =

= [Π1(Ω− {ω1}) ∩ π1(ω1)] ∪ [Π1(Ω− {ω2}) ∩ π1(ω2)] =

= (π1(ω2) ∩ π1(ω1)) ∪ (π1(ω1) ∩ π1(ω2)) =

= (∅ ∩X) ∪ (X ∩ ∅) = ∅. (2.12)

For I(π2) the calculations and the results are the same, so that I(π1) = I(π2), but neither π1 ≤ π2

nor π2 ≤ π1 holds.

Lemma 2.3 Let π be a P(X)-valued distribution on Ω. Then for each S ⊂ P(Ω) the relation

Π
(∪

S
)

= Π
(∪

{A : A ∈ S}
)
=

T∨{
π(ω) : ω ∈

∪
S
}
=

=
∪

{{π(ω) : ω ∈ A} : A ∈ S} : A ∈ S} =

=

T∨
{Π(A) : A ∈ S} =

∪
{Π(A) : A ∈ S} (2.13)

holds.

Proof: Obvious. 2

Let us denote by Q(Ω, X) the space of all P(A)-valued possibilistic distributions over the space Ω,
in symbols,

Q(Ω, X) = {π : π : Ω → P(X),
∪

{π(ω) : ω ∈ Ω} = 1T = X}. (2.14)

Let ≤∗ be the binary relation, on Q(Ω, X), i.e., the subset of the Cartesian product Q(Ω, X)×Q(Ω, X)
defined in this way: for each π1, π2 ∈ Q(Ω, X), π1 <∗ π2 holds iff π1(ω) ⊆ π2(ω) holds for each ω ∈ Ω.
It is possible that π1 <∗ π2 holds for two P(X)-distribution π1, π2 such that π1(ω) ⊂ π2(ω) is the case
for some ω ∈ Ω and, of course, π1(ω

∗) ⊆ π2(ω
∗) holds for two P(X)-distributions π1, π2 such that

π1(ω) ⊂ π2(ω) is the case for some ω ∈ Ω and, of course, π1(ω
∗) ⊆ π2(ω

∗) holds for each ω∗ ∈ Ω.

Lemma 2.4 The ordered pair D = ⟨Q(Ω, X),≤∗⟩ is a p.o.set which defines a complete upper semi-

lattice, so that for each nonempty subset E ⊂ D the supremum π(E) =
∨D{π : π ∈ E} is defined.

Given explicitly, πE is the mapping which takes Ω into P(X) in such a way that for each ω ∈ Ω

πE(ω) =
∪

{π ∈ E : π(ω)} (2.15)

This mapping obviously defines a π-valued possibilistic distribution on Ω.

Proof: Obvious. 2

However, the situation with the infimum of a set E of P(X)-distributions is not dual to
∨D

E. We
may define the mapping M(E) : Ω → P(X) in such a way that, for each ω ∈ Ω, M(E)(ω) =

∩
{π(ω) :

π ∈ E}, but this mapping does not meet the condition
∨D{M(E)(ω) : ω ∈ Ω} = 1P(X) = X. Indeed,

let E = {π1, π2} be such that π1(ω) = 1P(X) for ω ∈ Ω0, ∅ ̸= Ω0 ̸= Ω, π1(ω) = ∅P(X) otherwise, and
π2(ω) = 1P(X) for ω ∈ Ω−Ω0, π2(ω) = ∅P(X) for ω ∈ Ω. Obviously, M(E)(ω) = ∅P(X) for each ω ∈ Ω,
so that M(E) is not a P(X)-distribution. Neither the operation of P(X)-valued complements, defined
by πC(ω) = X − π(ω) yields the results meeting the conditions imposed on P(X)-distributions.
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Lemma 2.5 Let E ⊂ Q be a nonempty set of P(X)-distributions, for each π ∈ Q let Ππ : P(Ω) →
P(X) denote the corresponding induced P(X)-possibilistic measure on P(Ω). Then, for each A ⊂ Ω,

the relation ΠπE(A) =
∨T {Ππ(A) : π ∈ E} holds.

