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Partitions of the Boolean cube with a

vertex-transitive automorphism group

Petr Savicky

Abstract

A Boolean function is called transitive, if there is a group of isometric
mappings of the Boolean cube, which is transitive on the vertices of the
cube, and the partition of the cube into two parts defined by the function
as the preimage of 0 and the preimage of 1 is invariant under this group.
Several constructions of transitive functions and an estimate of the number
of these functions are presented.

1 Introduction

Symmetry is an important tool to show simplicity of an object from some point
of view. A standard notion of symmetry for Boolean functions is invariance
under permutations of the variables. In this paper, we demonstrate a different
type of symmetry, which is based on isometric mappings of the Boolean cube
with the Hamming distance as a metric space.

A non-constant Boolean function represents a partition of its domain into
two parts, the preimage of 0 and the preimage of 1. We investigate partitions of
the Boolean cube defined in this way and their automorphism groups consisting
of isometries of the cube. If σ is an automorphism of the partition defined by
a function f , then we have either f(σ(x)) = f(x) or f(σ(x)) = ¬f(x) for every
input x. In the former case, we say that σ preserves f and in the latter case, we
say that σ reverses f . We investigate functions, which define a partition of the
cube, whose automorphism group is transitive on the vertices of the cube. For
simplicity, the functions, for which such a group exists, will be called transitive
functions.

We demonstrate several constructions of non-linear transitive functions.
The largest number of transitive functions of 2k variables is obtained using
the Fourier transform of the functions, where the nonzero coefficients of the
Fourier transform are given by an appropriate bent function of k variables,
where k is even. In particular, we prove that any quadratic bent function may
be used. Moreover, an example of a bent function of 6 variables and degree 3
over Z2, which yields a transitive function of 12 variables in the same way, is
presented. Since the number of quadratic bent functions of k variables is 2Θ(k2),
this implies a lower bound of magnitude 2Ω(n2) on the number of the transitive
functions of n variables. We also prove an upper bound on this number of
magnitude 2O(n2 log2 n).

Related, but a different notion are Boolean functions, which are invariant
under a transitive group of permutations of their variables. For example, the
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functions studied in Section 5.4 Cyclically invariant function of [4] belong to
this class.

The constructions of transitive functions in this paper generalize examples
of these functions obtained by a computer search. The program generated small
sets of random isometries of {0, 1}n for even n up to 12. For the cases, when the
chosen isometries generate a group with two orbits, the corresponding Boolean
function was created and analyzed using Fourier transform. The formula (1)
generalizes some of the non-linear functions obtained in this way. In most cases,
the function h was a quadratic bent function with the exception of the functions
equivalent to h6,cub presented in Section 10. In some cases, the function h
was a symmetric bent function. Analysis of these cases lead to the general
construction presented in Section 5.

2 Basic notions and a simple example

The addition in Z2 will be denoted ⊕. The parity function is the sum of its
input variables in Z2. By mod(k,m), we denote the residue of k modulo m.
For a logical condition C, let [C] be 1, if C is satisfied and 0 otherwise.

Isometry of the Boolean cube is an automorphism of the Boolean cube
considered as a metric space with respect to the Hamming distance. One can
verify that isometric mappings of the Boolean cube of dimension n are exactly
the mappings

σ(x) = (xp(1) ⊕ s1, . . . , xp(n) ⊕ sn) ,

where x = (x1, . . . , xn) ∈ {0, 1}n, p is a permutation of the indices {1, . . . , n}
and s ∈ {0, 1}n. An isometry σ preserves f , if f(σ(x)) = f(x) for all x ∈ {0, 1}n

and reverses f , if f(σ(x)) = ¬f(x) for all x ∈ {0, 1}n. Clearly, an isometry σ
is an automorphism of the partition defined by a function f , if and only if σ
either preserves f or reverses f .

Definition 2.1 The partition of the Boolean cube {0, 1}n into two parts
defined by a non-constant function f : {0, 1}n → {0, 1} has a transitive group
of automorphisms, if there is a group of isometries of the cube, which acts
transitively on the vertices of the cube and the function f is either preserved
or reversed by all its elements.

For simplicity, the automorphisms of the partition defined by a function f
will also be called the automorphisms of f . A function with a transitive group
of automorphisms will be called a transitive function for simplicity.

If A is a transitive group of automorphisms of a function f , then let A′ be the
subgroup consisting of the automorphisms, which preserve f . This subgroup
has index 2, since it is the kernel of a nontrivial homomorphism A → Z2, which
maps σ ∈ A to 0, if σ preserves f , and to 1, if σ reverses f .

