
A Lower Bound Method for Branching Programs and Its Application

Žák, Stanislav
2012

Dostupný z http://www.nusl.cz/ntk/nusl-136378

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 06.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-136378
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Lower Bound Method
for Branching Programs
and Its Application

Stanislav Žák

Technical report No. 1171

January 2012

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Lower Bound Method
for Branching Programs
and Its Application1

Stanislav Žák2

Technical report No. 1171

Abstract:

We introduce a new lower bound method for branching programs (b. p.’s). It is based on the observation
that sometimes in the branching programs there are some local effects ensuring some minimal size of the
local part of the b. p. in question.

The idea of the method is to convert such local effects to the lower bound for the global size of the b.
p. in question. We define a kind of such local effects and we prove a theorem converting these effects into
a lower bound for each b. p. containing them.

Further we define a Boolean function and we demonstrate that the defined effects are present within a
human-like branching program computing this function. Moreover we prove that such effects are present
in each “small” read-once branching program assumed in the proof by contradiction. By application of
the theorem we obtain that each such b. p. must be “large”. In other words we obtain a lower bound for
read-once b. p.’s computing this function. The bound is of a subexponential size, i. e. of the standard
quality. The proof of the lower bound demonstrates that our method is an effective one.

Keywords:
branching programs, lower bound techniques

1This research was partially supported by the projects GA ČR P202/10/1333 and RVO: 67985807.
2stan@cs.cas.cz

A Lower Bound Method for Branching
Programs and Its Application

Stanislav Žák?

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 18207 Prague 8, Czech Republic, stan@cs.cas.cz

Abstract. We introduce a new lower bound method for branching pro-
grams (b. p.’s). It is based on the observation that sometimes in the
branching programs there are some local effects ensuring some minimal
size of the local part of the b. p. in question.
The idea of the method is to convert such local effects to the lower bound
for the global size of the b. p. in question. We define a kind of such local
effects and we prove a theorem converting these effects into a lower bound
for each b. p. containing them.
Further we define a Boolean function and we demonstrate that the de-
fined effects are present within a human-like branching program com-
puting this function. Moreover we prove that such effects are present in
each ”small” read-once branching program assumed in the proof by con-
tradiction. By application of the theorem we obtain that each such b. p.
must be ”large”. In other words we obtain a lower bound for read-once
b. p.’s computing this function. The bound is of a subexponential size,
i. e. of the standard quality. The proof of the lower bound demonstrates
that our method is an effective one.

Key words: branching programs, lower bound techniques

1 Introduction

The main problem of the theory of branching programs is to prove the superpoly-
nomial lower bound for a concrete Boolean function from P (or at least NP).
This would solve the long-standing problem LOG 6=?P . The main stream of the
research has followed the line to prove the superpolynomial lower bounds for re-
stricted branching programs, and gradually to make the restrictions less strong.
The most famous restriction was the read-once branching programs. There are
many lower bound results concerning read-once branching programs which have
arose in the eighties and nineties (see [8]).

This period was followed by the second phase of proofs of superpolynomial
lower bounds for branching programs strongly less restricted than read-once
? This research was partially supported by the projects GA ČR P202/10/1333 and

RVO: 67985807.

branching programs [3], [7], [6]. The milestone was the result of Ajtai [1] and
then [2] with superpolynomial lower bounds for branching programs computing
within linear time and time n.log n, resp.

The present period faces the challenge to prove a stronger result than that
of Ajtai. In this text we work in the direction to cross over this barrier. The
main deficit of the theory of branching programs is the lack of any method (po-
tentially) yielding lower bounds for general branching programs. We attempt to
build up such a method. Our research is based on an observation that in branch-
ing programs it is possible to find some local effects ensuring that the branching
program is ”relatively large” at least in the local places in question. The planned
method would derive the size of the branching program (i. e. the lower bound)
from such local effects.

In the present text we define a kind of such local effects and we prove a
theorem converting these effects into a lower bound for each b. p. containing
them. For verifying that the chosen effects are realistic, we define a Boolean
function (suspicious that it is not in LOG) and we demonstrate that the defined
effects are present within a human-like branching program computing this func-
tion. Moreover we prove that such effects are present in each ”small” read-once
branching program assumed in the proof by contradiction. By application of
the theorem we obtain that each such b. p. must be ”large”. In other words we
obtain a lower bound for read-once b. p.’s computing this function. The bound
is of a subexponential size, i. e. of the standard quality. The proof of the lower
bound demonstrates that our method is an effective one.

This text is a starting point for the research destined for construction of the
general method based on ”local” effects.

2 Technical Preliminaries

By a branching program (b.p.) P (over binary inputs of length n) we mean a
finite, oriented, acyclic graph with one source (in-degree = 0) where all nodes
have out-degree = 2 (so-called branching or inner nodes) or out-degree = 0 (so-
called sinks). The branching nodes are labeled by variables xi, i = 1, ..., n, one
out-going edge is labeled by 0 and the other by 1, the sinks are labeled by 0 or
by 1. If a node v is labeled by xi we say that xi is tested at v.

For an input a = a1...an ∈ {0, 1}n by comp(a) we mean the sequence of
nodes starting at the source of P and ending in a sink. In the sequence for each
i, 1 ≤ i ≤ n, at any node with label xi the next node is pointed by the edge
with label ai.

