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1 Introduction

We consider the unconstrained minimization problem

x∗ = arg min
x∈Rn

F (x),

where function F : D(F ) ⊂ Rn → R is twice continuously differentiable and n is large. We
use the notation

g(x) = ∇F (x), G(x) = ∇2F (x)

and the assumption that ∥G(x)∥ ≤ G, ∀x ∈ D(F ). Numerical methods for unconstrained
minimization are usually iterative and their iteration step has the form

xk+1 = xk + αkdk, k ∈ N,

where dk is a direction vector and αk is a step-length. In this paper, we will deal with the
Newton method, which uses the quadratic model

F (xk + d) ≈ Q(xk + d) = F (xk) + gT (xk)d+
1

2
dTG(xk)d (1)

for direction determination in such a way that

dk = arg min
d∈Mk

Q(xk + d). (2)

There are two basic possibilities for direction determination: the line-search method, where
Mk = Rn, and the trust-region method, where Mk = {d ∈ Rn : ∥d∥ ≤ ∆k} (here ∆k > 0
is the trust region radius). Properties of line search and trust region methods together
with comments concerning their implementation are exhaustively introduced in [3], [19],
so no more details are given here.

In this paper, we assume that neither matrix Gk = G(xk) nor its sparsity pattern are
explicitly known. In this case, direct methods based on Gaussian elimination cannot be
used, so it is necessary to compute the direction vector (2) iteratively. There are many
various iterative methods making use of a symmetry of the Hessian matrix, see [23]. Some
of them, e.g. [7], [8], [21] allow us to consider indefinite Hessian matrices. Even if these
methods are of theoretical interest and lead to nontraditional preconditioners, see [9] and
[10], we confine our attention to modifications of the conjugate gradient method [24], [25],
[26], which are simple and very efficient (also in the indefinite case). We studied and tested
both the line search and the trust region approaches, but the second approach did not give
significantly better results than the first one. Therefore, we restrict our attention to the
line search implementation of the truncated Newton method.

Since matrix G(x) is not given explicitly, we use numerical differentiation instead of
matrix multiplication. Thus the product G(x)p is replaced by the difference

G(x)p ≈ g(x+ δp)− g(x)

δ
(3)
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where δ = ε/∥p∥ (usually ε ≈ √
εM where εM is the machine precision). The resulting

method is called the truncated Newton method. This method has been theoretically studied
in many papers, see [4], [5], [17], [20]. The following theorem, which easily follows from
the mean value theorem, confirms the choice (3).

Theorem 1 Let function F : Rn → R have Lipschitz continuous second order derivatives
(with the Lipschitz constant L). Let q = G(x)p and

q̃ =
g(x+ δp)− g(x)

δ
, δ =

ε

∥p∥
.

Then it holds

∥q̃ − q∥ ≤ 1

2
εL∥p∥.

To make the subsequent investigations clear, we briefly describe the preconditioned
conjugate gradient subalgorithm proposed in [24] where matrix multiplications are replaced
by gradient differences (the outer index k is for the sake of simplicity omitted).
Truncated Newton PCG subalgorithm:

d1 = 0, g1 = g, h1 = C−1g1, ρ1 = gT1 h1, p1 = −h1.
Do i = 1 to n+ 3

δi = ε/∥pi∥, q̃i = (g(x+ δpi)− g(x))/δi, σi = pTi q̃i.

If σi < ε∥pi∥2 then d = di, stop.

αi = ρi/σi, di+1 = di + αipi, gi+1 = gi + αiq̃i,

hi+1 = C−1gi+1, ρi+1 = gTi+1hi+1.

If ∥gi+1∥ ≤ ω∥g1∥ or i = m then d = di, stop.

βi = ρi+1/ρi, pi+1 = −hi+1 + βipi.

End do

A disadvantage of the truncated Newton PCG subalgorithm with C = I (unprecondi-
tioned) consists in the fact that it requires a large number of inner iterations (i.e. a large
number of gradient evaluations) if matrix G = G(x) is ill-conditioned. Thus a suitable
preconditioner should be used. Unfortunately, the sparsity pattern of G is not known, so
the standard preconditioning methods requiring the knowledge of the sparsity pattern (e.g.
methods based on the incomplete Choleski decomposition) cannot be chosen.

There are various ways for building positive definite preconditioners, which can be
utilized in the truncated Newton PCG subalgorithm:

• Preconditioners based on the limited memory BFGS updates. This very straightfor-
ward approach is studied in [12] and [16].