Clearly, every transitive function is balanced, which means that the size of
the preimage of 0 and 1 have the same size. It is easy to see that the partition
corresponding to any linear function is invariant, in particular, under isometries
σ(x) = x ⊕ s, which form a transitive group of automorphisms of the Boolean
cube. Consequently, every non-constant linear function is transitive.
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The smallest number of variables, for which there is a nonlinear transitive
function is 4. An example of a nonlinear transitive function on 4 variables may
be obtained as the function g defined either as

g(x) =

[(

3
∨

i=1

xi < xi+1

)

∧

(

3
∨

i=1

xi > xi+1)

)]

or, equivalently, as the polynomial

g(x) = (x1 ⊕ x3)(x2 ⊕ x4) ⊕ x2 ⊕ x3

over Z2. The group of automorphisms of this function is generated, for example,
by σ1, σ2, σ3, where

σ1(x) = (x2, x3, x4, x1 ⊕ 1) ,

σ2(x) = (x4, x3, x2, x1) ,

and
σ3(x) = (x1, x2 ⊕ 1, x3, x4 ⊕ 1) .

Note that σ1 and σ2 preserve the function g and σ3 reverses g. In order to
show that g is a transitive function, one can also use any subgroup, which is
transitive, for example the subgroup generated by σ1, σ3.

A useful tool for the analysis of the transitive functions is the Fourier
transform of the Boolean functions, which we use in the form of a polynomial in
the domain {1,−1}. The polynomial, which represents the Fourier transform
of a function f(x) will be denoted f∗(x∗). This polynomial represents f using
the transformations x∗

i = (−1)xi and f∗(x∗) = (−1)f(x). See [1] for more detail.
The Fourier polynomial f∗ : {1,−1}4 → {1,−1} for f is given as

f∗(x∗) =
1

2
(x∗

1x
∗
2 − x∗

1x
∗
4 + x∗

2x
∗
3 + x∗

3x
∗
4) .

3 Parity of independent transitive functions

In order to combine several transitive functions into a transitive function on a
larger number of variables, one may use the following.

Theorem 3.1 If f1, f2 are transitive functions on disjoint sets of variables,
then f1 ⊕ f2 is a transitive function.

Proof. Denote the domain of fi as Xi for i = 1, 2. Moreover, let fi be invariant
under a transitive group Ai of isometric maps of the cube Xi. Then f1 ⊕ f2 is
invariant under the direct product A1×A2, which acts transitively on X1×X2.
2

Using this theorem, a non-linear transitive function may be constructed on
any number of variables n ≥ 4 by combining a non-linear transitive function on
4 variables and the parity of the remaining n − 4 variables. A larger number
of non-linear transitive functions of n variables may be obtained by choosing
any partition of the variables into m ≥ 1 disjoint sets Xi, i = 1, . . . ,m of size 4
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and a possibly empty set Xm+1 of the remaining variables. Then, a transitive
function of n variables may be obtained in the form

⊕m
i=1 g(Xi) ⊕ par(Xm+1),

where g(Xi) is the function g applied to the variables in Xi in any order and
par(Xm+1) is the parity of the variables in Xm+1.

The number of transitive functions of n variables constructed in this way is
2Θ(n log n). In Section 9, a construction of a larger number of transitive functions
is described.

4 Isometric maps based on swapping variables

Let n = 2k, where k ≥ 1 is an integer. The variables of the function will
be denoted x1, . . . , xk, y1, . . . , yk and an input vector will be denoted either as
〈x, y〉 or in the form of a 2 by k matrix of the form

(

x1, . . . , xk

y1, . . . , yk

)

Let d, r, s ∈ {0, 1}k . Then, let δd,r,s be the mapping {0, 1}2k → {0, 1}2k such
that 〈x′, y′〉 = δd,r,s(〈x, y〉) satisfies for every j = 1, . . . , k

(

x′
j

y′j

)

=

(

xj ⊕ rj

yj ⊕ sj

)

if dj = 0

and
(

x′
j

y′j

)

=

(

yj ⊕ sj

xj ⊕ rj

)

if dj = 1 .

Let D be a 0, 1-matrix of dimension k by k and let c ∈ {0, 1}k . The matrix
D and vector c will be used as parameters of the group of isometries A(D, c) of
the Boolean cube {0, 1}2k . For i = 1, . . . , k, consider the isometry σ1,i = δd,r,s,
where d is i-th row od D, and the vectors r, s are given by

r =

{

ei if ci = 0
0k if ci = 1

and

s =

{

0k if ci = 0
ei if ci = 1 .