2

A special case of b.p. with in-degree = 1 in each node (with exception of the
source) is called decision tree. Let T be a decision tree and let v be its node
labeled by xi. Let T0,T1 be the trees rooted by two edges e0, e1 out-going v and
labeled by 0 and 1. If we redirect the edges e0 or e1 to a node in T0 or T1, resp.,
(and remove all nodes and edges which become unreachable from the root of T)
we obtain a decision subtree of T .

If a node v ∈ comp(a) we say that a reaches v. If a and b reach v and im-
mediately below v they reach different nodes we say that comp(a) and comp(b)
diverge in v (or shortly a and b diverge at v). Similarly for more than two inputs.

P computes function fP which on each a ∈ {0, 1}n outputs the label of the
sink reached by a.

We say that P computes in time t(n) if each its computation is of the length
at most t(n).

The well-known class of restricted b.p.’s are so-called read-once branching
programs in which along each computation each variable is tested at most once.
Read-once b.p.’s compute in time n, of course.

If comp(a) has a common part with a path p in P we say that a follows p.

By a distribution we mean any mapping D of (a subset of) {0, 1}n to (the
set of nodes of) P with the property that for each a D(a) is a node of comp(a)
(D(a) ∈ comp(a)). The class of the distribution at node v is the set of all a‘s
mapped to v.

Let v be a node of P and let A be a set of some (not necessarily all) inputs
reaching v. We say that T is a tree developed in v according to P with respect
to A iff the branches of T simply follow (only) the paths of P starting at v and
followed by inputs from A till the sinks (in T no joining of paths is allowed,
of course). Moreover each edge pointing to a node with out-degree = 1 in T is
repointed to its successor. Hence in T each node has out-degree = 2 with excep-
tion of its leaves.

By the size of P we mean the number of its nodes. By the complexity of a
Boolean function f we mean the size of the minimal b.p.’s computing f .

It is a well-known fact that superpolynomial lower bound on the size of b.p.‘s
implies superlogarithmic lower bound for space complexity of Turing machines.

3

3 Combinatorics

We introduce some formal mathematics which will be useful in the next section.

Definition 1. Let U,P, T, Z be natural numbers, U < P
T < Z. Let S be a se-

quence of T places. Let P pebbles be distributed to the places of S. Let the max-
imal number of pebbles distributed to one place is Z. Let R be a subsequence of
S. By its S-length we mean the distance of its first and its last place in S. We
say that R is a U -subsequence

iff
i) To each place of R at least U pebbles are distributed.
ii) S-length of R is at most U .
iii) R is a maximal subsequence (what concerns the number of its places) of its
kind.

Lemma 1. Let U,P, T, Z, S be as above. Then there is a U -subsequence R of S

with the number of its places at least α ≥ P
T −U
Z
U−1

.

Proof. The number of places in S which have at least U pebbles and which are
therefore candidates to R is at least P−T.U

Z−U . Let us divide S into T
U intervals

of length U and let us consider the number of candidates in each interval. It is
clear that in such one interval there are at least P−T.U

Z−U (T
U)−1 candidates. Hence

α ≥ P
T −U
Z
U−1

.
ut

4 Lower Bound

First we introduce a definition which will be needed in the proof of the lower
bound theorem.

Definition 2. Let B be a decision tree. Let M be a set of inputs, M ⊆ {0, 1}n.
Let LB be the number of all leaves of B and LM

B be the number of all leaves of

B reached by inputs from M . By M -ratio of B we mean the number pM
B = LM

B

LB
.

Let T be a subtree of B. Let LT be a number of all leaves of T and LM,B
T be

the number of all leaves of T reached (in B !) by inputs from M . By (M, B)-ratio

of T we mean the number pM,B
T = LM,B

T

LT
.

The next definition is a key one for this text.

Definition 3. Let C = {C1, ..., Ck} be a partition of a subset of the set of input
bits {1, ..., n}. Let s be a function, s(n) ≤ n.
We say that a branching program P is a (C, s)-branching program
iff

4

there is a set A of input strings of size 2s(n) such that for each a ∈ A and for
each C1, C2 ∈ C, C1 6= C2 there is a node v = va,C1,C2 ∈ P and an input string
x such that
i) a, x reach v.
ii) In v, a bit from C1 is tested.
iii) In v, x follows a (i. e. follows the same outgoing edge).
iv) below v, x diverges a for the first time by a test to a bit from C2.
v) Each b ∈ A diverging a at v may meet a only after the moment when a
diverges x.

Theorem 1. Let P be a (C, s)-reasonable branching program with |C| ≤ n
2 com-

puting in time T (n) ≥ n. Then the size of P is at least 2
α +s(n)−n−1

2 where

α ≥ ((|C|2)
T (n) − U).(|C|−1

U − 1)−1 for any U <
(|C|2)
T (n) .

Proof. Let P be a (C, s)-reasonable branching program computing in time T (n).

Then there is a set A of inputs of the cardinality at least 2s(n) with the
properties from the previous definition .

For each a ∈ A we understand the nodes of comp(a) as a sequence of places.
Let v ∈ comp(a) be a node (place) and let C1 be the partition class of the vari-
able tested in v. By the number of pebbles on v we mean the number of partition
classes C2 ∈ C for which v = va,C1,C2 (cf. the previous definition).