Proof: For each A ⊂ Ω we obtain that

T∨
{ππ(A) : π ∈ E} =

T∨
{{

T∨
π(ω) : ω ∈ A} : π ∈ E} =

=
T∨
{π(ω) : ω ∈ Ω, π ∈ E} =

T∨
{{

T∨
π(ω) : π ∈ E} : ω ∈ A}

=
T∨
{πE(ω) : ω ∈ A} = ΠπE (A). (2.16)

The assertion is proved. 2

According to the way in which P(X)-valued possibilistic measure Π on P(Ω) induced by a P(X)-
valued possibilistic distribution π on Ω is defined, the set function Π is extensional with respect to
the supremum operation

∨T
on T = P(X) in the sense that for each nonempty system A of subsets

of Ω the identity

Π
(∪

A
)
=

T∨
{Π(A) : A ∈ A} (2.17)

holds. In particular, for A = {A1, A2}, Π(A1) ∪ Π(A2) = Π(A1 ∪ A2). For the operation of infimum
the relation dual to (2.17) is not the case, in general, only the inclusion Π(A ∩ B) ⊆ Π(A) ∩ Π(B) is
valid, as Π(A ∩ B) ⊂ Π(A) and Π(A ∩ B) ⊂ Π(B) holds trivially. The difference between the values
Π(A1 ∩ A2) and Π(A1) ∩ Π(A2) may range over all the Boolean interval ⟨∅, X⟩ of T = ⟨P(X),⊆⟩.
Indeed, let X = {0, 1}, let π(ω1) = π(ω2) = 1, let A1 = {ω1}, A2 = {ω2}. Then Π(A1) = Π(A2) = 1,
so that Π(A1) ∧Π(A2) = 1, but Π(A1 ∩A2) = Π(∅) = 0.

As the most simple P(X)-valued possibilstic distribution π for which the induced P(X)-measure
Π on P(Ω) is extensional also w.r.to the operation of infimum

∧
let us consider the identity mapping

on P(Ω). Take Ω = X, take π(ω) = {ω} for every ω ∈ Ω, so that, for each A ⊂ Ω, Π(A) =
∩

A∈A Π(A)
follows, in particular, Π(A ∩B) = Π(A) ∩Π(B) holds.

Definition 2.1 P(X)-valued possibilistic distribution π taking a nonempty set Ω into the power-set
P(X) over a nonempty set X is called completely extensional, if for each nonempty system A of
subsets of Ω the relation

Π
(∩

A
)
= Π

( ∩
A∈A

A

)
=
∩
A∈A

Π(A) (2.18)

holds. The P(X)-distribution π is called extensional, if

Π(A ∩B) = Π(A) ∩Π(B) (2.19)

holds for each A,B ⊂ Ω.

Lemma 2.6 Let π be a P(X)-valued possibilistic distribution defined on a nonempty space Ω, taking
its values in the power-set P(X) over a nonempty space X and such that π(ω1)∩ π(ω2) = ∅ holds for
each ω1, ω2 ∈ Ω, ω1 ̸= ω2. Then the induced P(X)-possibilistic measure on P(Ω) is extensional in the
sense that Π(A) ∩Π(B) = Π(A ∩B) is valid for each A,B ⊂ Ω.
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Proof: First of all, let us consider the case when the sets A,B are disjoint. Then

Π(A) ∩Π(B) =

( ∨
ω1∈A

π(ω1)

)
∩

( ∨
ω2∈B

π(ω2)

)
=

=
∪

⟨ω1,ω2⟩,ω1∈A,ω2∈B

(π(ω1) ∩ π(ω2)) = ∅ =

= Π(∅) = A ∩B = Π(A ∩B), (2.20)

as for each ω1 ∈ A,ω2 ∈ B,ω1 ̸= ω2 and π(ω1) ∩ π(ω2) = ∅ holds.
For each A,B ⊂ Ω, A = (A−B) ∪ (A ∩B), B = (B −A) ∪ (A ∩B) holds, so that

Π(A) ∩Π(B) = [Π((A−B) ∪ (A ∩B))] ∩ [Π((B −A) ∪ (A ∩B))] =

= [Π(A−B) ∪Π(A ∩B)] ∩ [Π(B −A) ∪Π(A ∩B)] =

= [Π(A−B) ∩Π(B −A)] ∪ [Π(A ∩B) ∩Π(B −A)] ∪
∪ [Π(A ∩B) ∩Π(A−B)] ∪Π(A ∩B) = Π(A ∩B), (2.21)

as

(A−B) ∩ (B −A) = (A ∩B) ∩ (B −A) = (A ∩B) ∩ (A−B) = ∅, (2.22)

so that, due to (2.20)