Moreover, for i = 1, . . . , k, let σ2,i = δd,r,s, where d = 0k, and r = s = ei. Note
that σ2,i(〈x, y〉) = (〈x ⊕ ei, y ⊕ ei〉).

Definition 4.1 Let D and c be as above. Then, let A(D, c) be the group of
the isometries of {0, 1}2k generated by σ1,i and σ2,i for i = 1, . . . , k.

In order to prove that A(D, s) is transitive, we prove a slightly more general
statement.

Lemma 4.2 Let A be a group of isometries of {0, 1}2k generated by δdi,ri,si
for

i = 1, . . . ,m and by σ2,i for i = 1, . . . , k. Then, A is transitive on the vertices
of {0, 1}2k if and only if the vectors ri⊕si for i = 1, . . . ,m generate the additive
group Zk

2 .
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Proof. Consider the mapping ω : {0, 1}2k → {0, 1}k defined by

ω(〈x, y〉) = x ⊕ y .

Clearly, ω(〈0k, 0k〉) = 0k and for every i = 1, . . . ,m and every 〈x, y〉, we have

ω(δdi,ri,si
(〈x, y〉)) = ω(〈x, y〉) ⊕ ri ⊕ si ,

and for every i = 1, . . . , k, we have

ω(σ2,i(〈x, y〉)) = ω(〈x, y〉) .

It follows that the range of ω(σ(〈0k , 0k〉)) over σ ∈ A is the closure of the vectors
ri⊕si for i = 1, . . . ,m in Zk

2 . If this closure is not equal to Zk
2 , then A cannot be

transitive on {0, 1}2k . In order to prove the opposite direction, assume that this
closure is equal to Zk

2 and let 〈a, b〉 be an arbitrary element of {0, 1}2k . Hence,
there is α ∈ A such that ω(α(〈0k , 0k〉)) = a ⊕ b. Denote 〈a′, b′〉 = α(〈0k , 0k〉).
For every j = 1, . . . , k, we have a′j ⊕ b′j = aj ⊕ bj . It is easy to see that there is
β ∈ A, more specifically an appropriate product of some of the generators σ2,i,
such that 〈a, b〉 = β(〈a′, b′〉) = β(α(〈0k , 0k〉)). Consequently, A is transitive as
required. 2

Theorem 4.3 For every k, every matrix D and vector c, the group A(D, c) is
transitive on {0, 1}2k.

Proof. The group A(D, c) is generated by σ1,i and σ2,i for i = 1, . . . , k. By
construction of σ1,i, we have σ1,i = δdi,ri,si

, where ri⊕si = ei. Since the vectors
ei generate Zk

2 , Lemma 4.2 implies the theorem. 2

Definition 4.4 Let A′(D, c) be the subgroup of A(D, c) generated by σ1,i for
i = 1, . . . , k and by the products σ2,i1 ◦ σ2,i2 for i1 6= i2.

We are interested in cases, when A′(D, c) has two orbits and each element
of A(D, c) either preserves the orbits of A′(D, c) or exchanges them. Let f be
a function of n = 2k variables, which satisfies f(〈x, y〉) = 0 if 〈x, y〉 belongs to
the same orbit of A′(D, c) as 〈0k, 0k〉 and f(〈x, y〉) = 1 otherwise. The function
f defined in this way is a transitive function, since A(D, c) is a transitive group
of its automorphisms.

Since we do not have a characterization of D and c, for which the group
A′(D, c) defined above has two orbits, the examples of the transitive functions
presented in this paper are demonstrated by describing a non-constant function
f and by proving that f is preserved by A′(D, c) and preserved or reversed by
every element of A(D, c) for an appropriate D and c. The properties of the
groups A′(D, c) and A(D, c) for an arbitrary matrix D and a vector c remain
an open question.
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5 A transitive function which is symmetric on pairs

of variables

In this section, we describe for any integer k a transitive function fk of 2k
variables. For this, we use the group A(D, c) from Definition 4.1 with D = Nk

and c = 0k, where Nk = 1k×k − Ik is the complement of the identity matrix.
The elements of D satisfy di,i = 0 and di,j = 1, if i 6= j. Hence, the

isometries σ1,i and σ2,i generating A(Nk, 0k) have the form

σ1,i(〈x, y〉) =

(

y1, . . . , yi−1, xi ⊕ 1, yi+1, . . . , yk

x1, . . . , xi−1, yi, xi+1, . . . , xk

)

and

σ2,i(〈x, y〉) =

(

x1, . . . , xi−1, xi ⊕ 1, xi+1, . . . , xk

y1, . . . , yi−1, yi ⊕ 1, yi+1, . . . , yk

)

.