We see that the number of pebbles distributed along any computation comp(a),
a ∈ A, is

(
k
2

)
where k is the number of partition classes in C. The maximum of

pebbles distributed to one node of comp(a) is at most k − 1. According to the

lemma from the previous section for any U <
(k
2)

T (n) (which implies U < n
4 !) we

have a U -subsequence of comp(a) with at least α = αU nodes. The inequality
in the statement of the theorem follows from the lemma.(To each node of this
sequence at least U pebbles are distributed.)

Let us distribute each a ∈ A to the first node of its U -subsequence Sa. Let v

be the node with a maximal class M of this distribution. Hence |M | ≥ 2s(n)

|P | .

From v we develop the syntactic tree B′ according to P (”syntactic” means
that we take into account also the branches which are not followed by any in-
put e.g. the branches arising in case of repeated tests on the same variable) till
the depth U in P (this depth is below all at least α nodes of Sa for each a).
Below this depth we continue the developing of the tree ignoring the repeated
tests. On each branch b at the node corresponding to the related sink of P we
add some subtree Sb which on each their branches tests all variables not tested
below v till now. We know that the length of branches (constructed till now) is
at least n and that each such branch is followed by at most one input (of length
n). The branches (constructed till now) can be of different length (due to the

5

possible different number of repeated tests in the first interval of length U along
different branches). It is easy to see that the maximal length is n + δ, δ ≤ U .
To obtain a full tree B′ of certain length we add some full tree Tb of appropri-
ate length to each branch b shorter than the longest one of branches constructed
till now. As a result we obtain a full binary decision tree B′ of depth n+δ, δ ≤ U .

We modify B′ as follows. Below v till the depth U in the middle of each edge
we insert a new node with the same test as in the node from which the edge in
question out-goes. On the dead edge of this test we add a dummy full binary
tree D of depth log(U) + α + δ. We see that in D U full binary trees of depth
α + δ are hidden. Below the depth U we add dummy subtrees of depth δ − l
where l is the depth of the level of B′ in question below U . Maximal l for this
operation is δ.
Let B be the resulting tree. The number of its leaves is at most

2n+δ +
+2U .2log(U)+α+δ +
+

∑δ
l=0 2l.2δ−l ≤

2n+δ + 23.U+log U + 2U+log U ≤
2n+δ + 2

3n
4 +log(n

4)+1

≤ 2n+δ+1.

It follows that M-ratio of B

pM
B ≥ |M |

2n+δ+1 .

It is easy to see that for nodes of B′ being in the same depth the subtrees of
B rooted in them have the same number of leaves.

For the proof of our theorem it suffices to prove the next lemma.

Lemma 2. There is a full binary decision tree T of depth α+δ rooted in v such
that

a) Each its branch (considered as a sequence of nodes) is a subsequence of a
branch of B.

b) pM,B
T ≥ pM

B .
c) The nodes of T reached (in B) by inputs from M in depth (in T) α are

pairwise different in P .
d) The number of leaves of T reached (in B) by inputs from M is the same

as the number of nodes of T reached (in B) by inputs from M on level α.

According to c) and d) we have that |P | ≥ LM,B
T .

Therefore |P |
2α+δ ≥ LM,B

T

LT
= pM,B

T ≥ (according to b)) pM
B ≥ |M |

2n+δ+1 ≥
2s(n)

|P |.2n+δ+1 .

6

Hence |P | ≥ (2α.2s(n)−n−1)
1
2 .

ut
The theorem is proven, it remains to prove Lemma 2.

Proof of Lemma 2.

The main point of the construction of the desired tree T is a recursive appli-
cation of the next procedure Proc.

Proc starts with v,M as inputs for its first application. The both subtrees of
B rooted by the immediate successors v0, v1 of v are taken into account. If one
of these subtrees is reached by no input from M we add it to the constructed
tree T ′. The depth of the added subtree is at least α + δ - this follows from the
construction of B.

In the other case the branches (paths in P) followed by inputs from M start-
ing in v0 and that ones followed by inputs from M starting in v1 don’t meet in
P till the depth U . They may meet only after diverging U different x’s by tests
in U different classes of C. This follows from the fact that P is a reasonable b.
p. and that each a ∈ M has at least U pebbles at v. It will be used in verifying
c) of Lemma later.

For i = 0, 1 in vi and below vi we distribute each input a from M to the
node of B where a has the next node of its U -subsequence Sa. According to the
rules specified later, as an immediate successor of v in T ′ we take one such node
w0 below v0 (or equal v0) with maximum M -ratio of a special tree rooted in w0.
This node w0 and the set of inputs from M distributed in it will be the input
for the next application of Proc. Similarly below v1.

Proc will be used α-times along any branch in question, and consequently
T ′ will be constructed till to depth α.

What concerns the choice of an appropriate node below v0 (resp.v1), first let
us take into account the easy case when on each branch there is at most one
node of this distribution (= a node where some a ∈ M are distributed). Among
the full subtrees with roots in the nodes of the distribution we choose that one
which has maximal (M, B)-ratio. Below in our proof we will demonstrate that
(M, B)-ratio of (the tree rooted in) v0 is not larger than the ratio of (the tree
rooted in) the chosen node. This will be important in verifying b) of Lemma.

