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Dostupný z http://www.nusl.cz/ntk/nusl-136065
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ABSTRACT.
A score function of distribution with arbitrary interval support is introduced. The function was

suggested recently by the author under various names, but its definition was not sufficiently general. In
some particular cases it equals the (likelihood) partial score function for the most important parameter
of the distribution, in other cases it is yet unknown function. It is shown that it appears to be a
suitable function for using in the general moment method. Score functions of distribution of heavy-
tailed distributions are bounded and the corresponding moment estimators robust. For distributions
with unbounded score function of distribution, robust version of the moment method is introduced.

1. INTRODUCTION

For every open interval X ⊆ R, let ΠX be the class of distributions F absolutely continuous with
respect to the Lebesgue measure λ, supported by X and with well defined derivatives f ′(x) = df(x)/dx
of the respective Lebesgue densities f = dF/dλ. In parametric setup, an unknown distribution F of
iid random variables X1, ..., Xn is supposed to be a member of a parametric family FX ,θ = {Fθ : θ ∈
Θ ⊆ Rm} with densities f(x; θ). The problem is to find such θ̂ ∈ Θ based on a random sample from
F , for which Fθ̂ is a good approximation of F .

There are two classical ways to solve this problem.

i) Let S be a suitable function defined on X , and X be a random variable with distribution F .
For k ∈ N , moments of random variable S(X) are

Mk = ESk(X) =

∫
X
Sk(x)f(x) dx. (0.1)

The moment method consists in estimation of θ from finite parametric versions of (0.1). The approach

provides moment estimates θ̂Sn as a solution of equations

1

n

n∑
i=1

Sk(xi; θ) = ESk(θ), k = 1, ...,m. (0.2)

ii) Taking log f(x; θ) as function of θ, the (likelihood) score function is the vector U(x; θ) =
(Uθ1(x; θ), ..., Uθm(x; θ)) of gradients of the log-likelihood, that is

Uθk(x; θ) =
∂

∂θk
log f(x; θ). (0.3)

The maximum θ̂ML
n of the log-likelihood surface in Θ is a solution of the maximum likelihood (ML)

estimating equations
n∑

i=1

Uθk(xi; θ) = 0, k = 1, ...,m. (0.4)

Although the ML method yields estimates with the lowest variance and, consequently, the best
approximated density f(x; θ̂ML

n ), it does not offer numerical characteristics of observed samples. On
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the other hand, θ̂Sn is often not efficient, but the method provides direct sample characteristics, the
sample moments. However, since a suitable function in (0.1) has been unknown, the function

S(X) = X (0.5)

has been used, yielding “Euclidean moments”, the mean value EX and central moments E(X−EX)k.
The sample values of moments, particularly the sample mean x̄ and sample variance, are often used
as data characteristics, excepting cases in which function (0.5) does not match the density to such an
extent that some of integrals (0.1) do not exist. But how to characterize data from such distributions?

Curiously, in case m = 1 there exist distributions for which both the moment and ML solutions
coincide. They are the location distributions Fµ ∈ PR with densities in the form f(x−µ), µ ∈ R. The
score function for µ is

Uµ(x− µ) =
∂

∂µ
log f(x− µ) = −f

′(x− µ)

f(x− µ)
. (0.6)

By using in (0.1) function

S(x) = −f
′(x)

f(x)
, (0.7)

the ML equation (0.4) for µ and the first moment equation (0.2) become identical since ES = 0.
Function (0.7) can be taken as a score function of distribution F having its support the entire R,
cf. Hampel et al. (2086, pp.104), Jurečková (2012). Accordingly, value ES2 can be taken as Fisher
information of distribution F , cf. Cover and Thomas (1991, pp.494). The generalization of the r.h.s.
of (0.6) by Huber (1964) gave rise to methods of robust statistics.

By differentiating parametric density f(x; θ) according the variable as in (0.7) one obtains a para-
metric score function S(x; θ) of distribution Fθ ∈ PR. If it is bounded, estimates of all components
of θ from equations (0.2) are robust, which could be, apart from possible non-efficiency, an important
advantage of the score moment estimators with respect to the maximum likelihood ones in cases that
data are contaminated. Moreover, the solution x∗(θ) of equation S(x; θ) = 0 is the mode, which is an
excellent central characteristic of distributions from PR.

However, this promising approach is not used in mathematical statistics. The reason is, we judge,
that function (0.7) cannot be used universally, since for distributions from PX with X ̸= R it looses
any sense (uniform distribution !). A generalization of the concept for distributions with support
X ̸= R has been recently suggested by Fabián (2001) who noticed that for distributions from P(0,∞),
an analogue of (0.7) is function

T (x) = − 1

f(x)

d

dx
[xf(x)]. (0.8)

The reason was that for distributions with densities in the form f(x/τ) = 1
τ f̃(

x
τ ) it holds true that

S(x; τ) ≡ τT (x; τ) = Uτ (x; τ), (0.9)

where Uτ is the (likelihood) score function for τ . By Fabián (2001), the explanation of formula (0.8) is
as follows: if one takes F as a transformed distribution F (x) = G(η(x)) with G ∈ PR and η : X → R
is given by η(x) = log x, the term in brackets of the formula (0.8) is the density multiplied by the
reciprocal Jacobian of the transformation.

