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Methods for parallel mining of frequent itemsets∗

Robert Kessl

Abstract

One of the popular and important data mining algorithm is the algorithm for generation of so called
frequent itemsets. We present a method for parallelization of an arbitrary algorithm for mining of frequent
itemsets on a distributed memory computer. Our method staticaly load-balance the computation using
probabilistic estimates of the load – however it always computes the set of frequent itemsets from the
whole database. Our new method first samples the input database and then creates a sample of frequent
itemsets using an arbitrary algorithm for mining of frequent itemsets and a reservoir sampling. The sample
of frequent itemsets is then used for estimating the load. The sample of frequent itemsets is created either
with a modified coverage algorithm or using the so called reservoir sampling algorithm. We experimentally
evaluate the performance of our method on various datasets.

Keywords: Data mining, parallel algorithms, fre-
quent itemset mining, approximate counting

1 Introduction

Thanks to the automated data collection, companies
collect huge amount of data. It is impossible to man-
ually analyse such amounts of data. Therefore, auto-
matic methods for analysis of the data are developed
in data mining.

One of the important data mining tasks is the min-
ing of association rules or market basket analysis [2].
The term market basket analysis comes from the first
historical application. The market basket analysis
comes from the need to analyse customer baskets of
goods bought in a supermarket. The supermarket
stores the list of items of the basket, called a transac-
tion, into a database. The owner of the supermarket
is interested in better shelfs organization and wants
to analyse the behaviour of customers in the super-
market from the database of the transactions. The
result of the process are so called association rules,
i.e. rules X ⇒ Y such that X,Y are sets of goods.

∗This work is based on [19, 20, 21] with extended experi-
mental results and more detailed description of the methods.
This paper was supported from the Czech Science Foundation,
grant number GA ČR P202/10/1333.

The association rules are mined in a two step pro-
cess:

1. Mine all frequent itemsets (FIs in short): find
all sets of items that occur in a fraction of
transactions at least of size min support∗. The
min support∗, called the relative minimal sup-
port, is a parameter of the computation.

2. Generate association rules: from the FIs gener-
ate all association rules with minimal confidence
min confidence. An example of an association
rule is {bread, milk} ⇒ {butter} with confi-
dence 15%, i.e. the butter occurs in 15% of
transactions that also contains bread and milk.

Because the mining of FIs is computationally ex-
pensive, we can only mine some subsets of FIs, e.g.
the mining of maximal frequent itemsets (MFIs in
short) or the so called closed itemsets.

2 Mathematical foundation

First, we introduce the basic notion. Let B = {bi} be
a base set of items (items can be numbers, symbols,
strings etc.). An arbitrary set of items U ⊆ B will
be further called an itemsets. Further, we need to
view the baseset B as an ordered set. The items are
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therefore ordered using an arbitrary order <: b1 <
b2 < . . . < bn, n = |B|. Hence, we can view an itemset
U = {bu1

, bu2
, . . . , bu|U|}, bu1

< bu2
< . . . bu|U| , as an

ordered set denoted by U = (bu1
, bu2

, . . . , bu|U|). If
it is clear from context, we will not make difference
between the set {bu1 , bu2 , . . . , bu|U|} and the ordered
set (bu1 , bu2 , . . . , bu|U|). We denote the ith smallest
item of U ordered by the arbitrary order < by U [i] =
bui

. We denote the set of all itemsets, the powerset
of B, by P(B).

Let U ⊆ B be an itemset and id ∈ Z a natural
number, used as a unique identifier. We call the pair
(id, U) a transaction. The id is called the transaction
id. A subset W of a transaction t = (id, U) will be
further denoted by W ⊆̇ t, i.e., W is a subset of t if
and only if W ⊆ U . A superset V of a transaction
will be denoted similarily, i.e., t ⊆̇V . Because U can
be viewed as an ordered set, we can also view the
transaction t as an ordered set and denote ith item of
t by t[i] = U [i]. A database D on B (or database D if
B is clear from context) is a sequence of transactions
t ⊆̇ B, each transaction having a unique identifier in
the whole D. In our algorithms, we need to sample
the database D. A database sample is denoted by D̃.

We define the support of an itemset U in a database
D, denoted by Supp(U,D), as the number of transac-
tions containing U , but in some literature, the rela-
tive support is defined by Supp∗(U) = Supp(U)/|D|.

An itemset is called frequent itemset (FI in short)
iff Supp(U,D) ≥ min support (Supp∗(U,D) ≥
min support∗), where min support ∈ Z
(min support∗ ∈ R, 0 ≤ min support∗ ≤ 1) is
a specified minimal support threshold. We will
denote the set of all frequent itemsets, computed
using D, as F . The set of all FIs, computed using
D̃, is denoted by F̃ . A sample of FIs, computed
using D̃, is denoted by F̃s. The sample F̃s is not
necessarily subset of F .

The basic property of frequent itemsets is the so
called monotonicity of support :

Proposition 2.1 (Monotonicity of support). Let
U, V ⊆ B be two itemsets such that U ( V and D be
a database. Then holds Supp(U,D) ≥ Supp(V,D).