Π(A−B) ∩Π(B −A) = (A ∩B) ∩ (B −A) = (A ∩B) ∩ (A−B) = ∅, (2.23)

The assertion is proved. 2

3 Conditioned set-valued possibilistic
distributions and measures

Conditioned (or conditional) probability distributions are very important tools in probability theory.
Roughly speaking, conditioned probabilities enable, on the ground of a newly obtained evidence, to
transform the probability values in such a way that the random events incompatible with the new
pieces of evidence are eliminated from evidence – they obtain the zero-valued conditioned probability.
Within the framework of the standard Kolmogorov axiomatic probability theory the mathematical
formalization of this transformation is very simple and well-known. Let ⟨Ω,A, P ⟩ be a probability
space, hence, Ω is a nonempty space (no relations to the support set of the possibilistic distribution
introduced above being supposed at this moment), A is a nonempty σ-field of subsets of Ω, and
P : A → [0, 1] is a σ-additive real-valued set function. Subsets of Ω belonging to A are called random
events, hence, for each A ∈ A the real number P (A) ∈ [0, 1] is ascribed and called the probability of
(the random event) A. Given another random event B ∈ A such that P (B) > 0 holds, the conditioned
probability of (the random event) A under the condition that (the random event) B holds is denoted
by P (A/B) and defined by the well-known formula

P (A/B) = P (A ∩B)/P (B). (3.1)

This definition cannot the immediately translated into the model and language of T -valued possi-
bilistic distributions because of the fact that operation of division between the values P (A ∩ B) and
P (B) cannot be defined in T . Let us proceed in this way: we introduce three alternative approaches
and for each of them we will examine its role when taken as conditioned probability and measure.

So, let T = ⟨X,⊆⟩,Ω, π : Ω → P(X) such that
∪

ω∈Ω π(ω) = X = 1T and Π : P(Ω) → P(X)
defined by Π(A) =

∪
ω∈A π(ω) for each A ⊂ X be as above. Given B ⊂ Ω, let us define three mappings

πi(ω/B) : Ω → P(X) in this way.
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(i) π1(ω/B) = π(ω) ∩Π(B), (3.2a)

(ii) π2(ω/B) = π(ω), if ω ∈ B, π2(ω/B) = ∅(= ∅T ),
if ω ∈ Ω−B, (3.2b)

(iii) π3(ω/B) = Π(Ω−B) ∪ π(ω) = Π((Ω−B) ∪ {ω}). (3.2c)

Let us investigate the most elementary properties of these three mappings. Define, for each i =
1, 2, 3 and each B ⊂ Ω the mapping Πi(·/B) : P(Ω) → P(X) in this way: for each A ⊂ Ω,

Πi(A/B) =
T∨

ω∈A

πi(ω/B) =
∪
ω∈A

πi(ω/B). (3.3)

Hence, for each i = 1, 2, 3 we obtain explicitly that

Π1(A/B) =
∪
ω∈A

π1(ω/B) =
∪
ω∈A

(π(ω) ∩Π(B)) =

(∪
ω∈A

π(ω)

)
∩Π(B) =

= Π(A) ∩Π(B), (3.4)

Π2(A/B) =
∪
ω∈A

π2(ω/B) =
∪

ω∈A∩B

π(ω) = Π(A ∩B), (3.5)

Π3(A/B) =
∪
ω∈A

π3(ω/B) =
∪
ω∈A

(Π(Ω−B) ∪ π(ω)) =

= Π(Ω−B) ∪
∪
ω∈A

π(ω) =

= Π(Ω−B) ∪Π(A) = Π((Ω−B) ∪A) (3.6)