Fabián (2001) generalized this observation for distributions with arbitrary interval support by
using, instead of η(x) = log x, support-dependent mappings inspired by Johnson (1949), which, being
Fabián (2001) too special, stabilized in later works into

η(x) =


x if X = R

log(x− a) if X = (a,∞)

log
(x− a)
(b− x)

if X = (a, b).
(0.10)

It turned out, however, that for purposes of the moment estimation, mappings (0.10) are not
sufficiently general.
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In this paper we try to show that:

i) To derive the score function of a distribution with arbitrary interval support, there is no need
to prescribe any specific mapping η : X → R. A natural way is to choose such the mapping, which is
an inner part of the density formula.

ii) The resulting score functions of distribution can be used in (0.1) and (0.2) with remarkable
results, namely in situations when a parametric model of the data is known and data are contaminated.

2. SCORE FUNCTION OF DISTRIBUTION

DEFINITION 1. Let X ⊆ R be an open interval, F ∈ PX and η : X → R be a continuous increasing
mapping. Set

T (x) = − 1

f(x)

d

dx

(
1

η′(x)
f(x)

)
(0.11)

where f is the density of F and η′(x) = dη(x)/dx. Let the solution x∗ to the equation

T (x) = 0 (0.12)

be unique. Function
S(x) = η′(x∗)T (x) (0.13)

will be called an η−score of distribution F .

The idea behind Definition 1 is that any F ∈ PX is taken as a transformed distribution with
density

f(x) = g(η(x))η′(x), (0.14)

where g is the density of the “prototype distribution” G(y) = F (η−1(y)) ∈ PR.
To obtain an unambiguous score function, we introduce at the first sight a vague concept.

DEFINITION 2. The mathematically simplest η-score of F will be called the score function of
distribution F . The corresponding η : X → R will be called the most favorable mapping.

To clarify the definition, notice that according to formula (0.14), the most favorable mapping
for distribution F is the mapping, the reciprocal derivative of which is a componenet of the density
formula f(x) so that, by (0.11),

T (x) = − 1

f(x)

d

dx
g(η(x)).

As an example, the lognormal distribution with density f(x) = 1√
2πx

e−
1
2 log2 x has apparently the

most favorable mapping η(x) = log x, η′(x) = 1/x. Then, T (x) = −xe 1
2 log2 x d

dxe
− 1

2 log2 x = log x,
and since x∗ = 1, S(x) = T (x). Some distributions may get such a form after a simple modification.
An example is the exponential distribution with density f(x) = e−x = (log x)′xe−x, so that its score
function is S(x) = T (x) = −ex d

dx (xe
−x) = x− 1.

To find the most favorable mapping of a distribution is often an easy task. Before discussing it,
we prove a theorem showing that the η-score reduces in particular cases to the score function for an
important parameter.

THEOREM 1. For any interval support X and any continuous, strictly increasing η : X → R there
exists a class ΠX of distributions with parameter τ , say, such that for any Fτ (x) ∈ ΠX the η−score
equals to the score function for τ .

Proof. Let a location distribution Gµ ∈ PR has density g(y − µ) and score function SG(y − µ) =
Uµ(y − µ). Let us consider the transformed distribution Fτ ∈ PX with density f(x; τ) = g(η(x) −
η(τ))η′(x), where

τ = η−1(µ), (0.15)
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and with score function SF . Set u = η(x)− η(τ). Using (0.14) and the chain rule for integration, we
obtain

Uτ (x; τ) =
∂ log f(x; τ)

∂τ
=

1

g(u)η′(x)

∂

∂τ
[g(u)η′(x)]

=
1

g(u)

dg(u)

du

∂u

∂τ
= SG(u)η

′(τ),

(where, by (0.7), SG(u) = −g′(u)/g(u)). Since by (0.11)

T (x; τ) = − 1

g(u)η′(x)

d

dx
g(u) = − 1

g(u)η′(x)

dg(u)

du

∂u

∂x
= SG(u) (0.16)

and taking into account that the solution of equation T (x; τ) = SG(u) = 0 is x∗ = τ , it holds true
that

Uτ (x; τ) = η′(x∗)T (x; τ) = SF (x; τ). (0.17)

2

By (0.15), parameter τ is the “image” of the location of the prototype. Let us call it a transformed
location parameter. If X ≠ R, the class ΠX consists of distributions with transformed location
parameter.

Let us turn to the problem of finding the most favorable mapping for a given distribution.

i) Distributions from PR often have the most favorable mapping the identical mapping η(x) = x
and score functions (0.7). The score function of standard normal distribution is S(x) = x, that of
N (µ, σ) is S(x) = x−µ

σ2 , another examples are given in Table II. However, let us consider a distribution
with density

f(x) =
1√

(1 + x2)

esinh
−1 x

(1 + esinh
−1
x)2

. (0.18)

It is easy to see that the most favorable mapping η : R → R here is η(x) = sinh−1 x, η′(x) = 1√
(1+x2)

.

From (0.11) one obtains

T (x) =
esinh

−1 x − 1

esinh
−1 x + 1

and, since η′(0) = 1, score function of distribution (0.18) is S(x) = T (x). Obviously, (0.18) is the
density of the transformed logistic prototype.

ii) The most favorable mapping of distributions from P(0,∞) is often η(x) = log x, giving so called
Johnson scores studied in previous author’s papers. Some parametric distributions from P(0,∞) and
the corresponding score functions are listed in Table I.

Table I. Scalar scores of some parametric distributions from P(0,∞).