The difficult case is when some nodes of this distribution are on the same
branch of B. We will still construct trees rooted in the nodes of our distribution
with the property that their sets of leaves are pairwise disjoint. This property
will imply in the proof below that the maximal (M, B)-ratio of these trees is at

7

least equal or larger than the (M, B)-ratio of the tree rooted in the correspond-
ing vi.

Let leaders be nodes (of this distribution) which have no such nodes as prede-
cessors. (Each leader is the first on its branch.) We take into account a partition
of the set of nodes of the distribution according to the equivalence ”to be below
(or equal to) the same leader”.

Let {wi} be a class of nodes (a class of the partition) where sets of a ∈ M
{Mi} are distributed.

We construct the corresponding trees Ri rooted in wi. Each Ri contains all
branches followed by inputs from Mi. The sets of leaves of Ri’s are pairwise dis-
joint (since in each leaf there is at most one input - from the construction of B).
In general the union of Ri’s do not cover the whole subtree rooted in the leader
of wi’s because in general there are branches not followed by any input from M .
To each Ri we potentially add some other branches to save the possibility to
continue the construction of the desired full tree T of depth α + δ in case when
the modified Ri is chosen as the tree with maximal (M, B)-ratio.

We potentially modify Ri’s according to the following rules:

Let us take Ri0 one of Ri’s. In B let us follow its branches from its root to
its leaves. Let u be a node on some branch b such that only one outgoing edge is
followed by inputs from Mi0 . In case when u is in B in depth at least d = U + δ
we add the whole subtree of B rooted by the out-going edge in question to R or
we do nothing if u plays its role for another Ri which consumes this subtree in
question.
In case when u is in the depth at most d the most difficult case is such that the
out-going edge in question is followed by inputs from some other Mi’s.
We saturate the need of subtree in the direction of the out-going edge in question
using the added subtree rooted in the middle of this edge.

Since for each a ∈ M the U -subsequence Sa is of the S-length at most U
each added subtree of depth log (U) + α + δ is large enough to yield U pos-
sibly needed full subtrees of desired depth α + δ (cf. the definition of B). We
take the root of the tree with maximum M -ratio as the immediate successor of v.

From T ′ we construct the desired full binary tree T of depth α+δ as follows:

To obtain T we modify T ′ only below the depth (in T ′) α.
From each node of T ′ in depth α in T ′ we follow the branches in B (!). We

distinguish three cases A), B), C).

8

A) If the node in question (on level α and below) of T ′ is not reached in B
by any input from M we simply add a subtree of an appropriate depth to gain
the desired depth α + δ of T .

B) If the node in question has only one out-going edge followed by inputs
from M we take its immediate successors in B′ as its immediate successors in
T . We prolong the dead edge by an subtree of appropriate depth to gain the
desired depth α + δ of T and we follow the edge with inputs from M .

C) If in a node both outgoing edges are followed by inputs from M we
consider two subtrees rooted in this node. Each of these two subtrees contains
the subtree rooted by one outgoing edge in question and the dummy tree rooted
by the middle of the opposite out-going edge (cut in the appropriate depth to
gain the desired depth α + δ of T). We chose that one with maximal number of
inputs from M .

Now, it remains to prove that T satisfies the conditions stated in Lemma.

T is rooted in v, of course, and each its branch is of length α + δ. This is
ensured by the fact that the length of branches of B is sufficient for the opera-
tions by which T is constructed both in the case of branches of B′, and in the
case of full dummy subtrees added in the step of construction from B′ to B, too.
Moreover, T is a full binary tree which is ensured by the fact that in the con-
struction of T each node of T defined by an application of Proc is developed in
both directions by the next application of Proc or by pending some full subtree
instead of one edge out-going the node in question.

Further, it is easy to see that T is a subtree of B simply since each node of
T is a node of B (from the construction of T) (cf. condition a) of Lemma).

Now, it remains to verify the conditions b), c), and d) of Lemma.

Lemma 3. b) pM,B
T ≥ pM

B .

Proof. For any node w of T let Mw be the set of m ∈ M which in B reach w,
Tw be the subtree of T rooted in w, and Bw be the subtree of B rooted in w.

We shall prove that for each node w of T the inequality pMw,Bw

Tw
≥ pMw

Bw
holds.

For v we have Mv = M, Bv = B, Tv = T , hence the statement of the lemma
follows.

Lemma 4. For each node w ∈ T the inequality pMw,Bw

Tw
≥ pMw

Bw
holds.

Proof. The proof is by induction according to the level of w in T starting with
leaves of T .

9

The first step of induction: Let w be a leaf of T .

Then Tw is a tree consisting of the unique node (the root = the leaf). There
are two possibilities:

1) Some m ∈ M reaches w (in B). Then pMw,Bw

Tw
=

LMw,Bw
Tw

LTw
= 1

1 = 1 ≥ pMw

Bw
.

2) The node w of T is not reached by any m ∈ M in B. Then pMw,Bw

Tw
≥ 0 =

0
LBw

=
LMw

Bw

LBw
= pMw

Bw
.

The second step of induction: Let w be a node of T and for each node w′ of
T on any level of T below level of w the inequality p

Mw′ ,Bw′
Tw′

≥ p
Mw′
Bw′

holds.