We call the itemset U a maximal frequent itemset
(or MFI in short) if Supp(U,D) ≥ min support, for

any V,U ( V , Supp(V,D) < min support. The set

of all MFIs, computed using D̃, is denoted by M̃.
For the purpose of the description of our new par-

allel method, we denote the number of processors by
P . The ith processor, 1 ≤ i ≤ P , is denoted by
pi. At the start of the parallel algorithm, each pro-
cessor pi has a database partition Di. Our parallel
algorithms partitions the database at the beginning
into P disjoint database partitions Di, Dj such that⋃
iDi = D, Di ∩Dj = ∅, i 6= j, and |Di| ≈ |D|/P .
The multivariate hypergeometric distribution de-

scribes the following problem: let the number of col-
ors be C and the number of balls colored with color
i is Mi and the total number of balls is N =

∑
iMi.

Let Xi, 1 ≤ i ≤ C, be a random variable representing
the number of balls colored by the ith color. The sam-
ple of size n is drawn without replacement from the
N balls. Xi of the n balls, such that n =

∑C
i=1Xi,

are colored by the ith color. Then the probability
mass function is:

P (X1 = k1, . . . , XC = kC) =

∏C
i=1

(
Mi

ki

)(
N
n

) .

2.1 The prefix-based equivalence
classes

To decompose P(B) into disjoint sets, we need to
order the items in B. An equivalence relation parti-
tions the ordered set P(B) into disjoint subsets called
prefix-based equivalence classes (PBECs in short):

Definition 2.2 (prefix-based equivalence class). Let
U ⊆ B, |U | = n be an itemset. We impose
some order on the set B and hence view U =
(u1, u2, . . . , un), ui ∈ B as an ordered set. A prefix-
based equivalence class of U , denoted by [U ]`, is a
set of all itemsets that have the same prefix of length
`, i.e., [U ]` = {W = (w1, w2, . . . , wm)|ui = wi, i ≤
`,m = |W | ≥ `, U,W ⊆ B}

To simplify the notation, we use [W ] for the prefix-
based equivalence class [W ]` iff ` = |W |. Each
[W ],W ⊆ B is a sublattice of (P(B),⊆).
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Example 1: Ilustration of the mathematical notion

D: DFS expansion tree and PBECs:

TID Transaction

1 {1, 2, 3, 4, 6}
2 {3, 5, 6}
3 {1, 3, 4}
4 {1, 2, 6}
5 {1, 3, 4, 5, 6}
6 {1, 2, 3, 4, 5}
7 {2, 3, 4, 5}
8 {2, 3, 4, 5}
9 {3, 4, 5, 6}
10 {2, 4, 5}
11 {1, 2, 4, 5}
12 {2, 3, 4, 5, 6}
13 {3, 4, 5, 6}
14 {4, 5, 6}
15 {1, 3, 4, 5, 6}

∅
{1} {2} {3} {4} {5} {6}

{1, 3} {1, 4} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {3, 6} {4, 5} {4, 6} {5, 6}

{1, 3, 4} {2, 3, 4} {2, 4, 5} {3, 4, 5} {3, 4, 6} {3, 5, 6} {4, 5, 6}

{3, 4, 5, 6}

The picture shows the set F of the database D with min support = 5. The grey lines show the
subset/superset relationship. The arrows show the DFS expansion tree.

• Prefix-based equivalence class [(2)] ∩ F = {{2}, {2, 3}, {2, 4}, {2, 5}, {2, 3, 4}, {2, 4, 5}}, marked in blue.

• Prefix-based equivalence class [(2, 3)] ∩ F = {{2, 3}, {2, 3, 4}} is a subclass of [(2)], marked in red.

• The DFS expansion tree is higlighted using thicker lines with arrows. The extensions of the tree node
{2} is the set of nodes {3, 4, 5}, i.e., nodes {{2, 3}, {2, 4}, {2, 5}}.

• The MFIs is the set M = {{1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5, 6}}

Definition 2.3 (Extensions). Let U ⊆ B be an
itemset. We impose some order < on the set B =
(b1, b2, . . . , bn) and view U = (u1, u2, . . . , um), ui ∈ B
as an ordered set. The extensions of the prefix-based
equivalence class [U ] is an ordered set Σ ⊆ B such
that U ∩ Σ = ∅ and for each W ∈ [U ] holds that
W \ U ⊆ Σ. We denote the prefix-based equivalence
class together with the extensions Σ by [U |Σ].

For example, let have B = {1, 2, 3, 4, 5},
a prefix U = {1, 2}, and the extensions
Σ = {3, 5}. Then [U |Σ] = [{1, 2}|{3, 5}] =
{{1, 2, 3}, {1, 2, 5}, {1, 2, 3, 5}}.
Proposition 2.4. Let Ui = {bi}, bi ∈ B for all i, 1 ≤
i ≤ |B|, and Σi = {b|b > bi; b, bi ∈ B} then [Ui|Σi]
are disjoint.

Proof. The reason is obvious: each W ∈ [Ui|Σi] con-
tains bi and does not contain b < bi.

Corollary 2.5. Let Q = {(Ui,Σi)} be a set such that
[Ui|Σi] are disjoint and q = (V,ΣV ) ∈ Q. Let Wi =
V ∪ {bi}, bi ∈ ΣV and ΣWi

= {b|bi < b; bi, b ∈ ΣV }
forms the PBECs [Wi|ΣWi ]. Let have a new set of
pairs Q′ = (Q \ {q}) ∪ (

⋃
i{(Wi,ΣWi)}). Then the

pairs (U ′i ,Σ
′
i) ∈ Q′ forms disjoint PBECs [U ′i |Σ′i].