Let µ : {0, 1}2 → Z4 be defined by the table

x y µ(x, y)

0 0 0
1 0 1
1 1 2
0 1 3

Note that µ(y, x) = −µ(x, y), µ(x ⊕ 1, y) = 1 − µ(x, y), and µ(x ⊕ 1, y ⊕ 1) =
µ(x, y) + 2. Let us extend the mapping µ : {0, 1}2 → Z4 to a mapping
µ : {0, 1}2k → Z4 by the formula

µ(〈x, y〉) =
k
∑

j=1

µ(xj , yj) .

Lemma 5.1 For every 〈x, y〉 ∈ {0, 1}2k and i = 1, . . . , k, we have

µ(σ1,i(〈x, y〉)) = 1 − µ(〈x, y〉) ,

µ(σ2,i(〈x, y〉)) = µ(〈x, y〉) + 2 .

Proof. In order to prove the first identity, denote 〈x′, y′〉 = σ1,i(〈x, y〉). By the
definition of σ1,i, we have

µ(x′
i, y

′
i) = µ(xi ⊕ 1, yi) = 1 − µ(xi, yi)

and for every j 6= i we have

µ(x′
j , y

′
j) = µ(yj, xj) = −µ(xj, yj)

By taking the sum of the contributions for all j = 1, . . . , k, we get

µ(x′, y′) = 1 − µ(x, y)
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as required.
In order to prove the second identity, let 〈x′, y′〉 = σ2,i(〈x, y〉). For all

j 6= i, we have µ(x′
j, y

′
j) = µ(xj , yj) and for the i-th coordinate, we have

µ(x′
i, y

′
i) = µ(xi ⊕ 1, yi ⊕ 1) = µ(xi, yi) + 2. Consequently, we have

µ(〈x′, y′〉) = µ(〈x, y〉) + 2

as required. 2

Definition 5.2 Let k be any integer and fk be the Boolean function fk :
{0, 1}2k → {0, 1} defined as

fk(〈x, y〉) = [ µ(〈x, y〉) ∈ {2, 3} ] .

Theorem 5.3 For every k, the Boolean function fk is preserved by A′(Nk, 0k)
and the partition defined by fk is invariant under A(Nk, 0k). In particular, fk

is a transitive function of 2k variables.

Proof. By Theorem 4.3, the group A(D, s) is a transitive group of
automorphisms of the Boolean cube of dimension 2k. Hence, it is sufficient to
prove that fk is preserved by the generators σ1,i and reversed by the generators
σ2,i.

Each of the subsets {0, 1} ⊆ Z4 and {2, 3} ⊆ Z4 is invariant under the
transformation Z4 → Z4 defined as t 7→ (1 − t). Hence, by Lemma 5.1, the
generators σ1,i satisfy fk(σ1,i(〈x, y〉)) = fk(〈x, y〉) for every 〈x, y〉 ∈ {0, 1}2k .

The transformation Z4 → Z4 defined as t 7→ (t + 2) exchanges {0, 1}
with its complement {2, 3}. Hence, by Lemma 5.1, the generators σ2,i satisfy
fk(σ2,i(〈x, y〉)) = ¬fk(〈x, y〉) for every 〈x, y〉 ∈ {0, 1}2k . 2

6 A Fourier polynomial invariant under swapping

variables

In this section, we demonstrate a generalization of the function fk from Theorem
5.3 for the cases, when k is even and, consequently, n is divisible by 4. Let us
consider the Fourier polynomial

p∗h(〈x∗, y∗〉) =
1

2k/2

∑

u∈{0,1}k

(−1)h(u)
∏

uj=1

x∗
j

∏

uj=0

y∗j , (1)

where h is a Boolean function of k variables. We are interested in cases, when
p∗h is the Fourier polynomial of a Boolean function. This condition is equivalent
to the condition that the range of values of p∗h is {1,−1}. In this case, the
corresponding function {0, 1}2k → {0, 1} is denoted ph. All nonzero Fourier
coefficients of such a function have the same absolute value and the structure of
the corresponding monomials is restricted, since for each j = 1, . . . , k, exactly
one of the variables x∗

j and y∗j is contained in each monomial with a nonzero
coefficient.