What concerns the level in T of w we shall distinguish two possibilities:

I. The level of w in T is larger or equal to α.

We have three cases A), B), C) according to the three cases A), B), C) in
the construction of T between depths α and α + δ:

A) w is not reached by any m ∈ M .
In this case pMw,Bw

Tw
= pMw

Bw
= 0

B) Exactly one edge outgoing w is followed by some m ∈ M .
Let w0, w1 be the immediate successors of w in T , w1 be on the dead edge.

Then L
Mw1
Bw1

= 0 and w1 ∈ B′ according to the construction of T .

pMw,Bw

Tw
=

L
Mw0 ,Bw0
Tw0

+L
Mw1 ,Bw1
Tw1

LTw0
+LTw1

=
L

Mw0 ,Bw0
Tw0
2.LTw0

(since w0 and w1 are on the same

level of T)

= 1
2 .p

Mw0 ,Bw0
Tw0

≥ (by induction) 1
2 .pMw0

Bw0
=

L
Mw0
Bw0

2.LB0
≥ L

Mw0
Bw0

+L
Mw1
Bw1

2.LB0+2.Lo
=

LMw
Bw

LBw
=

pMw

Bw

where L0 is the number of leaves of each dummy subtrees added in B in the
middle of each edge outgoing w.

C) Both edges out-going w are followed by inputs from M .

Let w0, w
′
1 be immediate successors of w in B′. Let the number of inputs

from M reaching w0 is the same or larger than this number in case of w′1. Since
w0, w

′
1 are on the same level of B′ we have LBw0 = LBw′1 =df b and consequently

L
Mw0
Bw0

≥ L
Mw′1
Bw′1

.

10

Let w1 be the second immediate successor of w in T . According to the con-
struction of T w1 is the root of the dummy tree pending in the middle of the
edge (w, w′1) in B′, L

Mw1 ,Bw1
Tw1

= 0. Let L0 be the number of its leaves.

pMw,Bw

Tw
=

LMw,Bw
Tw

LTw
=

L
Mw0 ,Bw0
Tw0

+L
Mw1 ,Bw1
Tw1

b+L0
≥ 2.L

Mw0 ,Bw0
Tw0

2.b+2.L0
≥

L
Mw0
Bw0

+L
M

w′1
B

w′1
2.b+2.L0

=
LMw

Bw

LBw
= pMw

Bw
.

II. The level of w is less than α.

Let w0, w1 be the immediate successors of w in T while v0, v1 be the imme-
diate successors of w in B.

From the induction assumption for i = 0, 1 for trees Twi
, Bwi

rooted in wi it
follows that

p
Mwi

,Bwi

Twi
≥ p

Mwi

Bwi
holds.

Lemma 5. p
Mwi

,Bwi

Twi
≥ p

Mvi

Bvi

Proof. According to the construction of T below vi the sets of leaves of the
subtrees of B rooted in the nodes to which some classes of inputs from M are
distributed, are pairwise disjoint. Since the set of leaves of Bvi is the union of
the sets of leaves of the trees in question and possibly some other subtrees below
vi with no inputs from M we see that p

Mvi

Bvi
is not larger than the maximum

M-ratio of the trees in question. (From formal point of view the M -ratio is a
fraction a

b . We use the fact that a
b ≤ c

d implies a
b ≤ a+c

b+d ≤ c
d .)

According to the construction of T , the tree rooted in wi have the maximum
M-ratio which on its turn is not larger than p

Mwi
,Bwi

Twi
. ut

Since w0, w1 are on the same level of T we have LTw0
= LTw1

=df b and
consequently LTw = 2b.

Further since v0, v1 are on the same level of B′ we have LBv0
= LBv1

= d
and consequently LBv = 2d+2L0 where L0 is the number of leaves of each from
both dummy trees rooted in the middle of edges outgoing v in B′.

Further for i = 0, 1 let us define ai =df L
Mwi

,Bwi

Twi
and ci =df L

Mvi
,Bvi

vi .

According to the previous lemma for i = 0, 1 we have ai

b ≥ ci

d . Hence
pMv,Bv

Tv
= a0+a1

2b ≥ c0+c1
2d ≥ c0+c1

2d+2L0
= pMv

Bv
. ut

The condition b) of Lemma is verified.

Lemma 6. c) The nodes of T reached by inputs from M in depth α in T are
pairwise different in P .

11

Proof. Let v0, v1 be nodes of T in depth α in T .
Then for i = 0, 1 there are some mi ∈ Mvi .
Let v be the last common node for m0, m1 in T . According to the construc-

tion of T both m0,m1 are in Mv, i.e. v is a node of the special subsequences of
both m0,m1.

In P for example m0 has in v at least U pebbles.
Hence there are U C2’s such that the corresponding xC2 ’s are in v together

with m0,m1. Each such xC2 follows m0 at the test in v and later xC2 leaves
m0 by a test in C2. m1 may meet m0 only after the moment when the last xC2

leaves m0.
v0 is in depth at most α below v in T and therefore in P v0 is in the depth at

most U below v. But this is an unsufficient number for tests for leaving U xC2 ’s.

Hence in P , m1 is not in v0 , therefore v0, v1 are different in P .
ut

Lemma 7. d) The number of leaves of T reached (in B) by inputs from M is
the same as the number of nodes of T reached (in B) by inputs from M on level
α.