• Band preconditioners obtained by the standard BFGS method equivalent to the
preconditioned conjugate gradient method. This approach is described in [18], where
it is used for building diagonal preconditioners. More general band preconditioners
of this type are studied in [14].
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• Band preconditioners obtained by numerical differentiation. This approach is used
in [22] for building diagonal preconditioners. More general band preconditioners of
this type are studied in [14].

• Preconditioners determined by the Lanczos method equivalent to the conjugate gra-
dient method. This approach is studied in [9], [10] and [17].

In this paper, we propose new results concerning tridiagonal preconditioners obtained
by numerical differentiation and show that they are very efficient in connection with the
truncated Newton method. This efficiency can be observed from tables and figures in-
troduced in Section 3, where the comparison of our two implementations of the tridiag-
onally preconditioned truncated Newton method with the unpreconditioned method and
the method preconditioned by the limited memory BFGS updates is given.

2 Tridiagonal preconditioners based on the numerical differentiation

If the Hessian matrix is tridiagonal, its elements can be simply approximated by numerical
differentiation. If the Hessian matrix is not tridiagonal, we can use this process to determine
a suitable tridiagonal preconditioner. Numerical differentiation is performed only once at
the beginning of the outer step of the Newton method.

In order to determine all elements of the tridiagonal Hessian matrix, it suffices to use two
gradient differences g(x+εv1)−g(x) and g(x+εv2)−g(x), where v1 = [δ1, 0, δ3, 0, δ5, 0, . . .],
v2 = [0, δ2, 0, δ4, 0, δ6, . . .], and ε > 0 (usually ε ≈ √

εM), which means to compute two extra
gradients during each outer step of the Newton method. The differences δi, 1 ≤ i ≤ n, can
be chosen by two different ways:

(1) We set δi = δ, 1 ≤ i ≤ n, where δ > 0 (usually δ ≈
√
2/n).

(2) We set δi = max(|xi|, 1), 1 ≤ i ≤ n.

Theorem 2 Let the Hessian matrix of function F : Rn → R be tridiagonal of the form

T =


α1 β1 . . . 0 0
β1 α2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . αn−1 βn−1

0 0 . . . βn−1 αn

 . (4)

Set v1 = [δ1, 0, δ3, 0, δ5, 0, . . .], v2 = [0, δ2, 0, δ4, 0, δ6, . . .], where δi > 0, 1 ≤ i ≤ n. Then for
2 ≤ i ≤ n− 1 one has

α1 = lim
ε→0

g1(x+ εv1)− g1(x)

εδ1
, β1 = lim

ε→0

g1(x+ εv2)− g1(x)

εδ2
,

αi = lim
ε→0

gi(x+ εv1)− gi(x)

εδi
, βi = lim

ε→0

gi(x+ εv2)− gi(x)

εδi+1
− βi−1

δi−1

δi+1
, mod(i, 2) = 1,
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αi = lim
ε→0

gi(x+ εv2)− gi(x)

εδi
, βi = lim

ε→0

gi(x+ εv1)− gi(x)

εδi+1
− βi−1

δi−1

δi+1
, mod(i, 2) = 0,

αn = lim
ε→0

gn(x+ εv1)− gn(x)

εδn
, mod(n, 2) = 1,

αn = lim
ε→0

gn(x+ εv2)− gn(x)

εδn
, mod(n, 2) = 0.

Proof Theorem 1 implies that g(x + εv1) − g(x) = εG(x)v1 + o(ε), g(x + εv2) − g(x) =
εG(x)v2+o(ε), so after substituting G(x) = T , where T is a tridiagonal matrix of the form
(4), and rearranging individual elements we obtain

g1(x+ εv1)− g1(x)

εδ1
= α1 + o(1),

g1(x+ εv2)− g1(x)

εδ2
= β1 + o(1),

gi(x+ εv1)− gi(x)

εδi
= αi + o(1),

gi(x+ εv2)− gi(x)

εδi
= βi + βi−1

δi−1

δi+1
+ o(1), mod(i, 2) = 1,

gi(x+ εv2)− gi(x)

εδi
= αi + o(1),

gi(x+ εv1)− gi(x)

εδi
= βi + βi−1

δi−1

δi+1
+ o(1), mod(i, 2) = 0,

gn(x+ εv1)− gi(x)

εδi
= αn + o(1), mod(n, 2) = 1,

gn(x+ εv2)− gi(x)

εδi
= αn + o(1), mod(n, 2) = 0,

where 2 ≤ i ≤ n−1. Since ratios δi−1/δi+1, 2 ≤ i ≤ n−1, are indepenent of ε, the theorem
is proved. 2

Remark 1 Theorem 2 specifies an efficient way for building a tridiagonal preconditioner.
We choose fixed numbers ε, δi, 1 ≤ i ≤ n, and compute elements of the tridiagonal matrix
C = T (ε) according to formulas mentioned in Theorem 2, where the limits are omitted.
Denoting by T (0) the matrix appearing in Theorem 2, we can write T (0) = limε↓0 T (ε).
Then G(x)v1 = T (0)v1 and G(x)v2 = T (0)v2, where v1 = [δ1, 0, δ3, 0, δ5, 0, . . .]