7



We shall prove in Section 8 that the Fourier polynomial of the function
fk from Definition 5.2 has the above form with h, which is a symmetric and
quadratic bent function. In Section 9, we prove that for every quadratic bent
function h, the polynomial (1) defines a transitive Boolean function of 2k
variables. Additionally, in Section 10, we demonstrate a cubic bent function
of 6 variables, for which the polynomial (1) defines a transitive function. On
the other hand, not every bent function h yields a transitive function, since
there are at least 22k/2

bent functions of k variables, which is much more than
the number of transitive functions of n = 2k variables, for which a bound
2O(n2 log2 n) is proven in Section 11.

In order to substitute into the Fourier polynomial, we use the isometries
δ∗d,r,s of {1,−1}2k induced by the original isometries δd,r,s of {0, 1}2k .

Theorem 6.1 Let p∗h be the polynomial (1) and let d, r, s ∈ {0, 1}k. Then, the
Fourier polynomial obtained from p∗h by substituting δ∗d,r,s(〈x

∗, y∗〉) satisfies

p∗h(δ∗d,r,s(〈x
∗, y∗〉)) = p∗h′(〈x∗, y∗〉)

where
h′(u) = h(u ⊕ d) ⊕

⊕

j

(rj ⊕ sj)uj ⊕
⊕

j

sj . (2)

Proof. We will substitute δd,r,s(〈x, y〉) into (1) in two steps corresponding to
the decomposition δ∗d,r,s(〈x, y〉) = δ∗d,0k ,0k

(δ∗0k ,r,s(〈x, y〉)). In the first step, we
substitute δ∗d,0k ,0k

(〈x, y〉), which represents exchanging x∗
j and y∗j , if dj = 1 and

keeping these variables otherwise. We obtain

p∗h(δd,0k ,0k
(〈x∗, y∗〉)) =

1

2k/2

∑

u∈{0,1}k

(−1)h(u)
∏

uj=1⊕dj

x∗
j

∏

uj=dj

y∗j .

In the right hand side, substitute for u using the identity u = v⊕d. This yields

p∗h(δd,0k ,0k
(〈x∗, y∗〉)) =

1

2k/2

∑

v∈{0,1}k

(−1)h(v⊕d)
∏

vj=1

x∗
j

∏

vj=0

y∗j , (3)

In the second step, we substitute δ∗0k ,r,s(〈x, y〉) into both sides of (3). This
represents replacing x∗

j by (−1)rj x∗
j and y∗j by (−1)sjy∗j and yields

p∗h(δd,0k ,0k
(δ0k ,r,s(〈x

∗, y∗〉)))

=
1

2k/2

∑

v∈{0,1}k

(−1)h(v⊕d)
∏

j

(−1)rjvj⊕sj(vj⊕1)
∏

vj=1

x∗
j

∏

vj=0

y∗j .

Since
⊕

j

(rjvj ⊕ sj(vj ⊕ 1)) =
⊕

j

(rj ⊕ sj)vj ⊕
⊕

j

sj ,

the theorem follows. 2

Theorem 6.1 implies that a Boolean function f , whose Fourier polynomial
has the form (1), is preserved by δd,r,s if and only if h′ = h, where h′ is defined
by (2). Similarly, f is reversed by δd,r,s, if and only if h′ = h ⊕ 1.
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7 Symmetric bent functions

Let qk,l : {0, 1}k → {0, 1} be the symmetric Boolean function defined as

qk,l(u) =





k
∑

j=1

uj + l ∈ {2, 3} (mod 4)



 .

For every even k, these functions are bent functions and any symmetric bent
function of k variables has this form, see [2]. Let m1,m0 be the last two digits
of the binary expansion of m =

∑k
j=1 uj. Clearly, m ≡ 2m1 + m0 (mod 4) and

by Lucas’ theorem (see Wikipedia), we have

(

m

2

)

≡ m1 (mod 2)

In particular, we have

m ∈ {2, 3} (mod 4) ⇔

(

m

2

)

≡ 1 (mod 2) .

This implies the first of the following identities and the other may be derived
using also the identity for m0. We have

qk,0(u) =
⊕

i1<i2

ui1ui2 ,

qk,1(u) =
⊕

i1<i2

ui1ui2 ⊕
⊕

i

ui ,

qk,2(u) =
⊕

i1<i2

ui1ui2 ⊕ 1 ,

qk,3(u) =
⊕

i1<i2

ui1ui2 ⊕
⊕

i

ui ⊕ 1 .

It follows that the functions qk,l are quadratic over Z2.
For every even k, let hk be the symmetric Boolean function

hk = qk,1−k/2 .