We simplify the notation and omit the extensions
if clear from context. Further, we need to partition F
into n disjoint sets, denoted by F1, . . . , Fn, satisfying
Fi ∩ Fj = ∅, i 6= j, and

⋃
i Fi = F . This partition-

ing can be done using the PBECs. Let have PBECs
[Ul], (

⋃
l[Ul]) ∪ (

⋃
l P(Ul)) = F , 1 ≤ l ≤ m and sets
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of indexes of the PBECs Li ⊆ {k|1 ≤ k ≤ m}, 1 ≤
i, j ≤ n such that Li∩Lj = ∅, i 6= j, and

∑
i |Li| = m

then Fi =
⋃
l∈Li

([Ul] ∩ F).

3 Existing parallel algorithms

We consider basicaly two categories of parallel com-
puters:

1. shared memory (SM in short) machines;

2. distributed memory (DM in short) machines.

Designing parallel algorithms for mining frequent
itemsets on shared memory machines is relatively
straightforward: the machine hardware supports easy
parallelisation of the problem. All the processors
have access to the shared memory. If we store the
database in the shared memory and use a simple
stack splitting algorithm with arbitrary distributed
termination detection and dynamic load-balancing,
the results must be very good. The reason is, that
each processor has accesss to the whole database and
to the datastructures created by other processors. To
our best knowledge, the parallel algorithms for shared
memory machines use the datastructures created by
the other processors only for reading. Therefore the
memory pages containing the data structures are read
by the processors and there is no need for invalidation
of the memory pages.

Parallel mining of FIs on DM machines is a hard
task for couple reasons:

1. The databases are usually quite large and we
want to have the database distributed among the
processors so we utilize the main memory of all
nodes. Frequent re-distribution of the database
is out of question due to the size of the database.

2. The problem of parallel mining of FIs is highly
irregular. For the same reasons as in 1 the dy-
namic load-balancing is out of question.

In this chapter, we will briefly describe existing
parallel algorithms for mining of FIs. In Section 3.1,

we show an example of a shared-memory parallel al-
gorithm. Section 3.2 describes Apriori-based DM al-
gorithm, Section 3.2.3 describes an asynchronous al-
gorithm that does not need a sequential FI mining
algorithm, Section 3.3 describes Eclat-based DM al-
gorithms, and Section 3.4 describes FPGrowth-based
DM parallel algorithms.

During the whole chapter, we denote a disjoint
database partitions by Di, 1 ≤ i ≤ P . Di has always
the size |Di| ≈ |D|/P .

3.1 Example of a shared memory al-
gorithm

An example of an algorithm that is designed for
shared memory multiprocessors is the Multiple Local
Frequent Pattern Tree algorithm (the MLFPT algo-
rithm for short) [33]. The MLFPT algorithm, see
Algorithm 1, is a parallelization of the FPGrowth
algorithm. We omit the details of the FPGrowth
algorithm in this section. The algorithm is summa-
rized in Algorithm 1.

The reported speedup of this algorithm is quite
good, e.g., 53.35 at 64 processors, 29.22 at 32 pro-
cessors, and 7.53 at 8 processors with running time
≈ 25000 seconds on single processor. The experi-
ments used databases of size 1M, 5M, 10M, 25M, and
50M transactions.

3.2 Apriori-based parallel DM algo-
rithms

The first sequential FI mining algorithm was the
Apriori algorithm. We omit the details of the se-
quential Apriori algorithm in this section.

There are many parallel algorithms based on the
Apriori algorithm. The first algorithm was described
by Agrawal et al. [1]. Agrawal proposed three parallel
algorithms:

1. The Data Distribution algorithm.

2. The Count Distribution algorithm.

3. The Candidate Distribution algorithm.

4



Algorithm 1 The Multiple Local Frequent Pattern
Trees algorithm

MLFPT(In: Database D,
In: Integer min support,
Out: Set F)

1 for each processor pi do-in-parallel
/* Parallel FPTree creation */

2 Loads i-th partition Di of the database D into
the main memory.

3 Count local support for each item b ∈ B, on
each processor.

4 Exchange local supports with other processors
to compute global support for each b ∈ B
(hence an all-to-all broadcast takes place).

5 Prune not frequent items, i.e., remove from
B all items b ∈ B such that Supp({b},D) <
min support.

6 Create FP-Tree Ti from Di

7 Barrier – processor pi waits until all other pro-
cessors has finished creation of the FP-Tree.
/* Asynchronous FI mining phase */

8 A modified FPGrowth algorithm is started:
the modified algorithm is almost the same as
the original FPGrowth algorithm but at the
beginning it processes each FP-Tree Ti, cre-
ating a local FP-Tree that is used for further
computations.

9 the computed FIs are put into the set F
10 end for

Because Agrawal evaluated the count distribution
algorithm as the best of these three algorithms, we
will describe this algorithm, see Section 3.2.1. An
improvement of the Apriori algorithm, the Fast Par-
allel Mining algorithm (the FPM algorithm in short)
is described in Section 3.2.2.

3.2.1 The Count distribution algorithm

To describe the algorithm, we need to define the can-
didate itemset:

Definition 3.1 (candidate itemset on frequent item-
set). Let k be an integer, U be an itemset of size k, D
a database, and Fk−1 the set of all frequent itemsets

of size k − 1. If each subset W ⊆ U, |W | = k − 1
is frequent, W ∈ Fk, then U is called the candidate
itemset. The set of all candidates of size k, denoted
by Ck, is:

Ck =
{
U |U ⊆ B, |U | = k, and for each V ( U,

|V | = k − 1 follows that V ∈ Fk−1
}
.