T and v2 =
[0, δ2, 0, δ4, 0, δ6, . . .]

T . If δi = δ, 1 ≤ i ≤ n (all differences are the same), the elements of
the matrix T (0) can be expressed in the form

αi =
∑

mod(j,2)=1

Gij, βi + βi−1 =
∑

mod(j,2)=0

Gij, mod(i, 2) = 1,

αi =
∑

mod(j,2)=0

Gij, βi + βi−1 =
∑

mod(j,2)=1

Gij, mod(i, 2) = 0,

where β0 = βn = 0.

Tridiagonal matrix T (ε) obtained by Remark 1 may not be positive definite even if the
Hessian matrix G(x) is positive definite and diagonally dominant.

Example 1 Consider the strictly convex quadratic function F : R4 → R with the constant
Hessian matrix

G =


7 0 −2 4
0 7 0 −2

−2 0 7 0
4 −2 0 7

 .
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Setting v1 = [δ, 0, δ, 0]T , v2 = [0, δ, 0, δ]T , we can write

g(x+ v1)− g(x)

δ
= G


1
0
1
0

 =


5
0
5
4

 , g(x+ v2)− g(x)

δ
= G


0
1
0
1

 =


4
5
0
5


and using Theorem 2 we obtain

T (ε) = T (0) =


5 4 0 0
4 5 −4 0
0 −4 5 4
0 0 4 5

 .

This matrix is not positive definite, since determinant

det

 5 4 0
4 5 −4
0 −4 5

 = 5 (25− 32) = −35

of its principal submatrix is negative.

The above example shows, that the diagonal dominance of the Hessian matrix does not
suffice for positive definiteness of the tridiagonal matrix obtained by Remark 1. First we
show that this condition is sufficient in case the Hessian matrix is pentadiagonal.

Theorem 3 Let the Hessian matrix G(x) be pentadiagonal and diagonally dominant with
positive diagonal elements. Then if δi = δ, 1 ≤ i ≤ n, and the number ε > 0 is sufficiently
small, the tridiagonal matrix T (ε) obtained by Remark 1 is positive definite and diagonally
dominant.

Proof Consider a pentadiagonal Hessian matrix of the form

G(x) =



α̃1 β̃1 γ̃1 . . . 0 0 0

β̃1 α̃2 β̃2 . . . 0 0 0

γ̃1 β̃2 α̃3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . α̃n−2 β̃n−2 γ̃n−2

0 0 0 . . . β̃n−2 α̃n−1 β̃n−1

0 0 0 . . . γ̃n−2 β̃n−1 α̃n


(5)

and set γ̃−1 = γ̃0 = β̃0 = β0 = 0, γ̃n−1 = γ̃n = β̃n = βn = 0 to simplify the notation. The
diagonal dominance of G(x) implies that

α̃i > |γ̃i−2|+ |β̃i−1|+ |β̃i|+ |γ̃i|
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for 1 ≤ i ≤ n. Let δi = δ, for 1 ≤ i ≤ n. Using Theorem 2 (and formulas introduced in
Remark 1), the elements of the matrix T (0) can be expressed in the form

αi = γ̃i−2 + α̃i + γ̃i, βi−1 + βi = β̃i−1 + β̃i (6)

for 1 ≤ i ≤ n. Therefore, one has βi = β̃i, which together with (6) gives

αi − |βi−1| − |βi| = α̃i + γ̃i−2 + γ̃i − |β̃i−1| − |β̃i| ≥ α̃i − |γ̃i−2| − |β̃i−1| − |β̃i| − |γ̃i| > 0

for 1 ≤ i ≤ n. This implies that symmetric tridiagonal matrix T (0) appearing in Theorem 2
has positive elements on the main diagonal and is diagonally dominant. Therefore, it is
positive definite (Gershgorin cycles lie in the interior of the right halfplane). Then also the
matrix T (ε) is positive definite for a sufficiently small value ε > 0 (this follows from the
continuous dependence of eigenvalues on matrix elements). 2

Diagonal dominance of the Hessian matrix is a very strong condition. Nevertheless, the
tridiagonal matrix T (ε) obtained by Remark 1 is positive definite also for other important
problems with pentadiagonal Hessian matrices.