For the extremum values A = Ω or B = Ω we obtain that

Π1(Ω/B) = Π(Ω) ∩Π(B) = Π(B),

Π2(Ω/B) = Π(Ω ∩B) = Π(B),

Π3(Ω/B) = Π((Ω−B) ∪ Ω) = Π(Ω) = 1T ,

Π1(A/Ω) = Π(A) ∩Π(Ω) = Π(A),

Π2(A/Ω) = Π(A ∩ Ω) = Π(A),

Π3(A/Ω) = Π((Ω− Ω) ∪A) = Π(A), (3.7)

So, π1(·/B) and π2(·/B) define T -possibilistic distribution on B (supposing that B ̸= ∅), π3(·/B)
defines a T -possibilistic distribution on Ω. Moreover, if B = Ω, then Πi(·/B) is identical with the
apriori possibilistic distribution π on Ω for each i = 1, 2, 3. Let us recall that in standard probability
theory, if B ⊂ Ω is such that P (B) = 1, then for each A ⊂ Ω the identity P (A/B) = P (A∩B)/P (B) =
P (A) holds. The intuition behind is quite simple – the occurence of certain (i.e., which the probability
1 valid) random event does not bring any new information, so that no modification of the apriori
probability measure results. All the three set functions Πi(·/B), i = 1, 2, 3, also possess this important
property.

More generally, not only for A = Ω, but for each A ⊇ B the result Πi(A/B) = Π(B) (for i = 1, 2)
or Π3(A/B) = 1T holds, as may be easily checked by inspection of the formulas (3.4), (3.5), and (3.6).

When approaching to a more detailed analysis of the three P(X)-valued mappings πi(ω/B), i =
1, 2, 3, let us begin with the mapping π3(ω/B) defined by (3.2c), so that

7



π3(ω|B) = Π(Ω−B) ∪ π(ω) = Π((Ω−B) ∪ {ω}). (3.8)

Hence, for each A,B ⊂ Ω,

π3(A/B) =
∪
ω∈A

π3(ω/B) =
∪
ω∈A

(Π(Ω−B) ∪ (ω)) =

= Π(Ω−B) ∪
∪
ω∈A

π(ω) = Π(Ω−B) ∪Π(A) =

= Π((Ω−B) ∪A). (3.9)

The reason for this preference given to π3(·/B) consists in the fact that π3(ω/B) is, for each B, the
only of the three mappings in question which meets the condition of normalization, i.e., for which

∪
ω∈Ω

π3(ω/B) =
∪
ω∈Ω

(π(Ω−B) ∪ π(ω)) =

= Π(Ω−B) ∪
∪
ω∈Ω

π(ω) = Π(Ω−B) ∪X = X = 1T . (3.10)

So, the P(X)-valued entropy I(π3(·/B)) is defined and, writing π̂(ω) for π3(ω/B) in order to simplify
the rotation, may be written by

I(π3(·/B)) = I(π̂) =
∪
ω∈Ω

(Π3(Ω− {ω}) ∩ π̂(ω)). (3.11)

Let ω0 ∈ Ω be such that π̂(ω0) = X. Then

I(π3(·/B)) = I(π̂)=
∪

ω∈Ω,ω ̸=ω0

Π̂((Ω− {ω}) ∩ π̂(ω)) ∪ Π̂(Ω− {ω0}) ∩ π̂(ω0)=

=
∪

ω∈Ω,ω ̸=ω0

(X ∩ π̂(ω)) ∪ (Π̂(Ω− {ω0}) ∩X =

=
∪

ω∈Ω,ω ̸=ω0

π̂(ω) ∪ Π̂(Ω− {ω0}) = Π̂(Ω− {ω0}) =

= Π3((Ω− {ω0})/B). (3.12)

4 Refined set-valued entropy functions

Let us re-consider and analyse, in more detail, Lemma 2.2. According to this result, if there are
ω1, ω1 ∈ Ω, ω1 ̸= ω2, such that π(ω1) = π(ω2) = X, then I(π) = X = 1P(X). This fact may be
understood in the sense that set-valued entropy function I as defined above is a very weak, poor and
rough quantitative tool when seeking for some ω0 ∈ Ω which could be preferred for the most expectable
state of the universe Ω on the ground of criteria which may be formalized within the framework of
possibilistic distributions and measures taking their values in the power-set P(X). Hence, each decision
rule picking up just one ω0 ∈ Ω must be based on more input parameters than those expressible by the
values of the entropy function I(π). However, the same is the situation in the most simple probability
space ⟨Ω,A, P ⟩, where Ω = {ω1, ω2} and P ({ω1}) = P ({ω2}) = 1

2 . When we have to pick up just one
of the states ω1, ω2 as the better solution of a problem in question, we have to do so on the ground of
some more data and criteria than the some two values P ({ω1}) = P ({ω2}) = 1

2 . The following lemma
may be taken as a complementary formulation of the conditions when I(π) ̸= 1P(X) = X is the case.