Since the computation of the support is the most
computationally expensive part, it computes the sup-
port for candidate itemsets in parallel. In the follow-
ing text, we denote the set of all frequent itemsets of
size k by Fk and the superset of all FIs, called candi-
date itemsets, of size k by Ck, i.e., Fk ⊆ Ck ⊆ P(B).

In the description of the Count Distribution algo-
rithm, summarized in Algoirthm 2, we use:

1. The Compute-Support procedure that com-
putes the support of a set of itemsets from a
database.

2. The Generate-Candidates function that gen-
erate candidates from a set of frequent itemsets.

The understanding of the details of the
Compute-Support procedure and the Generate-
Candidates function are not important in order
to understand the details of the Count Distribution
algorithm. Therefore, we omit the details in this
Section, they can be found in [1].

First, each processor pi loads its part of the
database, creates initial set of candidate itemsets
C1 =

{
{b}|b ∈ B

}
, and computes its support in the

database part Di. The support of candidates can
be computed using the Compute-Support proce-
dure. Since each processor knows B, each proces-
sor has the same set of initial candidate itemsets.
Then, the local supports of the initial candidates are
broadcast, so each processor can compute the global
support of the initial candidates. C1 is pruned and
each processor gets frequent itemsets of size 1, i.e.,
F1 =

{
U |U ∈ C1 and Supp(U,D) ≥ min support

}
.

Since each processor has the same initial set of can-
didates and knows the global supports, then each pi
also has to have the same frequent itemsets of size 1.
Thus, the first step is correct. All frequent itemsets
of size k will be further denoted by Fk.
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In step k, processors create a set of candidates Ck
of size k from the previous frequent itemsets Fk−1
of size k − 1. The set Ck can be computed us-
ing the Generate-Candidates function. The can-
didates are generated by calling Ck =Generate-
Candidates(Fk−1). Since each processor pi has the
same set of frequent itemsets of size k−1, each proces-
sor generates the same set of candidates. Then each
processor pi computes the local support for these can-
didates within its database part Di and broadcast the
local supports to each other processor. Each proces-
sor updates local support, computing global support
for all these candidates, and creates frequent itemsets
of size k, i.e., Fk = {U |U ∈ Ck and Supp(U,D) ≥
min support}. Since each processor has correct fre-
quent itemsets of size k − 1 at the beginning of step
k, each processor has to have correct candidates Ck.
Thus, after exchanging and updating local supports
and pruning candidates, all processors have the cor-
rect frequent itemsets of size k. Note that only the
support values of each U ∈ Ck must be exchanged,
because every processor has exactly the same set of
candidates.

The Count-Distribution algorithm is summa-
rized in the Algorithm 2.

3.2.2 The Fast Parallel Mining algorithm
(FPM)

Cheung [6, 7] proposed two prunning techniques for
the Count distribution algorithm, see Algorithm 3.
The prunning techniques leverage two important re-
lationships between a partitioned database and fre-
quent itemsets. Let D be a database partitioned into
n disjoint parts Di of size |Di| ≈ |D|/P , processor
pi having database part Di. Cheung observed that
if an itemset U is frequent in a database D, i.e.,
Supp∗(U,D) ≥ min support∗, then U must be fre-
quent in at least one partition Di, i.e., there exists i
such that Supp∗(U,Di) ≥ min support∗. Note that
we are using the relative supports, instead of the ab-
solute supports. Cheung proposed two kind of opti-
mizations: 1) distributed pruning; 2) global pruning.

1) Distributed pruning: uses an important rela-
tionship between frequent itemsets and the parti-
tioned database: every (globally) frequent itemset in

Algorithm 2 The Apriori-Count-Distribution
algorithm

Apriori-Count-Distribution(In: Database D,
In: Integer min support,
Out: Set F)

1 Processor pi loads the database part Di.
2 k ← 1
3 for each pi, i = 1, . . . , P do-in-parallel
4 if k = 1 then
5 pi generates initial candidates C1 ←{

{bi}|bi ∈ B
}

.
6 else
7 pi generates candidates Ck from fre-

quent itemsets Fk−1, by calling Ck ←
Generate-Candidates(Fk−1).

8 end if
9 pi counts the support for candidates Ck over

local database fraction using the Compute-
Support procedure.

10 pi broadcasts the local support of the itemsets
in Ck to each other processor (all-to-all broad-
cast).

11 pi prune candidates, creating Fk = {U |U ∈
Ck, Supp(U,D) ≥ min support}.

12 if the set of frequent itemsets Fk is empty
then

13 return all generated frequent itemsets, i.e.,
return F =

⋃
k Fk and terminate.

14 end if
15 k ← k + 1
16 end for

the whole database D must also be (locally) frequent
on some processors in the database part Di.

If an itemset U is globally frequent (i.e.
Supp∗(U,D) ≥ min support∗) and locally fre-
quent on some processor pi (i.e. Supp∗(U,Di) ≥
min support∗), then U is called gl-frequent. We will
use GLk(i) to denote the gl-frequent itemsets of size
k at pi. As in the Apriori Count-Distribution algo-
rithm, we denote the set of all FIs of size k computed
in step k by Fk. Note that ∀i, 1 ≤ i ≤ P,GLk(i) ⊆ Fk.