Theorem 4 Let the Hessian matrix G(x) be pentadiagonal and have the form (5) with

α̃1 ≥ ψ2
1 + 1, α̃n ≥ ψ2

n + 1, α̃i ≥ ψ2
i + 2, 2 ≤ i ≤ n− 1,

|β̃i| ≤ |ψi + ψi+1|, 1 ≤ i ≤ n− 1, (7)

γ̃i ≥ 1, 1 ≤ i ≤ n− 2,

where ψi, 1 ≤ i ≤ n, are arbitrary real numbers such that at least one of expressions
ψ1ψ2−2, ψiψi+1−4, 2 ≤ i ≤ n−1, ψn−1ψn−2 is nonzero. Then, if δi = δ, 1 ≤ i ≤ n, and
the number ε > 0 is sufficiently small, the matrix T (ε) obtained by Remark 1 is positive
definite.

Proof (a) Let T be a tridiagonal matrix such that

2vTTv =
n−1∑
i=1

[vi, vi+1]

[
λi µi

µi λi+1

] [
vi
vi+1

]
(8)

for all v ∈ Rn (for T given by (4), we can set, e.g., λ1 = 2α1, λi = αi, 2 ≤ i ≤ n − 1,
λn = 2αn and µi = 2βi, 1 ≤ i ≤ n − 1) We show that if all 2 × 2 matrices in (8) have
positive diagonal elements, are positive semidefinite and at least one of them is positive
definite, then T is positive definite. If all 2 × 2 matrices in (8) are positive semidefinite,
one has vTTv ≥ 0. Let vTTv = 0, so all terms in (8) are zeroes. If the 2× 2 matrix in the
i-th term is positive definite, then necessarily vi = 0, vi+1 = 0. Since the previous and the
next terms are zeroes, we can write

λi−1v
2
i−1 + λiv

2
i + 2µi−1vi−1vi = 0,

λi+1v
2
i+1 + λi+2v

2
i+2 + 2µi+1vi+1vi+2 = 0,
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where vi = 0, vi+1 = 0 and λi−1 > 0, λi+2 > 0. Thus vi−1 = 0 and vi+2 = 0. Continuing in
this way, we obtain vi = 0 for all 1 ≤ i ≤ n.

(b) If the Hessian matrix G(x) is pentadiagonal of the form (5), we can express the elements
of tridiagonal matrix T (0) by the formulas (6) (where γ̃−1 = γ̃0 = β̃0 = β0 = 0 and
γ̃n−1 = γ̃n = β̃n = βn = 0). Substitute inequalities (7) into (6), we can write α1 ≥ ψ2

1 + 2,
α2 ≥ ψ2

2 + 3, αi ≥ ψ2
i + 4, 3 ≤ i ≤ n − 2, αn−1 ≥ ψ2

n−1 + 3, αn ≥ ψ2
n + 2, and βi = β̃i,

|β̃i| ≤ |ψi + ψi+1|, 1 ≤ i ≤ n − 1. Now we use the fact that formula (8) with T given by
(4) can be expressed in the form

2vTT (0)v = [v1, v2]

[
2α1 2β1
2β1 α2 − 1

] [
v1
v2

]

+ [v2, v3]

[
α2 + 1 2β2
2β2 α3

] [
v2
v3

]

+
n−3∑
i=3

[vi, vi+1]

[
αi 2βi
2βi αi+1

] [
vi
vi+1

]

+ [vn−2, vn−1]

[
αn−2 2βn−2

2βn−2 αn−1 + 1

] [
vn−2

vn−1

]

+ [vn−1, vn]

[
αn−1 − 1 2βn−1

2βn−1 2αn

] [
vn−1

vn

]

≥ [v1, v2]

[
2(ψ2

1 + 2) 2β̃1
2β̃1 ψ2

2 + 2

] [
v1
v2

]

+
n−2∑
i=2

[vi, vi+1]

[
ψ2
i + 4 2β̃i
2β̃i ψ2

i+1 + 4

] [
vi
vi+1

]

+ [vn−1, vn]

[
ψ2
n−1 + 2 2β̃n−1

2β̃n−1 2(ψ2
n + 2)

] [
vn−1

vn

]
. (9)

Since

2(ψ2
i + 2)(ψ2

i+1 + 2)− 4β2i ≥ 2(ψ2
i + 2)(ψ2

i+1 + 2)− 4(ψi + ψi+1)
2 = ψ2

i ψ
2
i+1 + 8− 8ψiψi+1

= 2(ψiψi+1 − 2)2 ≥ 0, i ∈ {1, n− 1},
(ψ2

i + 4)(ψ2
i+1 + 4)− 4β2i ≥ (ψ2

i + 4)(ψ2
i+1 + 4)− 4(ψi + ψi+1)