Proof. In the second part of the construction of T starting at the level of leaves
of T ′ in the depth α we prolong each node by two outgoing edges till the depth
α+ δ. The rule is such that exactly one edge followed by inputs from M outgoes
each node reached by inputs from M . Cf. cases A), B), C) of the construction.

ut
ut

The key Lemma 2 is proven.

5 Multisyms

We start our searching for the first application of the lower bound theorem from
the previous section. The candidate to be a hard Boolean function is the function
of so-called multisyms below.

For appropriate n‘s we understand the binary inputs of length n as matrices
m × k where m.k = n. We say that some t columns are covered by a row r
if the bits of these t columns on row r have the same value 0 or 1 (they are
monochromatic on r). We say that such a matrix is a t-multisym if each choice
of t columns is covered by a row.

It is easy to see that for any constant t t-multisyms are in P and that for
any unbounded and reasonably constructible function t(n) t(n)-multisyms are
in co-NP.

12

For the purposes of this text we shall use only 2-multisyms, simply multisyms.

This function was already used in [4] for testing lower bound techniques based
on the notion of windows (cf. next section) for the case of read-once b.p.’s. A
superpolynomial lower bound has been achieved.

We often use notation m = ε(n).log n and k = n
ε(n).log n . It is easy to see

that for ε(n) ≥ 2 the number of multisyms is at least 2n−1. Indeed the number
of non-multisyms is at most

(
k
2

)
.2m.2n−2m ≤ (n

ε(n).log n)2.2n−m ≤ 2n+2.log (n
ε(n).log n

)−ε(n).log n ≤ 2n−1.

By β(n)-strong multisyms we mean multisyms with at least β(n).log n (cov-
ering) monochromatic rows for each pair of columns.

For β(n) ≤ ε(n)
2.log(ε(n))+2.loglog n the number of β(n)-strong multisyms is at

least 2n−1. Indeed, from the assumption it follows that

β(n) ≤ ε(n).log n
2.log(ε(n).log n).log n and further

β(n) ≤ ε(n).log n−1−2.log n−log(ε(n))−loglog n
log(ε(n).log n).log n . Hence

β(n) ≤
m−1−2.log n

log m −1

log n which implies

2.log n + log m.(β(n).log n + 1) ≤ m− 1 and further

22.log n.mβ(n).log n+1 ≤ 2m−1. Hence

2n−1 ≥ n2.2n−m.mβ(n).log n+1 ≥ (
k
2

)
.2n−m.mβ(n).log n ≥

≥ (
k
2

)
.2n−2.m.2m.

∑β(n).log n−1
i=0

(
m
i

)
.

The last expression is an upper bound on the number of strings which are
not β(n)-strong multisyms. Hence the number of β(n)-strong multisyms is at
least 2n−1.

By a canonical branching programs computing multisyms we mean any branch-
ing program P consisting from a chain of subprograms (Pi,j) for i, j = 1...k, i 6=
j. Each program Pi,j is responsible for verifying the covering of the pair of
columns (Ci, Cj) by at least one row. Each Pi,j has two sinks - simply to sep-
arate the matrices with covered (Ci, Cj) from the others. The first sink of Pi,j

(”the pair Ci, Cj is covered”) is the source of the next subprogram Pi′,j′ , the
second sink of Pi,j (”the pair Ci, Cj is not covered”) is one of sinks of P (”non-
multisyms”). Each such Pi,j is a chain of microprograms Mr for each row r. Mr

is responsible for testing of covering of (Ci, Cj) by row r. (Mr tests equality of

13

two bits.)

Lemma 8. Each canonical branching program is a (C, s(n))-branching program
for C = (C1, ..., Ck) where Ci’s are columns, and s(n) = n− 1.

Proof. Let P be a canonical branching program computing multisyms. We want
to verify that P satisfies the conditions of definition of (C, s)-branching programs
for some C, s.

We see that the set C = {C1, ..., Ck} of all columns is in fact a partition of
the set of input bits. Further we define s(n) = n − 1. Let A be the set of all
multisyms. We know that (under trivial assumptions) |A| ≥ 2n−1.

Let a be a multisym, let C1, C2 be a pair of columns. Let us take the sub-
program P1,2 of P corresponding to the pair C1, C2 and within it let us take
the first microprogram Mr (responsible for a row r) such that r covers C1, C2

in a. In Mr a leaves P1,2. Let v be the input node of Mr. Moreover let us take
a nonmultisym x not covering the pair (C1, C2) but covering all other pairs of
columns. x must reach v, and let us suppose that in v x follows a. We see that
conditions i), ... , v) of the definitions of (C, s)-branching programs are satisfied.

ut

6 Windows

In this section we introduce a complexity tool which is based on the intuitive
idea of remembering and forgetting. We shall use it for proving our lower bound
in the next section.

Definition 4. Let P be a branching program, v be its node. Let A be a subset
of the set of all inputs reaching v. From v we develop a tree Tv,A according to P
with respect to A. From the level of sinks we arbitrarily(!) test appropriate bits
in such a way that in these tests both out-going edges are followed by inputs from
A (till the moment when in each leaf of the resulting tree Tv,A there is exactly
one input from A).

For each a ∈ A we define the window w(a, v, A) on a at v with respect to
A in such a way that w(a, v, A)i = + if and only if in Tv,A there is a test on
bit i along the branch followed by a. (On the other -non-crossed- bits w(a, v, A)
equals a.)

The length of a window is the number of its non-crossed bits.