Distribution f(x) T (x) x∗ S(x) ES2

lognormal c√
2πx

e−
1
2 log2( x

τ )c c log(xτ )
c τ c

τ log(xτ )
c c2

τ2

Weibull c
x (

x
τ )

ce−( x
τ )c c((xτ )

c − 1) τ c
τ ((

x
τ )

c − 1) c2

τ2

Fréchet c
x (

x
τ )

−ce−( x
τ )−c

c(1− (xτ )
−c) τ c

τ (1− (xτ )
−c) c2

τ2

log-logistic c
x

(x/τ)c

((x/τ)c+1)2 c (x/τ)
c−1

(x/τ)c+1 τ c
τ
(x/τ)c−1
(x/τ)c+1

3c2

τ2

gamma γα

xΓ(α)x
αe−γx γx− α α

γ
γ2

α (x− x∗) γ2

α

inv. gamma γα

xΓ(α)x
−αe−γ/x α− γ/x γ

α
α2

γ ( 1
x∗ − 1

x )
α2

γ

beta-prime 1
B(p,q)

xp−1

(1+x)p+q
qx−p
x+1

p
q

q2

p
x−x∗

x+1
q3

p(p+q+1)

Burr XII kcxc−1

(xc+1)k+1 ckx
c−1

xc+1
1

k1/c

ck(xc−(x∗)c)
k1/c(xc+1)

c2k1+2/c

k+2
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In the upper half of the table, there are distributions from Π(0,∞). The pivotal quantity y−µ
σ of

prototype distributions transforms into

y − µ

σ
=

log x− log τ

σ
= log

(x
τ

)1/σ
. (0.19)

Let us point out here that parameters in denominators of ratios with variable in numerator (as in the
r.h.s. of (0.19)) are frequently referred to as scale parameters. From the point of view of distributions
from P(0,∞) as transformed distributions, the transformed location τ = η−1(µ) = eµ represents the
typical value. By (0.19), parameter c of these distributions can be explained not as a shape, but as a
reciprocal scale parameter.

In the lower part of the table there are distributions not being members of Π(0,∞). Scalar scores of
such distributions are yet unknown functions and the typical value x∗ and ES2 (see the next section)
are their new descriptions.

iii) In the case X = (1,∞), there are at least two competitive mappings: the Johnson mapping
η1(x) = log(x − 1) and η2(x) = log log x. There are two possible η-scores of the Pareto distribution
with density

f(x) = cx−(c+1). (0.20)

By (0.11), the first one is, as η′1(x) = (x− 1)−1,

T1(x) = − 1

f(x)

d

dx
[(x− 1)f(x)] = c− c+ 1

x

so that x∗1 = c+1
c and the η−score is

S1(x; c) = c(
1

x∗
− 1

x
). (0.21)

Using the latter mapping with η′2(x) = (x log x)−1,

T2(x) = − 1

f(x)

d

dx
[x−c log x] = c log x− 1

with x∗2 = e1/c. The corresponding η-score S2(x; c) = e−1/c(c log x − 1) is proportional to the (likeli-
hood) score for c. Fig. 1 shows both candidates, S1 should be preferred to be taken as a score function
since bounded inference functions secure robust estimates.

Fig. 1. Two η−scores of Pareto distribution.

The log-gamma distribution with density

f(x) =
cα

Γ(α)
(log x)α−1x−(γ+1) (0.22)

has apparently as the most favorable mapping the latter one, since η′(x) = 1/(x log x). Here T (x) =
1

f(x)
d
dx [x log xf(x)] = γ log x − α, x∗ = eα/γ and the score function of log-gamma distribution is

S(x) = e−α/γ(γ log x− α).
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iv) In the case of a finite support interval there is a great variety of different mappings η(x) :
(a, b) → R. For distributions from P(0,1) one can use in principle any quantile function. However, we
find only few of them to be a most favorable mapping of currently used distributions. In the case of
the beta distribution with density

f(x) =
1

B(p, q)
xp−1(1− x)q−1,

the most favorable mapping is apparently the Johnson mapping (0.10) with derivative η′(x) = 1
x(1−x) .

Then,

T (x) =
1

xp−1(1− x)q−1

d

dx
[xp(1− x)q] = (p+ q)x− p,

x∗ = p
p+q and S(x) = (p+ q)(x/x∗ − 1). For a distribution with density

f(x) =
−1√

2πx log x
e−

1
2 log2(− log x),

the most favorable mapping is η(x) = − log(− log x) since η′(x) = −1/x log x. The score function of
the distribution is then

S(x) = − 1

f(x)

d

dx
[−x log xf(x)] = η(x).

An alternative to the Johnson mapping for distributions from P(−1,1) is η(x) = tanh−1(x), η′(x) =

1/ cosh2(x). The most favorable mapping of distributions from P(−π/2,π/2) described by means of
goniometric functions is often η(x) = tanx with derivative η′(x) = 1/ cos2 x. For instance, the score
function of a distribution with density f(x) = e−x/κ is

S(x) = ex
d

dx
[cos2 xe−x] = sin 2x− cos2 x.

Densities and score functions of distributions from P(−π/2,π/2) with densities

1 f(x) = e−x/κ 3 f(x) = 1√
2π cos2 x

e−
1
2 tan2 x

2 f(x) = ex/κ 4 f(x) =
√

π
2

1
(x+π/2)(π/2−x)e

− 1
2 log2 π/2−x

x+π/2

are plotted in Fig. 1. The last two distributions have a normal prototype and unbounded score
functions. The latter one is the Johnson’s UB distribution transformed into (−π/2, π/2).

Fig 2. Densities and scalar scores of distributions from P(−π/2,π/2).

3. SCORE MOMENTS

Moments (0.1), where S is the score function of distribution F , will be called score moments.
Although S can be determined from the knowledge of the density f only, a study of score moments

is facilitated by the concept of a prototype distribution. Recall that G ∈ PR is a prototype of F ∈ PX
if

F (x) = G(η(x)),
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where η is the most favorable mapping for F , and, as shown in (0.16),

TF (x) = SG(η(x)). (0.23)

THEOREM 2. Let G ∈ PR with score function SG be the prototype of F ∈ PX with score function
SF . Let k ∈ N and |ESk

G| <∞. Then,

ESk
F = [η′(x∗)]kESk

G. (0.24)

Proof. By (0.13), (0.23) and (0.14),

ESk
F = [η′(x∗)]k

∫
X
T k
F (x)f(x) dx = [η′(x∗)]k

∫
X
Sk
G(η(x))g(η(x))η

′(x) dx

= [η′(x∗)]k
∫ ∞

−∞
Sk
G(y)g(y) dy.