Lemma 3.2. [7] If an itemset U is globally frequent
then there exists a processor pi such that U and all

6



its subsets are gl-frequent at processor pi.

For the next theorem, we need a function that cre-
ates the set of candidates:

CGk(i) =
{
U |U ⊆ B, |U | = k, and for each V ( U,

|V | = k − 1 follows that V ∈ GLk−1(i)
}
.

CGk(i) can be computed from GLk(i) using
the algorithm Generate-Candidates by call-
ing CGk(i) = Generate-Candidates(GLk−1(i)),
see [1].

It follows from Lemma 3.2 that if U ∈ Fk, then
there exists a processor pi, such that all its subsets of
size k − 1 are gl-frequent at processors pi, i.e., they
belong to GLk−1(i).

Theorem 3.3. [7] For every k > 1, the set of
all frequent itemsets of size k, Fk, is a subset
of Fk ⊆ CGk =

⋃n
i=1 CGk(i), where CGk(i) =

{U |U ⊆ B, |U | = k, and for each V ( U, |V | =
k − 1 follows that V ∈ GLk−1(i)}.

In [7] is shown that CGk, which is a subset of the
Apriori candidates, could be much smaller then the
number of the Apriori candidates.

2) Global prunning: after the supports of all item-
sets are exchanged among the processors, the local
support counts Supp(U,Di) also available for all pro-
cessors. Let |U | = k. At each partition Di, the
monotonicity principle holds for all itemsets, i.e.,
Supp(U,Di) ≤ Supp(V,Di) iff V ( U . Therefore
the local support Supp(U,Di) is bounded by

maxsupp(U,Di) = min
V

{
Supp(V,Di)|V ( U, and

|V | = |U | − 1
}

from above, i.e., Supp(U,Di) ≤ maxsupp(U,Di).
Because the global support Supp(U,D) =∑

1≤i≤P Supp(U,Di) is the sum of its local support
counts at all the processors, the value:∑

1≤i≤P

maxsupp(U,Di)

is an upper bound of Supp(U,Di). If∑
1≤i≤P maxsupp(U,Di) < min support∗ × |D| =

min support, then U can be pruned away. For the
FPM algorithm, see Algorithm 3.

Algorithm 3 The FPM algorithm (Fast Parallel
Mining algorithm)

FPM(In: Database D,
In: Set B,
In: Integer min support,
Out: Set F)

1 for each processor pi do-in-parallel
2 Compute the candidate sets CG(k) =⋃P

i=1 Generate-Candidates(GLk−1(i)).
(distributed prunning)

3 Apply global prunning to prune the candidates
in CGk.

4 Scan partition Di to find out the local sup-
port counts Supp(U,Di) for all remaining can-
didates U ∈ CGk.

5 Exchange {Supp(U,Di)} with all other pro-
cessors to find out the global support counts
Supp(U,D).

6 Compute GLk(i) = {U ∈ CGk|Supp∗(U,D) ≥
min support∗ × |D| and Supp∗(U,Di) ≥
min support∗ × |Di|} and exchange the result
with other processors.

7 end for
8 return F ←

⋃P
i=1GLk(i)

3.2.3 The asynchronous parallel FI mining
algorithm

Veloso [31] proposed another parallelization of the
frequent itemset mining process. This algorithm is
based on the fact that if we know MFIs, we are able
to mine all itemsets under MFIs asynchronously.

Each processor pi reads its portion of the database
Di and computes the local support for all items in
Di. By exchanging the local supports the processors
gets the support of all items in D.

The algorithm uses the fact that if an itemset is
frequent, it must be frequent in at least one partition
Di. Every processor pi then finds all MFIs in its local
database partition Di and broadcasts them, together
with the support, to other processors. Every proces-
sor now can find the union of MFIs that means to
compute the frequent maximum of the MFIs. Now
the processors know the boundaries of F and can pro-
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ceed in a top-down fashion to compute the support
of all itemsets. At the end, the processors exchange
counts of the itemsets and prunes infrequent itemsets.
This algorithm is summarized in Algorithm 4.

Algorithm 4 The Asynchronous-FI-Mining al-
gorithm

Async-FI-Mining(In: Database D,
In: Integer min support,
Out: Set F)

/* Phase 1: computation of MFIs */
1 for each processor pi do-in-parallel
2 Read its local database partition Di.
3 Computes all local MFIs, denoted by Mi.
4 end for

/* Phase 2 */
5 for each processor pi do-in-parallel
6 Broadcast of Mi (hence an all-to-all broadcast

takes place).
7 Compute

⋃
1≤i≤P Mi.

8 end for
/* Phase 3 (every node has

⋃
1≤i≤P Mi). */

9 for each processor pi do-in-parallel
10 Enumerates itemsets U ⊆ m,m ∈Mi in a top-

down fashion.
11 end for

/* Phase 4 (reduction of results) */
12 for each processor pi do-in-parallel
13 Perform sum-reduction operation and removes

itemsets U, Supp(U) ≤ min support, i.e. pro-
cessor pi sends its frequent itemsets to pi+1 and
the last processor removes all infrequent item-
sets.

14 end for

The authors in [31] claims that the speedup range
from 5 to 10 on 16 processors. Unfortunatelly, the
paper [31] is missing a table of speedups, therefore
we have estimated the speedup from graphs of the
running time. Additionally, the problem is that in
[31] there is no mention to the algorithm they use
as a base for the computation of speedup, i.e., a se-
quential algorithm that is used for computation of
the speedup of the method. If the used sequential
algorithm is the Apriori algorithm then we have to

argue that the Apriori algorithm itself is slow and
the speedup could be much worse if the execution
time of the parallel algorithm is compared to some
other, quicker, sequential algorithm.