By the definition of qk,l, the value l = 1−k/2 is interpreted modulo 4. Moreover,
for every even k, let h′

k be the symmetric bent function

h′
k = qk,mod(1−k/2,2) .

Lemma 7.1 The function hk achieves the value 0 on 2k−1 +2k/2−1 inputs and
the value 1 on 2k−1 − 2k/2−1 inputs.

Proof. Since the total number of inputs is 2k, the statement of the lemma is
equivalent to the identity

sh =
∑

u

(−1)hk(u) = 2k/2 .
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Denote
sk,l =

∑

u

(−1)qk,l(u)

and let ι denote the complex unit, in order to distinguish it from an index i.
Use the binomial theorem to expand the power z = (1 + ι)k. The coefficient of
the term containing ιi is the number of inputs satisfying

∑

j uj = i. One may
verify that the value sk,l for l ∈ Z4 is as follows.

l sk,l

0 Re z + Im z
1 Re z − Im z
2 −Re z − Im z
3 −Re z + Im z

Since k is even, we have z = (2 ι)k/2. Moreover, we have sh = sk,l with l
satisfying l ≡ 1 − k/2 (mod 4). The following table presents the value of z
under this assumption, so we can assume k/2 ≡ 1 − l (mod 4).

l z

0 ι 2k/2

1 2k/2

2 −ι 2k/2

3 −2k/2

In each of these cases, we have sh = sk,l = 2k/2 as required. 2

For the next lemma, recall that Nk = 1k×k − Ik.

Lemma 7.2 For every i = 1, . . . , k, every d ∈ {0, 1}k and every u ∈ {0, 1}k,
we have

hk(u ⊕ d) = hk(u) ⊕ dt Nk u ⊕ h′
k(d) .

Proof. By substituting u⊕d to the quadratic polynomial representing qk,0, we
obtain for every even k

qk,0(u ⊕ d) = qk,0(u) ⊕ dtNku ⊕ qk,0(d) .

Starting from this identity, we prove similar identities for qk,l for l = 1, 2, 3.
Since the quadratic polynomial for qk,1 differs from qk,0 only in the linear terms,
we have also

qk,1(u ⊕ d) = qk,1(u) ⊕ dtNku ⊕ qk,1(d) .

Since qk,2 = qk,0 ⊕ 1, we have

qk,2(u ⊕ d) = qk,2(u) ⊕ dtNku ⊕ qk,0(d) .

Since qk,3 = qk,1 ⊕ 1, we have

qk,3(u ⊕ d) = qk,3(u) ⊕ dtNku ⊕ qk,1(d) .

In order to complete the proof of the lemma, note that the required identity
for the functions hk and h′

k is equivalent to the identity for qk,l and qk,mod(l,2)

proved above, since hk = qk,l and h′
k = qk,mod(l,2), where l ≡ 1 − k/2 (mod 4).

2
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8 Fourier polynomial of the partially symmetric

example

Let D = Nk and for every i = 1, . . . , k, let di be the i-th row of the matrix D.

Lemma 8.1 For every i = 1, . . . , k and every u ∈ {0, 1}k, we have

hk(u ⊕ di) ⊕ ui = hk(u) .

Proof. Use Lemma 7.2 with d = di. Note that di contains k − 1 ones. Since
k is even, we have dt

iNku = et
iu = ui. Moreover, for every even k and l ≡

1− k/2 (mod 2), we have h′
k(di) = qk,l(di) = 0, since k− 1+ l 6∈ {2, 3} (mod 4).

2

Theorem 8.2 For every even k, the Fourier polynomial for fk is given by the
formula (1), where h = hk.

Proof. By Theorem 5.3, function fk is invariant under the group A′(Nk, 0k)
and the partition defined by fk is invariant under A(Nk, 0k). Since A(Nk, 0k) is
transitive, the function fk is the unique non-constant function, which satisfies
fk(〈0k, 0k〉) = 0, is invariant under the group A′(Nk, 0k), and its partition is
invariant under A(Nk, 0k).

Consider the automorphisms σ∗
1,i and σ∗

2,i on {1,−1}2k induced by σ1,i and
σ2,i. In order to prove the theorem, it is sufficient to prove that the polynomial
p∗hk

defined by (1) with h = hk satisfies

p∗hk
(〈1k, 1k〉) = 1 (4)

and for every i = 1, . . . , k satisfies

p∗hk
(σ1,i(〈x

∗, y∗〉)) = p∗hk
(〈x∗, y∗〉) (5)

and
p∗hk

(σ2,i(〈x
∗, y∗〉)) = −p∗hk

(〈x∗, y∗〉) . (6)

Let A∗(Nk, 0k) be the group of isometries of {1,−1}2k generated by σ∗
1,i and

σ∗
2,i. Since A(Nk, 0k) is transitive on its domain, so is A∗(Nk, 0k).