2

Let G ∈ PR have unimodal, twice continuously differentiable density g and score function of
distribution SG. If g(y) = O(e−y) when y → ∞, SG(y) = O(1). The transformed distribution F ∈
P(0,∞) has density f(x) = g(log x) 1x so that f(x) = O(1/x2) and SF (x) = O(1) as well. Then, ESk

is finite for any k ≥ 1. Contrary to usual moments, the score moments of heavy-tailed distributions
exist.

Let us clarify the meaning of score moments.

i) For any F ∈ PX , ESF = 0 due to the fact that ESG = 0 and Theorem 2. By (0.7), the solution
y∗ of equation SG(y) = 0 is the mode of G. By (0.23), TF (x

∗) = SG(η(y
∗)) so that x∗ = η−1(y∗)

is the transformed mode of the prototype of F . This value, not very successfully named the t-mean
or transformation-based mean, Fabián (2010, 2011), we take as a typical value of distribution F .
The typical value exists and is unique for distributions with unimodal prototypes (distributions with
multimodal prototypes could be perhaps viewed as mixtures). Referring to the meaning of score
functions in robust statistics, S(x) expresses the relative influence of x ∈ X on the typical value
x∗. In the preceding section we encountered three distributions with linear score functions (normal,
gamma and beta), typical value x∗ of which is the mean.

ii) By (0.17), ES2 of transformed location distributions is Fisher information for τ . Analogously, we
interpret ES2 of any continuous distribution as Fisher information for x∗ or even the mean information
of distribution F (Fabián, 2012). This point of view corresponds with that of Cover and Thomas (1991,
pp.494) for distributions from PR. Function

I(x) = S2(x), (0.25)

increases from the least informative point x∗ in both directions to the end-points of the support
interval. Its mean value is Fisher information for x∗. We thus interpret (0.25) as an information
function, expressing relative information about x∗ contained in x.

Fisher information for x∗ of some distributions is given in Table I. Fig. 2 shows densities, score
functions and information functions of two distributions from Table I with x∗ = 5. Score functions
and information functions of the Weibull distribution are unbounded when x→ ∞, whereas those of
beta-prime distribution are bounded. In the latter case, information contained in observations near
zero (with a low probability of their occurrence) is high, but finite.

7



Fig. 3. Functions characterizing Weibull (left) and beta-prime distributions (right) with x∗ = 5.

The reciprocal value of Fisher information,

ω2 =
1

ES2
, (0.26)

was suggested by Fabián (2007) as a measure of variability of distribution F . Let us call it according
Fabián (2010) a score variance. Its square root ω =

√
(ω2), a score deviation, represents a charac-

teristic radius of the distribution. By Theorem 2, the score variance of F ∈ P(0,∞) with prototype
G is ω2 = (x∗)2/ES2

G. To indicate that ω2 is a reasonable concept, we plotted in Fig. 4 densities of
Weibull and beta-prime distributions, all with ω2 = 1. They look like having the same variability. We
add that the densities in Fig. 3 differ just due to various ω = τ/c (Weibull) and ω = p(p+ q + 1)/q3

(beta prime) of distributions.

Fig. 4. Densities of distributions with equal score deviance ω = 1. Typical values are marked by crosses on

the x-axis.

iii) M3 characterizes skewness. The negative/positive value of M3 indicates a negative/positive
skewness. If M3 = 0, distribution can be called ’S-symmetric’ on X . Particularly, M3 = 0 if f(−x) =
f(x) when X = R, f(1/x) = x2f(x) when X = (0,∞) and f(1 − x) = f(x) when X = (0, 1). Note
that M3 ̸= 0 of F ∈ P(0,∞) means a departure from S-symmetric form, which is itself skewed.

iv) M4 characterizes flatness of the distribution. Let us introduce an analog of Pearson’s measure
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of kurtosis γ2, a coefficient
γ̃2 =M4/M

2
2 .

The values γ2 and γ̃2 of some symmetric distributions from PR with various behavior of score functions
of distribution are given in Table II. It is apparent that γ̃2 forms a logical structure reversed to
kurtosis. To obtain a clearer picture of symmetric distribution, we omitted in the table the values of
non-symmetric ones. γ2 of the Cauchy distribution does not exist.

Table II. Score moments of some prototype distributions.

distribution f(x) S(x) M2 M3 M4 γ̃2 γ2
no name 1

c e
−x4/4 x3 2.028 0 45 10.94 1.707

normal 1√
2π
e−

1
2x

2

x 1 0 3 3 3

extr. value e−xe−e−x

1− e−x 1 -2 9
Gumbel exe−ex ex − 1 1 2 9

logistic ex

(1+ex)2
ex−1
ex+1 1/3 0 1/5 1.8 4.2

Cauchy 1
π(1+x2)

2x
1+x2 1/2 0 3/8 1.5 -

Laplace 1
2e

−|x| sgn x 1 0 1 1 6

4. SCORE MOMENT METHOD AND CHARACTERISTICS OF DATA SAMPLES

The score moment (SM) estimator θ̂S ≡ θ̂Sn is a solution to implicit estimating equations (0.2),
where S means the score function of the assumed model Fθ. It is a special form of an M-estimator
with inference function

Ψ(x; θ) = [S(x; θ), S2(x, θ)− ES2, ..., Sm(x; θ)− ESm].