8



Lemma 4.1 Let Ω, X be nonempty sets, let π : Ω → P(X) be a P(X)-possibilistic distribution on Ω,
let ω0 ∈ Ω be such that π(ω0) = X. Then

I(π) = π(Ω− {ω0}) (4.1)

holds. Consequently, if Π(Ω− {ω0}) ( X holds, then I(π) ( X follows.

Proof: For I(π) we have

I(π) =
∪
ω∈Ω

(Π(Ω− {ω}) ∩ π(ω)] =

=
∪

ω∈Ω,ω ̸=ω0

[Π(Ω− {ω}) ∩ π(ω)] ∪Π(Ω− {ω0}) ∩ π(ω0). (4.2)

If ω ̸= ω0, then ω0 ∈ (Ω− {ω}) and Π(Ω− {ω}) = X = π(ω0) holds, so that

I(π) =

 ∪
ω∈Ω,ω ̸=ω0

π(ω)

 ∪Π(Ω− {ω0}) =

= Π(Ω− {ω0}). (4.3)

is valid and the assertion is proved. 2

An easy corollary of Lemma 4.1 reads as follows. Let Ω, X and π be as in Lemma 4.1, let there
exist x0 ∈ X such that there is only one ω0 ∈ Ω with the property x0 ∈ π(ω0) and Π(Ω− {ω0}) ( X.
Then I(π) = Π(Ω− {ω0}) ( X follows.

Inspired by Lemma 2.2 and Lemma 4.1 we propose in [7, 8, 9] some modifications of the space of
values in which the mapping π : Ω → T take its values in such a way that π(ω0) = 1T is valid only
for one ω0 ∈ Ω. In [7], the mapping π, defined on Ω, takes its values in a complete chained lattice, let
us recall, for the reader’s convenience, the way leading to this notion.

A poset (partially ordered set) T = ⟨T,≤⟩ is called a lattice, if for each t1, t2 ∈ T the elements
t1 ∨ t2 and t1 ∧ t2 are defined, and T is called a complete lattice, if

∨
S and

∧
S are defined for each

S ⊂ T applying the convention according to which
∧
∅ =

∨
T and

∨
∅ =

∧
T for the empty subset

of T (∨ and ∧ and
∨

and
∧

are supremum and infimum operations related to the partial ordering
relation ≤ on T ). The element

∨
T (
∧

T, resp.) is called the unit (element) of T (the zero (element)
of T , resp) and is denoted by 1T (∅T , resp.).

A complete lattice T = ⟨T,≤⟩ is called distributive, if for each s ∈ T and S ⊂ T the relations

s ∧
(∨

S
)
=
∨

(s ∧ t), s ∨
(∧

S
)
=
∧

(s ∨ t) (4.4)

are valid. Complete lattice T is called chained, if the partial ordering ≤ on T is linear, so that either
t1 ≤ t2 or t2 ≤ t1 holds for each t1, t2 ∈ T. Consequently, for each different t1, t2 ∈ T either t1 < t2 or
t2 < t1 holds.

Obviously, each complete chained lattice T = ⟨T,≤⟩ is distributive.
For more detail on binary relations, partial orderings and chains (linear orderings), semi-lattices

and lattices, Boolean algebras, and related structures and notions cf. [1, 3, 11] or a more recent
textbook and monograph.