2 = ψ2
i ψ

2
i+1 + 16− 8ψiψi+1

= (ψiψi+1 − 4)2 ≥ 0, 2 ≤ i ≤ n− 2,

all matrices used in the right hand side of (9) have positive diagonal elements and are
positive semidefinite. If at least one of expressions ψ1ψ2 − 2, ψiψi+1 − 4, 2 ≤ i ≤ n − 1,
ψn−1ψn − 2 is nonzero, the matrix T (0) is positive definite by (a). Since eigenvalues of
symmetric matrix depend continuously on its elements, the matrix T (ε) is also positive
definite, if number ε > 0 is sufficiently small. 2

Theorem 4 can be used if the objective function is derived from a boundary value
problem for ordinary differential equations.
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Example 2 Consider a boundary value problem for the second order ordinary differential
equation

y′′(t) = φ(y(t)), 0 ≤ t ≤ 1, y(0) = y0, y(1) = y1, (10)

where function φ : R → R is twice continuously differentiable. If we divide the interval
[0, 1] onto n + 1 parts using nodes ti = ih, 0 ≤ i ≤ n + 1, where h = 1/(n + 1) is the
mesh-size and if we replace the second order derivatives in the nodes with differences

y′′(ti) =
y(ti−1)− 2y(ti) + y(ti+1)

h2
, 1 ≤ i ≤ n,

we obtain a system of n nonlinear equations

fi(x)
∆
= h2φ(xi) + 2xi − xi−1 − xi+1 = 0, (11)

where xi = y(ti), 0 ≤ 1 ≤ n + 1, so x0 = y0 and xn+1 = y1. Solving this system by the
least squares method, the minimized function has the form

F (x) =
1

2
fT (x)f(x) =

1

2

n∑
i=1

f 2
i (x) =

1

2

n∑
i=1

(
h2φ(xi) + 2xi − xi−1 − xi+1

)2
, (12)

where x = [x1, . . . , xn]
T and f = [f1, . . . , fn]

T . Differentiating only by xi−1, xi, xi+1, we
can write

∇fi(x) =

 −1
ψ(xi)
−1

 , ∇2fi(x) =

 0 0 0
0 ψ′(xi) 0
0 0 0

 ,
where ψ(xi) = 2+h2φ′(xi) and ψ

′(xi) = h2φ′′(xi). For a sum of squares, the Hessian matrix
G(x) can be expressed in the form G(x) = JT (x)J(x) +W (x), where J(x) is the Jacobian
matrix of mapping f(x) and W (x) is a second order term. To simplify the notation, we
introduce these matrices for the particular case with n = 5. In this case, we can write

J(x) =


ψ1 −1 0 0 0
−1 ψ2 −1 0 0
0 −1 ψ3 −1 0
0 0 −1 ψ4 −1
0 0 0 −1 ψ5

 , W (x) =


f1ψ

′
1 0 0 0 0

0 f2ψ
′
2 0 0 0

0 0 f3ψ
′
3 0 0

0 0 0 f4ψ
′
4 0

0 0 0 0 f5ψ
′
5

 ,

JT (x)J(x) =


ψ2
1 + 1 −(ψ1 + ψ2) 1 0 0

−(ψ1 + ψ2) ψ2
2 + 2 −(ψ2 + ψ3) 1 0

1 −(ψ2 + ψ3) ψ2
3 + 2 −(ψ3 + ψ4) 1

0 1 −(ψ3 + ψ4) ψ2
4 + 2 −(ψ4 + ψ5)

0 0 1 −(ψ4 + ψ5) ψ2
5 + 1

 ,

where ψi = ψ(xi), ψ
′
i = ψ′(xi), 1 ≤ i ≤ n, which demonstrates that Hessian matrix

G(x) = JT (x)J(x)+W (x) is pentadiagonal. If function φ : R → R is linear (so φ′(xi) = φ′,
φ′′(xi) = 0, 1 ≤ i ≤ n, where φ′ is the constant slope of linear function φ), one has
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W (x) = 0, so G(x) = JT (x)J(x). Returning to the general case (with an arbitrary n)
and assuming that function φ is linear, we can deduce that elements of the pentadiagonal
matrix G(x) = JT (x)J(x) have the form (7) with inequalities replaced by equalities (this is
the worst case). This matrix is pentadiagonal but not diagonally dominant. If h2|φ′| < 2,
we can write