The conditions for existence of “well-behaved” (unique, consistent and asymptotically normal) M-
estimators of several parameters are well-known, see for instance Serfling (1980), Hampel et al. (1986),
Marrona et al. (2006), Huber and Ronchetti (2009) etc. Since ES = 0 and, at least for distributions
with unimodal prototypes, ESk < ∞ for k = 2, ...,m, the sufficient conditions are that moments
ESk(θ) are differentiable with respect to any θk and that a matrix B with elements

Bjk = E[kSk−1(x; θ)
∂S(x; θ)

∂θj
]θ=θ0 − ESk(θ0)

is non-singular. The last condition must be dealt with separately in each situation; in simple setups
with two-parameter distributions we did not encounter any violation.

From the above considerations it follows

THEOREM 3. Let us have a random sample (X1, ..., Xn) from distribution Fθ0 , θ0 unknown, and
let the corresponding score function of distribution S(x; θ) satisfy the above conditions. The solution of
equations (0.2) is consistent and asymptotically N (θ0,B

−1A(B−1)′), where A = EΨ(x; θ0)Ψ(x, θ0)
′.

Let us present a few examples indicating usefulness of studying SM estimators. The score moment
equations are, as a rule, much simpler than ML equations, and score moments are usually expressed
by means of parameters and not by special functions of parameters. Moreover, it follows from our
simulation experiments that SM estimates have in many cases acceptable relative efficiencies.

EXAMPLE 4.1. Estimating equations (0.2) for Weibull distribution with semi-bounded score func-
tion (Table I) are

n∑
i=1

[(xi/τ)
c − 1] = 0

1

n

n∑
i=1

[(xi/τ)
c − 1]2 = 1.

9



ĉS is a solution of equation n
∑n

i=1 x
2c
i = 2 (

∑n
i=1 x

c
i )

2
. From the first equation τ̂S = 1

n

(∑n
i=1 x

ĉS
i

)1/ĉS
.

EXAMPLE 4.2. A particular case of the Pearson VI distribution, the beta-prime distribution, called
also the beta of the II kind (Johnson, Kotz and Balakrishnan (1995)), is heavy-tailed if 0 < q < 2.
However, it has a bounded score function (Table I) even when q ≥ 2, so that, in this case, the score
moment estimate is robust even in cases of light-tailed distribution. Since

ET 2 =

∫ ∞

0

(
qx− p

x+ 1

)2
1

B(p, q)

xp−1

(x+ 1)p+q
dx =

pq

(p+ q + 1)

where B(p, q) is the beta function, the estimating equations (0.2) are

n∑
i=1

xi − x∗

xi + 1
= 0

ξ(x∗) ≡ 1

n

n∑
i=1

(
xi − x∗

xi + 1

)2

=
p

q(p+ q + 1)
.

From the first equation we have

x̂∗S = x̂∗ =
n∑

i=1

xi
1 + xi

/
n∑

i=1

1

1 + xi
(0.27)

and p̂S = x̂∗q̂S , from the second one q̂S = (x̂∗/ξ(x̂∗)− 1)/(x̂∗ − 1).
Relative efficiencies of the score moment (SM) estimates were in both cases tested by means of

Monte Carlo simulations. Random samples of length n = 50 were generated from the Weibull and
beta-prime distributions (in the latter case as transformed values of the beta distribution) and average
efficiencies SM estimates of x∗ and ω2, e(x∗S) = var(x̂∗ML)/var(x̂

∗
S) and e(ω̂2

S) = var(ω̂2
ML)/var(ω̂

2
S)

were computed over 10 000 samples.
Values of average efficiencies in Table III indicate that the SM estimates of typical value have often

a sufficient accuracy. For Weibull distribution the accuracy of estimates of variability decreases for
densities having sharp narrow peak distant from zero, whereas in the case the beta-prime distribution
accuracy decreases for densities with the mass concentrated near zero and very long tail.

Table III. Efficiencies of SM estimates. Left: Weibull, right: beta-prime.

x∗ ω 0.5 1 2 3 4 0.5 1 2 3 4
1 0.96 0.93 0.93 0.88 0.83 1.0 0.99 0.87 0.82 0.73
3 e(x∗) 0.96 0.95 0.94 0.93 0.92 1.0 1.0 0.99 0.99 0.98
5 0.95 0.95 0.94 0.94 0.94 1.0 1.0 1.0 1.0 1.0

1 0.78 0.94 0.95 0.99 1.0 0.99 0.98 0.78 0.67 0.60
3 e(ω) 0.70 0.72 0.84 0.93 0.99 0.99 0.97 0.91 0.85 0.79
5 0.66 0.69 0.77 0.81 0.86 0.99 0.98 0.95 0.92 0.85

EXAMPLE 4.3. By the score moment method it is even possible to estimate characteristics of
distributions having the end point as a parameter. Consider the uniform distribution with support
(0, δ). The maximum likelihood estimator of δ is δ̂ML = x(n) = max(x1, ..., xn). According to (0.10),

η(x) = log x
δ−x and T (x) = − d

dx [x(δ − x)]. The solution of equation
∑n

i=1 T (xi) = 0 gives δ̂n = 2x̄.

To exclude cases where δ̂n < x(n), we set the ’adjusted’ score moment solution as δ̂Sn = max(x(n), 2x̄).