3.3 Eclat-based parallel algorithms

3.3.1 The bitonic scheduling

Zaki et. al. [35] proposed a parallelization of the
Eclat algorithm [36], see Algorithm 5. The algorithm
is similar to our method in the sense that it partitions
F into prefix-based equivalence classes. However, it
uses the bitonic scheduling, a heuristic for schedul-
ing the prefix-based classes on the processors that is
not able to capture the real size of each prefix-based
equivalence class.

Algorithm 5 The Parallel-Eclat algorithm

Parallel-Eclat(In: Database D,
In: Integer min support,
Out: Set F)

1 for each pi do-in-parallel
/* Initialization phase */

2 Scan local database partition Di.
3 Compute local support for all itemsets of size

2,
denoted by C2 = {U |U ⊆ B, |U | = 2}.

4 Broadcast the local support of itemsets in C2,
creating global support of itemsets in C2.
/* Transformation Phase */

5 Partition C2 into equivalence classes
6 Schedule the equivalence classes on all proces-

sors pi
7 Transform local database into vertical form
8 Tidlists, needed by other process for computa-

tion of its assigned portion of the equivalence
classes, are send to each other processor.
/* Asynchronous phase */

9 All processors computes frequent itemsets from
the assigned equivalence classes.
/* Final Reduction Phase */

10 Aggregate results and output associations into
F

11 end for

8



The bitonic scheduling works this way: each equiv-
alence class with n atoms is assigned a weight

(
n
2

)
,

and the equivalence classes are assigned to processors
pi using a best-fit algorithm. The best-fit algorithm
is in fact the same algorithm as the LPT-Schedule,
we use for assigning of the prefix-based equivalence
classes, see Section 7.2 and Graham [13] for refer-
ence. The problem with this heuristic is that it does
not capture the real size of the equivalence classes.
This algorithm achieves speedups of ≈ 2.5–10.5 on
24 processors, ≈ 2–10 on 16 processors, ≈ 1.4–8 on 8
processors, and ≈ 3–3.5 on 4 processors. The exper-
iments were performed on datasets generated using
the IBM generator with average transaction size 10
and database size 800k, 1.6M, 3.2M, and 6.4M trans-
actions.

3.4 FPGrowth-based parallel algo-
rithms

The FPGrowth algorithm is an important sequen-
tial FI mining algorithm. In this section, we show
two parallel algorithms based on the FPGrowth al-
gorithm.

3.4.1 A trivial parallelization

A trivial distributed-memory parallelization of the
FP-Growth algorithm is proposed in [26]. The par-
allelization uses dynamic load-balancing. The idea is
that each processor creates its local FP-Tree, broad-
cast the local FP-Tree to other processors (result-
ing in global FP-Tree on every processor) and assign
prefix-based equivalence classes to processors using
a hash function. The problem is that the amount
of assigned work is unpredictable and the resulting
computational load highly unbalanced. The solution
to the unbalanced computation is the use of dynamic
load-balancing.

The dynamic load-balancing uses minimal path-
depth threshold to estimate the granularity of a sub-
tree. We define the path-depth as the maximal length
of a path from the root to a list in an FP-Tree.
Since the path-depth of the FP-Tree is non-increasing
during the computation, the dynamic load-balancing
works as follows: if a processor finishes its assigned

work, it starts requesting work from other, busy, pro-
cessors. The busy processors sends part of their as-
signed work to the requesting processor if and only if
the path-depth is bigger than the minimal path-depth
threshold.

The result of this approach is that the aggregate
memory is not used efficiently. [26] reports speedup
of ≈ 4–20 on 32 processors on a single dataset with
100K and maximal potentially frequent itemset size
were set to 25, and 20. transactions. However, the
speedup of 20 is achieved in only two experiments
from five. In the rest of the experiments, the maxi-
mum speedup is ≈ 8 at 30 processors. The maximum
execution time of the sequential algorithm was ≈ 900
seconds.

3.4.2 The Parallel-FPTree algorithm

The Parallel-FPtree is proposed by Javed and
Khokhar in [17], see Algorithm 6.

The problem with this approach is obvious: the
computation must be unbalanced. However, in [17]
present different results: an almost linear speedup.
The reason for such results could be the very small
running time of the algorithm (up to couple of sec-
onds) and very small datasets (10000 transactions).

3.4.3 Map-reduce approach: the FPM algo-
rithm

Li [22] presents an map-reduce approach for mining
of top N frequent itemsets. The algorithm is a five
step process:

1. Sharding: Dividing DB into P disjoint partitions
(in [22] called shards), where P is the number of
processors.

2. Parallel Counting: uses map-reduce [10] in the
following way: a) the map process is fead with
a partition(shard) and outputs (b, 1), b ∈ B,; b)
reducer is fed with items and outputs its count.

3. Grouping items: in this step a K disjoint groups
Gi ⊆ B of items are created.
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Algorithm 6 The Parallel-FPTree algorithm

Parallel-FPTree(In: Database D,
In: Itemset B,
In: Integer min support∗)

1 for each pi, 1 ≤ i ≤ P do-in-parallel
2 Each processor scans its assigned partition and

computes the support for single items sets
based on items in the local database.