In order to determine the action of σ∗
1,i and σ∗

2,i on p∗hk
, we use Theorem

6.1. For all i = 1, . . . , k, σ1,i = δdi,ei,0k
. In this case, the function h′ defined by

(2) is
h′(u) = hk(u ⊕ di) ⊕ ui .

By Lemma 8.1, we have h′ = hk, which implies (5). For all i = 1, . . . , k,
σ2,i = δ0k ,ei,ei . In this case, the function h′ defined by (2) is h′(u) = hk(u) ⊕ 1,
which implies (6).

Since all elements of A∗(Nk, 0k) either preserve p∗h or change its sign, we
have that the range of values of p∗h(〈x∗, y∗〉) is {p∗h(〈1k, 1k〉),−p∗h(〈1k, 1k〉)}. By
Lemma 7.1, we have

p∗hk
(〈1k, 1k〉) =

1

2k/2

∑

u

(−1)hk(u) =
1

2k/2
2k/2 = 1 ,

which is (4).
Consequently, p∗hk

(〈x∗, y∗〉) is the Fourier polynomial for fk. 2
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9 Generalization for an arbitrary quadratic bent

function

The function hk used in Theorem 8.2 is one of the symmetric bent functions,
which are known to be quadratic over Z2, see [2]. In this section, we demonstrate
that the polynomial (1) defines a transitive function of 2k variables for every
quadratic bent function of k variables h : {0, 1}k → {0, 1}, where k is even.
All quadratic bent functions of k variables may be obtained from any of them
by applying an affine transform to u1, . . . , uk, see [3]. As a consequence, every
quadratic bent function h(u) may be obtained in the form

h(u) = hk(Lu) ⊕
⊕

i

aiui ⊕ b

for an appropriate non-singular k by k matrix L over Z2 and some constants
a1, . . . , ak, b ∈ Z2. The main part of the proof is to show that (1) is a transitive
function for every function h(u) = hk(Lu), where L is an appropriate matrix
as specified above. Then, a simpler argument is needed to see that (1) is a
transitive function also if h contains nonzero linear and constant terms.

Let L be a fixed non-singular matrix over Z2 and let

h(u) = hk(Lu) . (7)

Moreover, let
D = (LtNkL)−1 . (8)

Note that D is symmetric. Since for an even k, we have NkNk = Ik, D is
non-singular. For every i = 1, . . . , k, let di be the i-th row of D considered as
a column vector. Let c ∈ {0, 1}k be defined by

ci = h′
k(Ldi) . (9)

Lemma 9.1 For every i = 1, . . . , k and u ∈ {0, 1}k, we have

h(u ⊕ di) = h(u) ⊕ ui ⊕ ci .

Proof. By Lemma 7.2, we have

h(u ⊕ di) = hk(Lu ⊕ Ldi) = hk(Lu) ⊕ (Ldi)
tNkLu ⊕ h′

k(Ldi)

= h(u) ⊕ (LtNkLdi)
tu ⊕ ci .

Since
(LtNkLdi)

tu = (D−1di)
tu = et

iu = ui ,

where ei is the i-th standard basis vector, the lemma follows. 2

Theorem 9.2 For every L, the polynomial (1) with h given by (7) is the
Fourier polynomial of a transitive Boolean function.
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Proof. Let σ1,i, σ2,i be the isometries used to define the group A(D, c) from
Definition 4.1 with D given by (8) and c given by (9). Let σ∗

1,i, σ
∗
2,i be the

isometries of {1,−1}2k induced by σ1,i, σ2,i. Similarly as in the proof of Theorem
8.2, Theorem 6.1 and Lemma 9.1 imply for every i = 1, . . . , k

p∗h(σ1,i(〈x
∗, y∗〉)) = p∗h(〈x∗, y∗〉) (10)

and
p∗h(σ2,i(〈x

∗, y∗〉)) = −p∗h(〈x∗, y∗〉) . (11)

Let A∗
2(D, c) be the group induced on {1,−1}2k by A(D, c), where D is given

by (8) and c is given by (9). Since A(D, c) is transitive on its domain, so is
A∗

2(D, c). Since all elements of A∗
2(D, c) either preserve p∗h or change its sign,

we have that the range of values of p∗h(〈x∗, y∗〉) is {p∗h(〈1k, 1k〉),−p∗h(〈1k, 1k〉)}.
Since h(u) = hk(Lu) is a bent function of k variables with the same number of
values 0 and 1 as the function hk, the same argument as in the proof Theorem
8.2 yields

p∗h(〈1k, 1k〉) = 1 .