After 10 000 experiments we obtained for n = 5, 10, 20 and 50 ML estimates δ̂ML
n = 0.87, 0.91, 0.95

and 0.98, whereas δ̂Sn = 1 for n ≥ 5 with accuracy to three decimal points.
Other examples of of using score moment estimators can be found in Fabián (2010) and Stehĺık et

al. (2011).
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In Section 3, reasons for taking x∗ as a typical value of distribution F ∈ PX were clarified. The
sample typical value x̂∗ ≡ x̂∗n = x∗(θ̂n), where θ̂n is a consistent estimate of θ, can be considered as a
“center” of a random sample from Fθ.

In cases of one-parameter distributions, the first equation of system (0.2) can be often written as

n∑
i=1

S(xi;x
∗) = 0. (0.28)

If the solution x̂∗S of (0.28) is expressed as an explicit function of sample observations, we call it a score

average. For example, it follows from (0.28) for Gumbel distribution with density f(x) = ex−µe−ex−µ

and score function S(x) = ex−µ − 1 that the score average is

x̂∗S = µ̂ = log

(
1

n

n∑
i=1

exi

)
, (0.29)

which equals to the ML estimate of the location parameter. The prototype of the gamma distribution
(to give an example of a distribution without location parameter) has density g(x) = γα

Γ(α)e
αxe−γex

and score function S(x) = γex −α so that x∗S = log(α/γ) and the score average is, incidentally, given
by (0.29) as well. Score average of the Laplace distribution (Tab. II) is the median.

Score averages of samples from members of P(0,∞) listed is Table I are:

i) If c is constant, lognormal: x̂∗ = ( 1n
∏
xci )

1/c, Weibull: x̂∗ = ( 1n
∑
xci )

1/c, Fréchet: x̂∗ =

1/( 1n
∑

1
xc
i
)1/c. If c = 1, score average of the lognormal distribution is the geometric mean, of Weibull

the mean and of Fréchet the harmonic mean.
ii) x̂∗ of the gamma distribution is the mean, x̂∗ of inverted gamma the harmonic mean and score

average of the sample from the beta-prime distribution is given by (0.27).
Using as the score function of the Pareto distribution with density (0.20) and bounded η− score

(0.21), the estimating equation is
n∑

i=1

(1/x∗ − 1/xi) = 0

from which it follows that the typical value of the sample from Pareto distribution is the harmonic
mean.

The asymptotic variance of score averages is (Fabián, 2009)

σ2
as = ES2/[

∂

∂x∗
S(x;x∗)]2.

Similarly, the estimate of the score variance, the sample score variance, is given by ω̂2 ≡ ω̂2
n =

ω2(θ̂n) or as a finite version of (0.26), that is,

ω̂2 =
n∑n

i=1 S
2(xi; θ̂n)

. (0.30)

For a few distributions, ω̂2 is expressed as explicit function of sample observations, too. For example,
ω̂2 of the gamma distribution equals the variance and ω̂2 of the inverted gamma distribution is
ω̂2 = x̄2H(x̄2H

1
n

∑
1/x2i − 1), where x̄H means the harmonic mean.

5. ESTIMATION IN THE PRESENCE OF OUTLYING VALUES

The score moment estimates of parameters of families with bounded score functions have an
attractive property: the estimates are insensitive to incidental large values from other contaminating
source.

If the data from distributions with unbounded or semi-bounded score functions are contaminated
by another source, it is necessary to modify score functions using some of the procedures suggested by
robust statistics (trimming the data or tapering the inference function). Since S is a unique function,
such modification is in principle easy to apply.

11



To obtain robust score estimators for distributions with bounded or semi-bounded score functions,
we use Huber’s famous suggestion (1964). Its modification by Huber and Ronchetti (2005) consists
in using as an inference function of distributions from PR function

ψ(x) =

{
S(x− µ) if |x− µ| ≤ v

b sgn(x− µ) if |x− µ| > v,

where v is some bound and b a tuning value. We suggest in a general case to use the tapered score
function of distribution. According to Beran and Schell (2010), let us call this procedure “huberizing”.

DEFINITION 2. Let S(x; θ) be score function of distribution Fθ ∈ PX where X = (a, b) and let
a ≤ u < v ≤ a. Set

ψk(x; θ) = [Sk(x; θ)]vu − Eθ{[Sk(x; θ)]vu}, (0.31)

where [y]vu = min(max(y, v), u). The M-estimator θ̂Hn defined as the solution of equations

n∑
i=1

ψk(xi; θ) = 0, k = 1, ...,m (0.32)

will be called a huberized score moment estimator.

THEOREM 5. Let Tn ≡ θ̂Hn →p θ0, Eψk(x; θ) be differentiable at θ0, and ψk be continuously

differentiable. Let matrix B of derivatives with elements ψ̇jk = ∂ψk/∂θj |θ=θ0 be nonsingular and

|ψ̇jk(x; θ)| ≤ K(x) for j, k = 1, ...,m where EK(x) <∞. Let E|ψk(x; θ0)|2 be finite. Then,√
(n)(Tn − θ0) →d Np(0,B

−1A(B−1)′)

where A = Eψk(x; θ0)ψk(x; θ0)
′.

Proof. Assumptions of the theorem agree with assumptions of the well-known result (cf. Theorem
10.11, Maronna et al., 2006).

Let us further set

Ik|cd(θ) =

∫ d

c

Sk(x; θ) dFθ(x),

Iku(θ) = Sk(u; θ)Fθ(u) and I
v
k = Sk(v; θ)(1−Fθ(v)). Equations (0.32) can be then written in the form

1

n

n∑
i=1

Sk(x̃i; θ)− ESk(θ) = −{Ik|au(θ) + Ik|vb(θ)}+ {Iku(θ) + Ivk (θ)}, (0.33)

where

x̃i =

 r1 if xi < u
xi if u ≤ xi ≤ v
r2 if xi > v,

(0.34)

where r1 = S(u; θin), r2 = S(v; θin) and where θin is some initial value of θ. As initial robust estimates
of x∗ and ω can be used x̂∗0 = med(x) and ω̂0 = qMAD(x), where MAD = med(|x −med(x)|) and q
is a constant. Initial estimates of the parameter vector θ = (θ1, θ2) are then determined as

θin = θ(x̂∗0, ω̂0). (0.35)

For two-parameter distributions, relation (0.35) is often one-to-one.
This general scheme will be now used for a study of properties of huberized score moment estimators

of some simple distributions with unbounded or semi-bounded score functions.