3 The processors exchange the local supports and
compute the global support for each itemset.

4 Each processor sorts the global support for
the single itemsets and discards all the non-
frequent items.

5 Each processor scans the assigned partition
again and constructs a local FP-Tree.

6 The header table is partitioned into P disjoint
sets and each processor is assigned to mine fre-
quent patters for distinct set of item.

7 Since the partitioning in step 5 is static, each
processor identifies the information from its lo-
cal tree needed by other processors. The pre-
fix paths of the single itemsets assigned to a
processor in step 4 constitute the complete in-
formation nedded for the mining step. This is
identified using a bottom up scan of the local
FP-Tree.

8 The information in step 6 is communicated in
logP rounds emplying a recursive merge of
the tree strcuture over processors. For exam-
ple, processor pi communicates with processor
prP/2+1%P in round r where 1 ≤ i ≤ P and
0 ≤ r ≤ logP . At the end of each round,
a processor simply unpacks the received infor-
mation into its local FP-tree and prepares a
new message for the next round of the merge.
Performing merge this way prevents the sizes
of the messages from frowing the merge pro-
gresses.

9 Each processor mines for frequent patterns in
its assigned itemsets.

10 end for

4. Parallel FPGrowth: uses map-reduce in the fol-
lowing way: mapper knows the groups (cre-

ated in previous step) and is fed with a trans-
action t. The transaction is then output as
(group id, t). The reducer then takes as the in-
put the pairs (group id, t) and starts the FP-
Growth algorithm. The reducer maintains an
array of top N itemsets.

5. Aggregation: as each processor has N itemsets,
the output from the previous step is filtered so
it results in top N itemsets (globally).

This authors of [22] claims that it has almost linear
speedup for the number of processors up to 500: that
is on P processors the speedup is P . The authors
have very large datasets and are not able to com-
pute do execute the FPGrowth algorithm on a single
processor. Therefore, the authors uses a strange defi-
nition of speedup: instead of using a standard defini-
tion of speedup T1/TP , where T1 is the execution time
on single processor and TP is the execution time on
P processors. They assume that the speedup is 100
on 100 processors and they compute T ′1 = T100 · 100
then they compute the speedup on P processors as
usually T ′1/TP . However, this is a problem, because
the speedup will be different.

Let have an sequential algorithm whose speedup is
linear: S(P ) = P ·C = T1/TP , 0 ≤ C ≤ 1. We are not
able to compute the parallel speedup of the algorithm
and therefore we use T ′1 = TX · X, where TX repre-
sents the parallel time for X processors. We denote
such speedup by S′(P ) = P · C ′ = T ′1/TP = TX ·X

TP
.

We know that S(P1)/S(P2) = P1/P2. Addition-
ally, we know that S(P ) = T1/TP and therefore

S(P1)/S(P2) =
T1/TP1

T1/TP2
=

TP2

TP1
. That is: P1

P2
=

TP2

TP1
.

We compute C ′ = TX ·X
TP ·P = P ·X

X·P = 1. Therefore, us-
ing T ′1 = TX ·X instead of T1 gives us always an ideal
speedup S′(P ) = P . A numerical example is shown
in Table 1.

To conclude: the authors of [22] claims to have
an almost linear speedup with a huge database. As
shown, their claims may not be true and the re-
sults can be very different. The question is, why
the authors did not use smaller dataset that could
be processed on a single machine and then compute
the speedup for P < 100. Additionally, we tried to
estimate the execution time on a single processor:
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An ideal algorithm
Processors P Parallel time

TP [seconds]
Speedup

1 1000
100 10 100
500 2 500
1000 1 1000

Algorithm with speedup P/2 on P processors
Processors P Parallel time

TP [seconds]
Speedup

1 1000
100 20 50
500 4 250
1000 2 500

Algorithm with speedup P/2 on P
processors, using T ′1 = T100 · 100

Processors P Parallel time
[seconds] TP

Speedup

1 2000 = 20 · 100(!!!)
100 20 100
500 4 500
1000 2 1000

Table 1: A numerical example of a perfect paral-
lelization and the approach used in [22] for computing
speedup.

T1 ≈ 33270. We realized that the speedup on 500
processors is ≈ 5.3. However, extrapolation is not a
good method of computation of T1.

3.4.4 A sampling based framework for paral-
lel data mining

[9] presents a parallel version of the FPGrowth algo-
rithm with approach similar to ours:

1. Sample tree construction: scan the whole
database constructing the sample database by
discarding 20% of the most frequent items and
the non-frequent items. From the sampled
database is created the sample trie T .

2. Sample tree mining: processor 0 mines the trie
T , but instead of outputing the FIs it measures
the time needed for processing each item. We

denote the execution time for item bi, i.e., for
PBEC [{bi}] by Ti.

3. Task partition: PBECs [{bi}] whose Ti >
1
4

∑
i Ti

P
is further partitioned.

4. Task scheduling:

The authors of [9] designed a selective sampling
method that works as follows: from the whole set of
items of the input database D, B, is removed a frac-
tion f (reported to be 20%) of the most frequent item-
sets resulting in the set B′; then is created a database
D′ = {t′|t ∈ D, t′ = t ∩ B′}, called selective sample.
The FPGrowth algorithm is then executed on the
database D′. The execution times of the FPGrowth
algorithm on the whole database D then correlates
with the execution times of D′. The execution times
are then used for scheduling the PBECs on the pro-
cessors.