α̃i − |γ̃i−2| − |β̃i−1| − |β̃i| − |γ̃i| = ψ2
i + 2− 2− ψi−1 − 2ψi − ψi+1

= (2 + h2φ′)2 − 4(2 + h2φ′) = (h2φ′)2 − 4 < 0

for 2 ≤ i ≤ n − 1 (where γ̃0 = γ̃n−1 = 0). Therefore, we cannot use Theorem 3. At
the same time, the linearity of function φ implies that ψi = 2 + h2φ′, 1 ≤ i ≤ n. If
(2 + h2φ′)2 ̸= 2, one has ψ1ψ2 − 2 ̸= 0, ψn−1ψn − 2 ̸= 0, but if (2 + h2φ′)2 ̸= 4, one has
ψiψi+1 − 4, 2 ≤ i ≤ n− 1. Thus assumptions of Theorem 4 are satisfied and matrix T (0)
(and also T (ε), if number ε > 0 is sufficiently small) is positive definite.

Remark 2 If we are close to the solution, where F (x) = 0, then fi ≈ 0, 1 ≤ i ≤ n,
in (12). Moreover, absolute values of elements of the matrix diag(ψ′

1, . . . , ψ
′
n) are usually

small in comparison with absolute values of elements of the matrix J(x)TJ(x) (if n ≈
1000, then h2 ≈ 10−6). Since a small change of diagonal elements does not violate the
positive definiteness of matrix T (0), we can expect that this matrix is positive definite in
a sufficiently small neighborhood of the solution even if function φ : R → R in (10) is not
linear. Then matrix T (ε) corresponding to Example 2 is also positive definite if number
ε > 0 is sufficiently small.

In Example 1, the Hessian matrix is an even order diagonally dominant Toeplitz matrix.
It is interesting that for odd order diagonally dominant Toeplitz matrices this situation
cannot appear. In the subsequent considerations, we denote elements of the Toeplitz matrix
G(x) by symbols ci, 1 ≤ i ≤ n. Thus

G(x) =



c1 c2 c3 . . . cn−2 cn−1 cn
c2 c1 c2 . . . cn−3 cn−2 cn−1

c3 c2 c1 . . . cn−4 cn−3 cn−2

. . . . . . . . . . . . . . . . . . . . .
cn−2 cn−3 cn−4 . . . c1 c2 c3
cn−3 cn−2 cn−3 . . . c2 c1 c2
cn cn−1 cn−2 . . . c3 c2 c1


. (13)

Theorem 5 Let the Hessian matrix G(x) be an odd order diagonally dominant Toeplitz
matrix with positive diagonal elements. Then, if δi = δ, 1 ≤ i ≤ n, and the number ε > 0
is sufficiently small, the matrix T (ε) obtained by Remark 1 is positive definite.

Proof (a) For n odd, equality G(x)v2 = T (0)v2 (see Remark 1) implies relations

β1 =

n−1
2∑

j=1

c2j,

9



β1 + β2 = c2 +

n−1
2∑

j=1

c2j ⇒ β2 = c2,

β2 + β3 = c2 +

n−3
2∑

j=1

c2j ⇒ β3 =

n−3
2∑

j=1

c2j,

β3 + β4 = c2 + c4 +

n−3
2∑

j=1

c2j ⇒ β4 = c2 + c4,

β4 + β5 = c2 + c4 +

n−5
2∑

j=1

c2j ⇒ β5 =

n−5
2∑

j=1

c2j,

etc., so

βi =

n−i
2∑

j=1

c2j, mod(j, 2) = 1, βi =

i
2∑

j=1

c2j, mod(j, 2) = 0.

For i odd, one has

|βi−1|+ |βi| =

∣∣∣∣∣∣∣
i−1
2∑

j=1

c2j

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
n−i
2∑

j=1

c2j

∣∣∣∣∣∣∣ ≤
i−1
2∑

j=1

|c2j|+
n−i
2∑

j=1

|c2j|,

where the right-hand side contains the sum of absolute values of elements with even indices,
which appear in the i-th row of matrix G(x). The same result holds for i even.

(b) Equality G(x)v1 = T (0)v1 implies that the diagonal element αi of matrix T (0) is
equal to the sum of elements with odd indices, which appear in the i-th row of matrix
G(x). Connecting this fact with the result introduced in (a), we can see that the number
αi−|βi−1|−|βi| is not greater than the number obtained by subtracting from c1 the absolute
values of all nondiagonal elements, appearing in the i-th row of the matrix G(x). Since
matrix G(x) is diagonally dominant and c1 > 0, this number is positive. 2

In theorems concerning tridiagonal preconditioners obtained by numerical differentia-
tion, we have assumed that all differences are the same, so δi = δ, 1 ≤ i ≤ n. If γ̃i ≥ 0,
1 ≤ i ≤ n− 2, the assumptions of Theorem 3 can be substantially weakened. In this case,
we can use arbitrary differences δi, 1 ≤ i ≤ n (e.g. δi = εmax(|xi|, 1), 1 ≤ i ≤ n), and the
Hessian matrix G(x) may not be diagonally dominant).