The window w(a, v,B) is said to be an A-natural one iff B is the set of all
inputs from A reaching v. For A the set of all inputs we use only ”natural”
instead of ”A-natural”.

14

Comments.

i) We see that the definition of windows is ambiguous due to the arbitrary
last part of the construction of Tv,A beginning at the level of sinks. We may do
so since the next applications are based on the notion ”the length of window”.

ii) In the definition if we replace ”node v” by ”edge e” we obtain the window
assigned to the edge e.

iii) For each a in a given set A comparing the window on a at v with the
respect to A and the window on a at an out-going edge e leaving v with respect
to the subset of A corresponding to e we see that the rule ”one test, (exactly)
one cross is removed” is satisfied.

iv) It is clear that the simple thing holds: ”The larger A, the larger number
of branches in the tree, the larger number of crosses, the shorter windows”.

For the theory of windows the following theorems are important. Possible
proofs can be found in [6].

Theorem 2. Let us have r binary trees. Let l be the average length of their
branches and S be the sum of (the numbers of) their leaves. Then l ≥ log2 S −
log2 r.

Theorem 3. Let P be a branching program and A be a set of inputs of length
n distributed in (the set of nodes of) P . Let A1, ... Ar be all classes of this
distribution. Then

log2 (size of P) ≥ log2 r ≥ log2 |A| − n + avelw
where avelw is the average length of windows of inputs from A according to

Ai’s, i = 1, ... r.

In the next section we shall use the following theorem.

Theorem 4. Let P be a branching program, A be a set of inputs of length n
and z be a number.

Then there is a set Az ⊆ A of cardinality at least (1 − 1
z).|A| such that for

each a ∈ Az all A-natural windows on a along comp(a) are of length at most
z.(log2 (size of P)− log2 |A|+ n).

Proof. We distribute each a ∈ A to the node of its (first) A-natural window of
maximal length. We see that for each a ∈ A the window according to (the cor-
responding class of) this distribution is not shorter than the maximal A-natural
window on a at that node in question and therefore it is not shorter than any
A-natural window on a along whole comp(a).

15

We see that at most 1
z .|A| inputs from A have windows according to our

distribution of length at least z.avelw. Hence at least (1 − 1
z).|A| of inputs

from A have windows according to our distribution of length at most z.avelw.
Hence - as stated above - (1 − 1

z).|A| of inputs from A have each their A-
natural windows (along the whole computations) of length at most z.avelw ≤
z.(log2 (size of P)− log2 |A|+ n) (according to the previous theorem). Q.E.D.

Comment.
1. Informally, the theorem says that for any large A all a’s from A but a

fraction of them have short natural windows.

2. An open problem is whether the theorem holds with ”A-natural windows”
replaced by ”Az-natural windows”.

7 The Application

The next theorem reduces the proof by contradiction of superpolynomial lower
bound for read-once b.p.’s to the problem of superpolynomial lower bound for
(C, s)-b.p.’s (cf. Theorem 1).

Theorem 5. Let P be a read-once branching program computing multisyms with
ε(n) = n

2
7 . Then size(P) ≥ 2n

1
8 .

Proof. By contradiction. Let us denote x = 2n
1
8 and let size(P) < x. Let us

suppose that β(n) ≤ ε(n)
2.log(ε(n))+2.loglog n .

Under this assumption we shall prove that P is a (C, s)-branching program
for the set of β(n)-multisyms, s(n) = n − 1 and C = {C1, ..., Ck} where Ci’s
are all the columns of the input matrix. Consequently according to the Theorem
1 we shall obtain that the size of P is at least x which will give the desired
contradiction.

According to Theorem 4 there are at least 2n−2 of β(n)-strong multisyms
such that each their natural window in P is of length at most 2.(log x + 1). Let
S be the set of such multisyms.

For any multisym a and for each pair of columns C1, C2 we define a pair
of nodes va,C1,C2 , wa,C1,C2 in comp(a) (in brief v, w) as follows: Let r be the
first row monochromatic on C1, C2 such that both its bits (on C1, C2) are both
tested along comp(a). va,C1,C2 is the node of the first (in comp(a)) test in ques-
tion, wa,C1,C2 is the node of the second one.

16

Lemma 9. Let a ∈ S, let C1, C2 be columns.
Then there is no input c satisfying both next a), b).
a) c meets a at the moment when comp(a) still has not covered C1, C2 and

still has touched (by any test) at most 2.(log x + 1) pairs covering C1, C2 in a.
b) There is a bit i, i ∈ C1 ∪ C2, a(i) 6= c(i), a(i) tested by comp(a) before

meeting comp(a) and comp(c).

Proof. By contradiction. Suppose such an c exists. We construct c′ as a prolon-
gation of c (it means we define values of the bits not tested by comp(c) before
meeting with comp(a)). Outside of C1, C2 we give the same values which are in
a. Hence c′ and a cannot diverge by tests outside of C1, C2.

Fact 1. On C1, C2 each bit tested by comp(c) before the meeting point is also
tested by comp(a) before the meeting point.