So, in [7], the values of possibilistic distributions were taken from complete lattices, but bound by
the condition of chained structure, so that each two possibility degrees are comparable by the partial
ordering relation ≤ defined on T = ⟨T,≤⟩. In what follows, we use more intuitive space of values,
namely, that of the power-set over the space X. However, the conditions imposed on chained lattices
need not be valid in general, so that neither the structure from [7] nor that introduced in this text
can be classified as one being a particular case or, in contrary, as a generalization of the other one.
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Theorem 4.1 Let Ω, X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possibilistic distri-
bution on Ω. Let ω0 ∈ Ω be such that π(ω0) = X0 let Ω0 = {ω ∈ Ω : ω ̸= ω0, π(ω) = X}. Define
π0 : Ω → P(X) in this way: if ω ∈ Ω− Ω0, then π0(ω) = π(ω), if ω ∈ Ω0, then π0(ω) = ∅ (= 0P(X)).
Then

I(π0) = Π(Ω− {ω0}). (4.5)

Proof: By definition,

I(π0) =
∪
ω∈Ω

[Π0(Ω− {ω}) ∩ π0(ω)] =

=
∪

ω∈Ω−Ω0

[Π0(Ω− {ω}) ∩ π0(ω) ∪

∪
∪

ω∈Ω0

[Π0(Ω− {ω}) ∩ π0(ω)]. (4.6)

The last line in (4.6) is identical with ∅, as π0(ω) = ∅ for each ω ∈ Ω0, so that, as π0(ω) and π(ω) are
identical for each ω ∈ Ω− Ω0, we obtain that

I(π0) = Π(Ω− {ω0}) ∩ π(ω0) ∪
∪

ω∈(Ω−Ω0)−{ω0}

[Π(Ω− {ω}) ∩ π(ω)] (4.7)

If ω ∈ (Ω−Ω0)−{ω0} is the case, then ω0 ∈ Ω−{ω} and Π(Ω−{ω}) = X holds, moreover, π(ω0) = X
holds as well. Consequently,

I(π0) =

 ∪
ω∈(Ω−Ω0)−{ω0}

(π(ω) ∩X) ∪ (Π(Ω− {ω0}) ∩X)

 =

= Π(Ω− {ω0}). (4.8)

The assertion is proved. 2

Let us consider another example of restriction of set-valued possibilistic distributions which may
be taken as a more severe application of the reduction principle leading from π to π0 in Theorem 4.1.

Theorem 4.2 Let Ω, X be nonempty spaces, let π : Ω → P(X) be a P(X)-valued possibilistic distri-
bution on Ω. Let π(ω0) = X for some ω0 ⊂ Ω, let π(ω) ⊂ X0 ( X hold for some proper subset X0

of X and for each ω ∈ Ω, ω ̸= ω0. Then I(π) ⊆ X0 holds with equality being the case when there is
ω1 ∈ Ω such that π(ω1) = X0.

Proof: By definition,

I(π) =
∪
ω∈Ω

[Π(Ω− {ω}) ∩ π(ω)] =

=
∪

ω∈Ω,ω ̸=ω0

[Π(Ω− {ω}) ∩ π(ω)] ∪

∪ [Π(Ω− {ω0}) ∩ π(ω0)] =

=
∪

ω∈Ω,ω ̸=ω0

(X ∩ π(ω)) ∪ [Π(Ω− {ω0}) ∩X] =

=
∪

ω∈Ω,ω ̸=ω

π(ω) ∪Π(Ω− {ω0}) = Π(Ω− {ω0}) ∪Π(Ω− {ω0}) =

= Π(Ω− {ω0}) ⊂ X0. (4.9)
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as for each ω ̸= ω0 the relations ω0 ∈ Π(Ω−{ω}) and Π(Ω−{ω}) = X hold. The inclusion I(π) ⊂ X0

with the equality in the particular case when π(ω1) = X0 for some ω1 ∈ Ω easily follows.
It is perhaps worth being quoted explicitly, that for each P(X)-valued possibilistic distribution

π : Ω →= P(X) we may obtain reduced possibilistic distribution π0, setting π0(ω0) = π(ω0) = X,
and setting π0(ω) = π(ω) ∩X0 for a fixed proper subset X0 ⊂ X and for each ω ∈ Ω, ω ̸= ω0. 2

5 Compositions of set-valued possibilistic
distributions

Let Ω and X nonempty sets, let H be a nonempty set of parameters. For each i ∈ H, let πi :
Ω → P(X) be a P(X)-valued possibilistic distribution on Ω, hence, for each ω ∈ Ω, πi(ω) ⊂ X and∪