Theorem 6 Let the Hessian matrix G(x) be pentadiagonal with nonnegative elements in
the second off-diagonals (so γ̃i ≥ 0, 1 ≤ i ≤ n − 2). Let tridiagonal matrix, which arises
from G(x) after setting to zero these nonnegative elements, is diagonally dominant with
positive diagonal elements. Ten, if δi, 1 ≤ i ≤ n, are arbitrary and the number ε > 0 is
sufficiently small, matrix T (ε) obtained by Remark 1 is positive definite

Proof If the differences δi, 1 ≤ i ≤ n, are not the same, Theorem 2 implies that for
1 ≤ i ≤ n one has

αi = γ̃i−2
δi−2

δi
+ α̃i + γ̃i

δi−2

δi
, βi−1

δi−1

δi
+
δi+1

δi
βi = β̃i−1

δi−1

δi
+
δi+1

δi
β̃i
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(where γ̃−1 = γ̃0 = β̃0 = β0 = 0, γ̃n−1 = γ̃n = β̃n = βn = 0), so αi ≥ α̃i, 1 ≤ i ≤ n and
βi = β̃i, 1 ≤ i ≤ n − 1. From positive definiteness and diagonal dominance of tridiagonal
matrix with elements α̃i > 0, 1 ≤ i ≤ n, and β̃i, 1 ≤ i ≤ n− 1, it follows that

αi − |βi−1| − |βi| ≥ α̃i − |β̃i−1| − |β̃i| > 0

1 ≤ i ≤ n (where β̃0 = β̃n = 0). 2

In this section, we have demonstrated that the tridiagonal preconditioner determined
by the numerical differentiation has a theoretical support and can be advantageously used
for various types of problems. In the next section we show that this preconditioner is really
efficient for solving practical problems

3 Implementation notes and numerical experiments

Since the truncated Newton PCG subalgorithm is stopped (in the fourth row) if the pre-
conditioned Hessian matrix is not positive definite, we consider only positive definite pre-
conditioners. Violation of positive definiteness can be detected during the Choleski or the
Gill-Murray [11] decomposition procedure. Nevertheless, the tridiagonal matrix T = T (ε)
can be preliminary modified. We have tested the following possibilities:

• Matrix T is not modified (so C = I if T is not positive definite).

• Diagonal elements of matrix T are replaced by their absolute values.

• Diagonal elements of matrix T are replaced by their absolute values and the off-
diagonal elements are possibly changed (their absolute values are decreased) by the
procedure described in [14].

• Matrix T is modified during the Gill-Murray decomposition to be positive definite.

The first two possibilities mentioned above gave approximately the same results, the third
one was usually worse and the fourth possibility was quite unsuitable. Thus we will suppose,
in the subsequent considerations and in the numerical experiments, that matrix T is not
preliminary modified.

The basic tridiagonally preconditioned truncated Newton method, described in the
previous section, considerably decreases the number of inner conjugate gradient iterations.
Unfortunaleky the total number of gradient evaluations can be slightly greater in com-
parison with the unpreconditioned case (since two extra gradients are computed in every
outer Newton iteration). This situation, which can be observed from performance profiles
introduced below, arises if a small number of inner iterations suffices for both compared
methods. To improve the performance profiles of the basic method, we can simply combine
this method with the unpreconditioned truncated Newton method. The main idea is to use
unpreconditioned iterations if their number is less thanM and to switch to preconditioned
iterations in the opposite case. Moreover, if the preconditioner C = T is not positive
definite, we turn to unpreconditioned iterations. This idea can be formally described in
the following way.
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(1) Set L = 0 and M = 10 in the first Newton iteration (the value M = 10 was obtained
by numerical experiments).

(2) In all Newton iterations do:

(a) If L = 0 set C = I else compute tridiagonal matrix T by Remark 1 and set
C = T .

(b) If L = 1 and matrix C is not positive definite, set C = I and L = 0
(c) Determine the direction vector by the truncated Newton PCG subalgorithm.
(d) If L = 0 and the number of conjugate gradient iterations in (c) was greater than

M , set L = 1.

This method will be called the combined tridiagonally preconditioned truncated Newton
method.