By contradiction. Let i1 be a bit on C1, C2 tested by comp(c) but not tested
by comp(a) before the meeting point. Let i′1 be a bit associated with it on the
same row on C1, C2. Since P is a read-once b.p. i1 must not be tested below
the meeting point. We construct a′, a′′ two prolongations of a. Outside of C1, C2

they equal a. On C1, C2 on pairs of bits on the same rows with exception of
i1, i

′
1 we give values 01, 10 so that each pair C, C1 and C, C2 is covered (we have

at our disposition at least β(n).log n − log x free pairs of bits). In i1 we give
different values for a′, a′′, in i′1 we give the same value for both a′, a′′. a′, a′′

differ only on i1 - therefore they will not diverge because on i1 they must not
test since i1 was tested by c. They reach the same sink. On the other hand -due
to the arrangement on i1, i

′
1- one of them is a multisym and the other not. A

contradiction.

On 6.log n pairs of bits on rows on C1, C2 we may give values 10, 01 in such
a way that both a and c′ cover each C,C1 and C, C2 for each C 6= C1, C2.

Fact 2. c′ covers all pairs C, C ′ for C,C ′ 6= C1, C2.

By contradiction. On C1, C2 on the remaining pairs of bits we give values 00.
a, c′ reach the same sink but only a is a multisym. A contradiction.

Fact 3. c covers C1, C2.

By contradiction. Let c not cover C1, C2. On the remaining bits of C1, C2

with exception of j associated with i we construct a common prolongation in
such a way that the resulting c′ does not cover C1, C2. To j we give the value
a(i). a′, c′ reach the same sink but only a′ is a multisym. A contradiction.

We see that c′ covers all pairs of columns. On the other hand on C1, C2

there is a common prolongation a′ of a such that a′, c′ reach the same sink with

17

arrangement on bits i, j such that a′ is not multisym. A contradiction. The proof
of our lemma is closed.

ut
Lemma 10. The number of pairs covering C1, C2 (in a) touched by (tests of)
comp(a) before w is at most 2.(log x + 1).

Proof. By contradiction. Let this number be larger. Then many bits from the
pairs in question are tested by comp(a) before w and therefore many bits are
introducing natural windows on a before w. But a ∈ S, therefore each its natural
window is of length at most 2.(log x+ 1). Hence a c must meet a soon and close
some bit in the window on a. But this is impossible according to the previous
lemma. A contradiction.

ut
Let us verify that P is a (C, s)-branching program. For a ∈ S an β(n)-

multisym and for any pair of C1, C2 we have defined the nodes va,C1,C2 , wa,C1,C2 ∈
comp(a) in brief v, w.

Let us define y as follows. Outside of C1, C2 a = y. On C1, C2 y equals a on
all bits tested by comp(a) before w, on the bit tested at w y differs a and on the
remaining bits y is defined arbitrarily in such a way that y is a nonmultisym.

Now it suffices to prove that any c diverging a in v never meets a before w
nor in w. But this follows from the previous lemmas.

Hence P is a (C, s)-branching program. According to Theorem 1

the size of P is at least 2
α +s(n)−n−1

2 where α ≥ ((|C|2)
T (n) −U).(|C|−1

U − 1)−1 for

any U <
(|C|2)
T (n) .

We have s(n) = n − 2, T (n) = n and we take U = (|C|2)
2.T (n) . We know that

|C| = k = n
ε(n).log n .

Then α ≥ P
T −U
Z
U−1

= (P
2T)2

Z− P
2T

= (
k.(k−1)

4n)2

k−1− k.(k−1)
4n

≥ k2(k−1)
16n2 ≥ k3

17n2 =
n3

(ε(n).log n)3

17.n2 =
n

17(ε(n).log n)3 .

Hence the size of P is at least 2
n

35(ε(n).log n)3 . A contradiction. The assumption
size(P) < x is false.

It remains to verify for which β(n) the steps of the proof are valid. We need
(β(n).log n − log x ≥ 6.log n in the proof of Fact 1 in the proof of Lemma 9

which is equivalent to the inequality β(n) ≥ n
1
8

log n + 6.
This inequality is not contrary to the choice of β(n) at the starting point of

the proof.

Hence. we achieve a lower bound 2n
1
8 .

ut

18

References

1. M. Ajtai - A non-linear time lower bound for Boolean branching programs, Proc.
of 40th IEEE Ann. Symp. on Foundations of Computer Science, 1999, pp. 60-70

2. P. Beame, M. Saks, X. Sun, and E. Vee - Super-linear time-space tradeoff lower
bounds for randomized computation, Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, Redondo Beach, CA, November 2000, IEEE,
New York, 169179.

3. A. Borodin, A. Razborov and R. Smolensky - On lower bounds for read-k-times
branching programs, Computational Complexity 3, 1993, 1 - 18.

4. S. Jukna, S. Žák - On branching programs with bounded uncertainty, Proc. of
ICALP’98, LNCS 1443,Springer, Berlin, 259-270.

5. S. Jukna, S. Žák - Some notes on the information flow in read-once branching
programs, in Proc. of 27th Ann. Conf. on Current trends in Theory and Practice
of Informatics, LNCS 1963, Springer, Berlin, 2000, pp. 356-364

6. S. Jukna, S. Žák - On uncertainty versus size in branching programs, Theoretical
Computer Science 290 (2003), 1851-1867.

7. P. Savický and S. Žák - A hierarchy for (1,+k)-branching programs with respect
to k, LNCS 1295, MFCS97, 478-487.

8. I. Wegener - Branching programs and binary decision diagrams, SIAM, 2000

19