ω∈Ω πi(ω) = X holds. Let πH be the P(X)-valued mapping defined on Ω in this way: for each
ω ∈ Ω,

πH(ω) =
∪
i∈H

πi(ω). (5.1)

This mapping is called the supremum of the P(X)-valued possibilistic distribution over the set H of

parameters. Instead of πH we write also
∨H

πi or
∨

i∈H πi (the symbol for supremum being used in
order to save the symbol

∪
of set union just for subsets of the spaces Ω and X). In order to apply

(2.1) we obtain for the P(X)-valued entropy of πi, i ∈ H, the value

I(πi) =
∪
ω∈Ω

[Πi(Ω− {ω}) ∩ πi(ω)]. (5.2)

The mapping πH obviously meets the conditions imposed on P(X)-valued possibilistic distribution,
so that the related entropy value I(πH) is defined by

I(πH) =
∪
ω∈Ω

[ΠH(Ω− {ω}) ∩ πH(ω)], (5.3)

here Πi is the P(X)-valued possiblistic measure on P(Ω) defined by the distribution πi on Ω and ΠH

is the P(X)-valued possibilistic measure defined by the distribution πH on Ω. As proved in Section 2
for each i ∈ H the inclusion I(πi) ⊆ I(πH) holds, so that also the inclusion

∨
i∈H I(πi) ⊆ I(πH) is

valid. The equality need not hold, as the following very simple examples demonstrates.
Let Ω = {ω1, ω2}, let X ̸= ∅, let π1 : Ω → P(X) be defined by π1(ω1) = X,π1(ω2) = ∅, let

π2 : Ω → P(X) be defined by π2(ω1) = ∅, π2(ω2) = X. For both i = 1, 2, the identity
∪

ω∈Ω πi(ω) = X
obviously holds. Moreover

I(π1) =
∪
ω∈Ω

(Π1(Ω− {ω}) ∩ π1(ω)) =

= (Π1(Ω− {ω1}) ∩ π1(ω)) ∪ (Π1(Ω− {ω2}) ∩ π1(ω2)) =

= (π1(ω2) ∩ π1(ω1)) ∪ (π1(ω1) ∩ π1(ω2)) =

= (∅ ∩X) ∪ (X ∩ ∅) = ∅. (5.4)

Analogously, we obtain that I(π2) = ∅, hence, I(π1) ∨ I(π2) = ∅. For π1 ∨ π2 we obtain that

(π1 ∨ π2)(ω1) = π1(ω1) ∪ π2(ω1) = X ∪ ∅ = X, (5.5)

(π1 ∨ π2)(ω2) = π1(ω2) ∪ π2(ω2) = ∅ ∪X = X, (5.6)

so that I(π1 ∨ π2) = X ̸= ∅ = I(π1) ∨ I(π2).
Let Ω, X be nonempty spaces, let π1, π2 : Ω → P(X) be P(X)-valued possibilistic distributions on

Ω such that Π1 ⊆ Π2 holds, hence, the inclusion π1(ω) ⊆ π2(ω) is valid for each ω ∈ Ω. As proved in
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Section 2, in this case I(π1) ⊆ I(π2) follows and π1(ω) ∪ π2(ω) is valid for each ω ∈ Ω. Consequently,
I(π1 ∨ π2) = I(π2) = I(π1) ∪ I(π2) follows.

Two almost immediate consequences of the relations proved above are as follows.

Lemma 5.1 Let Ω, X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possibilistic distribution
on Ω such that there exist different elements ω1, ω2 ∈ Ω for which the intersection π(ω1) ∩ π(ω2)
defines a nonempty subset of X. Then the P(X)-valued entropy function I ascribes to π the nonempty
(i.e., nonzero in the sense of the structure T on P(Ω)) value

I(π) =
∪
ω∈Ω

(π(Ω− {ω}) ∩ π(ω)). (5.7)

Proof: As ω1 ̸= ω2, the membership relations ω2 ∈ Ω−{ω1} and ω1 ∈ Ω−{ω2} are valid. Hence, the
relation