Consequently, p∗h(〈x∗, y∗〉) is a Fourier polynomial for a Boolean function. Let
us denote this function ph(〈x, y〉). We have ph(〈0k, 0k〉) = 0. By (10), this
function is preserved by the automorphisms σ1,i and by (11), it is reversed by
the automorphisms σ2,i. By Theorem 4.3, the group A(D, c) generated by these
isometries is transitive. 2

10 A transitive function derived from a cubic bent

function

Let k = 6 and let h6,cub : {0, 1}k → {0, 1} be the function defined by the
polynomial over Z2

h6,cub(u) = (u1 ⊕ u4)(u2 ⊕ u5)(u3 ⊕ u6)

⊕(u1 ⊕ u4)u2 ⊕ (u2 ⊕ u5)u3 ⊕ (u3 ⊕ u6)u1 .

The polynomial (1) with h = h6,cub defines a transitive function of 2k = 12
variables, which will be called f6,cub. In order to describe a transitive group of
its automorphisms, the isometries δd,r,s described in Section 4 are not sufficient.

Let p be a permutation of 1, . . . , k. Then, let δp be the mapping {0, 1}2k →
{0, 1}2k such that 〈x′, y′〉 = δp(〈x, y〉) satisfies x′

j = xp(j) and y′j = yp(j) for
every j = 1, . . . , k.

Let α1(〈x, y〉) = δp(〈x, y〉), where p = (2, 3, 1, 5, 6, 4), and let α2(〈x, y〉) =
δd,r,s(δp(〈x, y〉)) where p = (1, 2, 6, 4, 5, 3), d = e4, r = e2, and s = 0k. Using
the matrix notation, these isometries are

α1(〈x, y〉) =

(

x2, x3, x1, x5, x6, x4

y2, y3, y1, y5, y6, y4

)

and

α2(〈x, y〉) =

(

x1, x2 ⊕ 1, x6, y4, x5, x3

y1, y2, y6, x4, y5, y3

)

.
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These isometries were found by a computer search, as well as the function h6,cub

itself. It may be verified that the group generated by α1 and α2 has two orbits.
Together with the generator σ2,1 for k = 6, we get a group, which is transitive
on the vertices of the cube {0, 1}12. Moreover, one can verify that α1 and α2

preserve the function f6,cub and σ2,1 reverses this function. Hence, the group
generated by α1, α2, and σ2,1 is a transitive group of automorphisms of the
partition defined by f6,cub. Hence, we have the following.

Theorem 10.1 The function f6,cub is a transitive function.

11 An upper bound on the number of transitive

functions

In order to have a transitive function uniquely determined by the partition,
which is induced by the function, we consider only functions, which satisfy
f(〈0k, 0k〉) = 0. Using this, every transitive function f is uniquely determined
by the group of the automorphisms of the cube, which preserve f . Hence, the
number of groups of isometries of the Boolean cube is an upper bound on the
number of transitive functions.

Lemma 11.1 Every finite group G is generated by at most log2 |G| of its
elements.

Proof. Let G0 be the trivial subgroup of G containing only the identity element.
If Gi 6= G, let Gi+1 be obtained as a subgroup of G containing Gi and an element
gi+1 ∈ G\Gi. Since |Gi+1| ≥ 2 |Gi|, this process selects at most log2 |G| elements
gi and these elements generate G. 2

Theorem 11.2 The number of transitive functions of n variables is at most

(

m

⌈log2 m⌉

)

,

where m = 2nn! , which is at most mlog
2

m = 2O(n2 log2 n).

Proof. The number of isometries of the Boolean cube {0, 1}n is m = 2nn! and
every group of such isometries is generated by at most log2 m of its elements.
Hence, the number of subgroups is at most the number of subsets of isometries
of size ⌈log2 m⌉. Due to the considerations above, this is an upper bound also
to the number of transitive functions.

For every m ≥ 9, we have ⌈log2 m⌉! ≥ m, which implies

(

m

⌈log2 m⌉

)

≤ m⌈log
2

m⌉−1 ≤ mlog
2

m . (12)

It is easy to verify that (12) holds also for m = 8. The asymptotic estimate
follows from m = 2O(n log

2
n). 2
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