EXAMPLE 5.1. Normal distribution N (µ, σ), x∗ = µ and ω = σ. Set u = µ0 − bσ0, v = µ0 + bσ0.
The huberized score function a function

ψ(x) =


−r if x < u
x−µ
σ if u ≤ x ≤ v
r if x > r.

(0.36)
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Since Eψ = 0 and, by (0.33),

Eψ2 = 1− 2√
2π

∫ ∞

r

ξ2e−
1
2 ξ

2

dξ + r2
2√
2π

∫ ∞

r

e−
1
2 ξ

2

dξ,

it follows from (0.31) that µ̂H = 1
n

∑n
i=1 x̃i and

σ̂2
H =

1
n

∑n
i=1(x̃i − µ̂H)2

1−
√

2
π be

− 1
2 r

2
+ (r2 − 1)(1− erf(r/

√
2))

. (0.37)

In simulation experiments, 2 000 samples of length n = 50 were taken from a contaminated
distribution

Fcont(µ, σ) = (1− ϵ)Φ(0, 1) + ϵΦ(0, 1 + k)

with ϵ = 0.1. Average ML and huberized score moment (H) estimates of σ are plotted together with
their standard deviations against increasing k for different r in Fig. 5. The ML estimates with
increasing k are increasing linearly, the huberized estimates are much useful, but higher than the true
value, thus indicating contamination.

Fig. 5. Estimates of σ of contaminated N (0, 1) under increasing contamination, left: θ̂H , right: std(θ̂H).

EXAMPLE 5.2. Weibull distribution (Table 2) has an unbounded score function when x→ ∞. Let
us take as the inference function

ψ(x; τ, c) =

{
(x/τ)c − 1 if x ≤ v

r if x > v
(0.38)

where r = (v/τ)c−1. The first and third members of r.h.s. of (0.33) are zero. Denote by λ(d) function

λ(d) =

∫ ∞

v

[(x/τ)c − 1]d
c

τ
(x/τ)c−1e−(x/τ)c dx =

∫ ∞

w

(ξ − 1)de−ξdξ

where w = (v/τ)c. Since Ivk (θ) = rk
∫∞
w

[1− (1− eξ)] dξ, the estimation equations (0.33) are

1

n

n∑
i=1

((x̃i/τ)
c − 1) = −λ(1) + rλ(0) (0.39)

1

n

n∑
i=1

((x̃i/τ)
c − 1)2 − 1 = −λ(2) + r2λ(0).

Set now
v = τ0 + kω0 = τ0(1 + k/c0)

where τ0 = med(x) and ω0 = MADN(x) = MAD(x)/0.675 and compute members on the r.h.s. by
using them. We obtain w = (1+k/c0)

c0 , r = w−1, λ(0) = e−w, λ(1) = we−w and λ(2) = (1+w2)e−w

so that

τ c =
1
n

∑n
i=1 x̃

c
i

1− e−w

τ2c =
1
n

∑n
i=1 x̃

2c
i

2[1− (w + 1)e−w]
.
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By subtracting the second equation from the square of the first, we obtain by an iterative way ĉH , and

then τ̂H =
(

1
n

∑n
i=1 x̃

ĉH
i /(1− ew)

)1/ĉH
. As a result we obtain the huberized score moment estimates

τ̂H of typical value and ω̂ = τ̂H/ĉH of score deviance as functions of k.
We refer to the density of any two-parameter distribution as a function of x∗ = τ and ω = τ/c. In

simulation experiments, the contaminated distribution was

fc(x
∗, ω) = (1− ϵ)f(x∗, ω) + ϵf(x∗ + k, ω) (0.40)

with fixed ϵ = 0.1. Average ML and H estimates are plotted together with their standard deviations
against increasing k for some tuning values r in Fig. 6. Similarly as in the previous case, ML estimates
of a positive random variable are with increasing k increasing linearly, the huberized estimates stabilize
at certain level, which is, however, higher than the true value, indicating thus contamination.

Fig. 6. Average estimate of typical value and score deviation of contaminated Weibull distribution and their

standard deviations.

Average efficiencies of huberized moment estimates for various combinations of τ and ω from
simulation experiments are presented in Table IV. The main technical problem appeared to be the
choice of initial values x∗0 = and ω0. Estimates successfully used for contaminated normal (median
and MADN) can be used in cases of data from skewed distributions from P(0,∞) only in cases that ω is
not too large with respect to x∗, that is, in cases of densities with a relatively sharp peaks or densities
quickly decreasing to zero. In cases where x∗ < ω (in Table IV marked by “−′′), it is necessary to use
other input values, perhaps the mean and variance. The problem needs further investigations.