I(π) ⊇ π(ω1) ∩ π(ω2) ̸= ∅ (5.8)

holds and the assertion is proved. 2

Lemma 5.2 Let Ω, X and π be as in Lemma 4.1, let π1, π2 : Ω → P(X) be such that π1(ω1) =
X,π1(ω) = ∅, if ω ̸= ω1, π2(ω2) = X,π2(ω) = ∅, if ω ̸= ω2. Then

∅ = I(π1) = I(π2) = I(π1) ∪ I(π2) ̸= I(π1 ∪ π2) ⊇ π(ω1) ∩ π(ω2) = X. (5.9)

Proof: I(π1) = ∅, as π(ω2) are disjoint subsets of X for different ω1, ω2 ∈ Ω (cf. Lemma 2.1). The
right-hand side of (5.9) follows from (5.7). The assertion is proved. 2

Let Ω and X be nonempty sets, let G be a nonempty set of parameters. For each i ∈ G, let
πi : Ω → P(X) be a P(X)-possibilistic distribution on Ω, hence, for each ω ∈ Ω, πi(ω) ⊂ X and∪

ω∈Ω πi(ω) = X holds. Let πG : Ω → P(X) be the P(X)-valued mapping defined on Ω in this way:
for each ω ∈ Ω,

πG(ω) =
∩
i∈G

πi(ω). (5.10)

The following lemma is obvious, but perhaps worth being introduced explicitly.

Lemma 5.3 Let there exist ω0 ∈ Ω such that for each i ∈ G,
∨

ω∈Ω πi(ω) = X. Then the mapping πG :
Ω → P(X), defined by (5.10), meets the conditions imposed on P(X)-valued possibilistic distributions.

6 Conclusions

According to what we told in the introductory section, our aim was to introduce and analyze some
possibilistic distributions and related possibilistic measures with non-numerical, but intuitive enough
uncertainty (in the sense of fuzziness and vagueness) degrees – as the most simple structure for these
purposes we have taken the classical Boolean algebra over the power-set of all subsets of a basic set
Ω with sizes of elements of Ω and their collections quantified by subsets of another space X. The
contents of particular sections as scheduled in the introductory one have been more or less tightly
kept and it is why we do not take as necessary to repeat them now, rather focusing our attention to
some inspirations for further developments.

First, worth of interest are set-valued distributions taking values in power-sets of particular sets
X, interesting and important. E.g., take the map of a region with different subregions colored by
different colors yielding some information on different regions due to the system according to which
the system of colors is known to the user.

More theoretical but interesting enough are the problems of incomplete set-valued possibilistic dis-
tributions and measures. In [7], we proposed possibilistic distributions π : Ω → P(X) and possibilistic
measures Π : P(Ω) → P(X) as complete mappings, so that for each ω ∈ Ω and each A ⊂ Ω the
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values π(ω) ∈ P(X) and Π(A) =
∪

ω∈A π(ω) are defined. However, in probability spaces ⟨Ω,A, P ⟩
with finitely additive probability measure P on finite field A only the value P (

∪
A∈S A) for finite sys-

tem S of disjoint subsystem of A may be defined and computed from values of P on A. Hence, only
probability spaces which may be fully described by relative frequences of their results may be fully
defined by probability spaces and if this is the case, finitely additive probability measures suffices. For
infinite spaces ⟨Ω,A, P ⟩ and for the Borel or Lebesque subsets of real line the Borel measure defined
for semi-open interval by their length may be in a consistent and conservative way extended to Borel
or Lebesque sets, but there are subsets of the real line which are measurable neither in the Borel nor
in the Lebesque sense, so that the system of all Borel and Lebesque subsets of the real line measurable
in the Borel or Lebesque sense remains incomplete.

As it is well-known, in the competition of set-functions in general and measures, including the
probabilistic ones, in particular much more applications in various practical computational and tech-
nical problems have been based on set-functions based on Borel and Lebesque real-valued measures.
There are measures not defined on all subsets of the basic space, but keeping intuitive and easy to
compute and process values on sets where their values are defined. Consequently, even when set-valued
distributions and measures introduced and analyzed above lead to complete measures, it should be
useful and interesting to admit the incompleteness of the resulting set-valued possibilistic distributions
and measures from the very primary and axiomatic approach to set-valued possibilistic distributions
and measures. Let us hope to have an opportunity to analyze this problem in more detail in some
future work.
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