Now we are in the position to introduce the results of numerical experiments serv-
ing for the comparison of our tridiagonally preconditioned truncated Newton methods
with the unpreconditioned truncated Newton method and the truncated Newton method
that uses the limited memory preconditioner. The last method is based on the LBFGS
updates proposed in [16]. We have used three LBFGS updates in every outer Newton
iteration (it corresponds to the choice m = 3 in [16]). In fact we have tested also other
preconditioners described in [14], but the results obtained did not bring new significant
information. For testing truncated Newton methods, we have chosen three collections of
large-scale unconstrained optimization problems. The first collection Test 11, described
in [15], contains 58 test problems with 1000-5000 variables obtained from the CUTE col-
lection [2] (we have used 54 problems solved by the unpreconditioned truncated Newton
method). The second collection Test 12, described in [1], contains 73 test problems with
10000 variables (we have used 71 problems). The third collection Test 25, described in
[13], contains 82 test problems with 1000 variables obtained from various sources (we
have used 71 problems). Subroutines corresponding to the collections Test 11 and Test
25 can be found on http://www.cs.cas.cz/luksan/test.html (together with reports
[13] and [15]) and subroutines corresponding to the collection Test 12 can be found on
http://camo.ici.ro/neculai/ansoft.htm.

The summary results of computational experiments are reported in three tables cor-
responding to three collections Test 11, Test 12 and Test 25. The tables contain the
following data: NIT – the total number of outer iterations, NFV – the total number of
function evaluations, NFG – the total number of gradient evaluations, NCGR – the total
number of inner iterations, NIP – the total number of preconditioned outer iterations, TIME
– the total computational time. The rows correspond to the methods tested: TN – the
unpreconditioned truncated Newton method, TNTB – the basic tridiagonally preconditioed
truncated Newton method, TNTC – the combined tridiagonally preconditioed truncated
Newton method, TNLM – the truncated Newton method preconditioned by the limited
memory BFGS updates.
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Method NIT NFV NFG NCGR NIP TIME

TN 6827 11071 364563 348768 - 33.55
TNTB 6805 11193 185827 156145 1621 18.95
TNTC 6742 10916 194394 175013 1031 20.18
TNLM 4945 10082 328568 315689 4945 39.34

Test 11 – 54 problems with 1000-5000 variables

Method NIT NFV NFG NCGR NIP TIME

TN 10674 13347 289817 270542 - 42.54
TNTB 8758 11500 78581 43622 2560 20.12
TNTC 9229 11895 62933 44503 138 12.63
TNLM 10824 12081 234372 217158 10824 69.02

Test 12 – 71 problems with 10000 variables

Method NIT NFV NFG NCGR NIP TIME

TN 7425 11826 372799 359516 - 23.25
TNTB 7631 12017 128887 99909 5661 9.54
TNTC 7220 11572 124049 99977 4994 9.47
TNLM 7262 12532 232408 219474 7262 15.97

Test 25 – 71 problems with 1000 variables

The results reported in the above tables imply several conclusions. First, the total
number of gradient evaluations and also the total computational time are considerably less
for methods TNTB and TNTC in comparison with methods TN and TNLM. Secondly, the number
of the Newton iterations where preconditioner C = T (ε) obtained by the method TNTB was
used (since it was positive definite) is relatively large (about 1/4 Newton iterations for
TEST11 and 3/4 Newton iterations for TEST25), so the use of such preconditioner is
reasonable. Note, that we used all problems solved by the unpreconditioned method TN, so
no selection of problems, which could be favourable for our preconditioners, was performed.

For a better demonstration of both the efficiency and the reliability, we compare the
investigated truncated Newton methods by using performance profiles introduced in [6].
The performance profile πM(τ) is defined by the formula

πM(τ) =
number of problems where log2(τP,M) ≤ τ

total number of problems

with τ ≥ 0, where τP,M is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P .
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The value of πM(τ) at τ = 0 gives the percentage of test problems for which the
method M is the best and the value for τ large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can be
directly seen from the performance profiles: the higher is the particular curve the better is
the corresponding method. The following figures, reveal the performance profiles for tested
methods graphically. In these figures NCGR and NFG are relative values (i.e. NCGR/NIT and
NFG/NIT).
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The above figures imply several conclusions. First, the efficiency of preconditioning,
measured by the number of inner conjugate gradient iterations per one outer Newton
iteration, is highest for the TNTB method. Secondly, since this methods computes two
additional gradients in every Newton iteration, its efficiency, measured by the number of
gradient evaluations per one Newton iteration, can be slightly worse in comparison with
the unpreconditioned method. This deficiency can be eliminated using the TNTC method,
which seems to be best, measured by the number of gradient evaluations per one Newton
iteration.
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