Table IV. Comparison of efficiencies of SM and H estimates for Weibull.

x∗ ω 0.5 1 2 3 0.5 1 2 3
1 0.96 0.93 0.93 0.88 0.94 0.93 - -
3 e(x∗) 0.96 0.95 0.94 0.93 0.95 0.95 0.94 0.95
5 0.95 0.95 0.94 0.94 0.95 0.94 0.95 0.94

1 0.78 0.94 0.95 0.99 1.07 0.95 - -
3 e(ω) 0.70 0.72 0.84 0.93 0.74 0.93 1.0 0.96
5 0.66 0.69 0.77 0.81 0.71 0.78 0.99 1.09
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EXAMPLE 5.3. Gamma distribution (Table I) with x∗ = α/γ and ω = α/γ2 has score function
S(x) = x−x∗

ω2 . By setting u = 0 and v = x∗0 + kω0, the huberized score function is

ψ(x) =

{
x− x∗ if x ≤ v
r if x > v

By observing that E(x− x∗)2 = ω2, we tried to use the simplified equations

1

n

∑
(x̃i − x̂∗H) = 0

1

n

∑
(x̃i − x̂∗H)2 = ω̂2

H ,

where x̃i are given by (0.34). Surprisingly, even biased solutions of these simple equations are reason-
ably efficient (Fig. 7).

Fig. 7. Average estimate of typical value and score deviation of contaminated gamma distribution.

Fig. 8 shows the ML and H estimates and 10% and 20% trimmed mean of typical value x∗ of the
gamma distribution contaminated by the same way as in Example 5.2. x̂∗ML is approximately linearly
increasing and the trimmed mean depends on the ’guessed’ percent of contamination. Trimmed mean
is a very unstable estimate, which is documented by the behavior of standard deviations.

Fig. 8. Robust estimates under increasing contamination.

Fig. 9. shows that the assumption on the underlying distribution is important. Distributions
gamma(x∗, ω) and Weibull(x∗, ω), in case x∗ = 1, ω = 1 identical, are rather different distributions if
x∗ = 3, ω = 2. The data generated from both distributions with these values were estimated by both
huberized gamma and huberized Weibull estimators. Average values of x̂∗ exhibit a large bias when
using an improper model.
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Fig. 9. Using the proper and improper estimator. Data are generated from a distribution stated in the

headline.

6. COMPARISON OF RESULTS FOR DIFFERENT MODELS

Based on simulation experiments, one can expect that the area of implementation of estimators
based on score functions of distributions and their huberized versions is the situation at which the
model is known (can be assumed on the base of some previous or theoretical knowledge) and data are
highly contaminated.

In the light of the previous account, an estimate θ̂n of θ need not be a final result of the inference
procedure. The more interesting values are the sample typical value and sample variance

x∗ = x∗(θ̂n), ω̂2 = ω2(θ̂n)

(and, perhaps, the higher score moments), which make possible to compare results of estimation
under various assumptions of differently parametrized models. To utilize the developed theory, such a
comparison of models F and G can be based on the score divergence, suggested (in a slightly different
form) by Fabián and Vajda (2003) as

DFG =

∫
X
(SG(x; θ)− SF (x; θ))

2
f(x; θ) dx,

where SF and SG are the corresponding score functions.

EXAMPLE 6.1. K=2 000 samples of length n=50 were generated both from Weibull(x∗ = 1, ω)
and gamma(x∗ = 1, ω) for increasing ω, and their parameters were estimated under assumption of
both F : Weibull and G : gamma. Fig. 10 shows the empirical distance

DFG(ω) =
1

Kn

K∑
k=1

n∑
i=1

[
ĉ

τ̂
((xi/τ̂)

ĉ − 1)− xi − x̂∗

ω̂2

]2
as functions of increasing score deviation ω of the generated (uncontaminated) samples. Estimates
were determined by both ML and SM method. For samples from the Weibull, the SM method affords
indiscernibly worse efficiencies, but is much more robust when data originate from the gamma.

Fig. 10. Observed score divergence of the Weibull and gamma distributions as functions of ω.
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7. CONCLUSIONS

By Definition 1 and 2, the concept of the score function of distribution, studied in the author’s
previous works (under names “core function”, “Johnson score” or “scalar score”) is generalized and
clarified. In contrast to the vector-valued score function, score function of distribution is a scalar-
valued function even if the parameter space is a vector one. For any X ⊆ R exists a particular class
of distributions ΠX ∈ PX , for which both the score function of distribution and (likelihood) score
function with respect to certain (transformed location) parameter are identical, which, we think,
justifies taking score function of distribution as a significant function of any F . An attractive feature
of function (0.13) is that it does not contain either the normalizing constant or terms arising from its
differentiation according parameters, so that it is given in many cases by a simple expression. The
most important property of all types of score functions is their behavior at the end-points of the
support interval (they can be unbounded, bounded, semi-bounded and even “redescending”.

The typical value of distribution F ∈ PX , the zero of the score function of distribution, can be
used instead of (or in addition to) the mean value. Score function of distribution appears to be the
score function for the typical value x∗ of the distribution. On the one hand, the score function of
distribution is a generalization of the score function for an important quantity which may not be a
parameter of the distribution. On the other hand, it represents an important simplification, since
it is a scalar-valued function. Score moments appear to be new relevant numerical characteristics
of regular distributions, they exist even for heavy-tailed distributions and have a reasonable sense.
Particularly, ES2 is the Fisher information about x∗ and its reciprocal value measures the variability
of the distribution instead of (in addition to) the variance.

Moment estimators given by (0.2) with the score function of distribution are new variants of
estimators of classical statistics. They are not efficient, but they are robust if the score function of
the model is bounded. In other cases, the score function can be easily modified to be bounded by
methods of robust statistics. Sample characteristics based on the typical value and score variance of
the model can be useful in description of data samples in situations when a model is known and data
are strongly contaminated.
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Stehĺık, M., Potocký, R., Waldl, H. and Fabián, Z. (2011). On the favorable estimation for fitting
heavy tailed data. Comput. Stat. 25, 485–503.

18