The reported speedups are approximatelly < 32
on 64 processors, < 8 on 16 processors, < 6 on 8
processors. In one case the speedup is very bad, i.e.,
≈ 4 on 32 processors, 1.5 on 32 processors, and 1.5
on 8 processors.

In this approach, we suspect one possible problem:
the problem of estimating the number of FIs in par-
ticular PBEC is #P-hard. That is: it may be pos-
sible that this heuristic may not well represent the
execution time on the whole database. Additionally:
what happens when the support is changed ? The au-
thors of [9] have made one experiment for the follow-
ing small databases: pumsb, pumsb star, connect,
mushroom, T40I10D100K with unknown value of min-
imal support. The unreported value of support in [9]
is, from our point of view, a very big problem.

3.4.5 The DFP algorithm

In [4] is presented the Distributed FPGrowth (DFP
in short) algorithm. The authors use various parallel
optimization techniques:

1. Minimization of communication costs: the pro-
cessors are organized in a ring, each processor
creates a local tree, serialize the tree using a
depth first traversal into an array of integers.
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This reduces the cost from 48 bytes per node
to 8 bytes per node. The tree is then send to
the processors right neighborhood. It is easy to
deserialize and merge the tree at once into an
existing tree.

2. Prunning redundant data: processor pi is as-
signed with items W ⊆ B receives from all other
processors only the paths from every b ∈ W to
the root. This should reduce the communication
costs.

3. Partitioning of the mining process: the authors
use the same strategy as in [9].

4. Memory optimization: [4] presents various
memory-optimization techniques that are used
when the trie does not fit in main memory.

Unfortunately, the authors of [4] do not measure
the speedup. The claimed reason is that the data
do not fit in main memory. However, the question
is: why the researches did not use smaller (sampled)
database to show the speedup and then measurements
on large datasets ? One of the possible answer is that
the speedup may not very good. In the paper are pro-
vided some running times for 8 and 48 machines. If
we take these numbers and try to estimate the run-
ning time on a single processor, we conclude that the
speedup could be ≈ 4 on 8 processors and ≈ 9 on 48
processors.

4 The ParDCI algorithm

In this section, we present the ParDCI algorithm pre-
sented in [25]. This algorithm uses hybrid approach:
first it employs the same breadth-first search as the
Apriori algorithm and then it switches to depth-first
search algorithm, a variant of the Eclat algorithm.

The parallel version of this algorithm is designed
for cluster of shared-memory workstations, i.e., a
cluster of workstations where each workstation is a
shared-memory multiprocessor. The ParDCI algo-
rithm works as follows:

1. Breadth-first search phase: it uses the candidate

distribution [1] approach on inter-1 and intra-
node2 levels. When the ParDCI realize that the
vertical represetation fits into main memory it
switches to the depth-first search.

2. The ParDCI splits the candidates into l parti-
tions based on common prefixes: all candidates
that shares the same prefix are assigned to the
same section. Then the l partitions are assigned
to processors based on the number of candidates
in each section. At the the intra-node level
the sections are assigned using dynamic load-
balancing.

It has been shown that the sequential DCI algo-
rithm uses more memory then its depth-first search
counterparts, see [12], the memory increases expo-
nentially with lower values of min support. However,
the speedup of the algorithm is ≈ 5 on 6 processors
for min support∗ = 0.015 and ≈ 3.5 on 6 processors
for min support∗ = 0.05.

One problem is that the PBECs are scheduled
based on the number of extensions. This approach
seems to be worse then the bitonic scheduling (that
does not works well). Another problems with this al-
gorithm is the fact that the dynamic load-balancing
on shared memory machines gives almost optimal
speedup. Therefore, the algorithm is in fact executed
on 3 processors with speed two-times the original pro-
cessor. Another question is: why the authors did not
setup the experiments in such a way that they show
how good is the speedup without intra-node dynamic
load-balancing. Therefore, the results can be much
worse on larger number of processors.

4.1 Summary and conclusion

We have described parallel algorithms based on the
Apriori, the FPGrowth and the Eclat algorithm. The
biggest problem of the Apriori algorithm is its slow-
ness and memory consumption. Therefore, paral-
lelization of the Apriori algorithm is not practical.
The biggest advantage of the parallel Apriori algo-
rithms is that they use the aggregate memory of the

1among workstations
2within one workstation
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cluster efficiently. That is: every processor from P
processors has a database partition of size |D|/P .
The parallel Apriori algorithms usually works in it-
erations that correspond to the sequential Apriori it-
erations, except that they are done in parallel. The
authors claims that static load-balancing is used. We
must argue that the load is not statically balanced
at all: parallel execution of the sequential iterations
should not be considered as static load-balancing .

The parallelizations of the Eclat and the FP-
Growth algorithms use an estimate of the sizes of the
prefix-based classes. However, the estimates are very
simple and do not capture the real amount of work
assigned to the processors. The authors of these algo-
rithms are basicaly overlooking the fact that count-
ing the number of FIs in single PBEC is #P-hard[15].
Dynamic load-balancing on distributed-memory par-
allel computers also does not work. The reason is
that the computation is quite fast and exchanging
large portions of the database among processors can
be quite time-consuming.

Parallelizations of other algorithms than the Apri-
ori algorithm do not achieve good speedups. But, the
Apriori itself is quite slow.

The best solution should:

1. distribute the computation: computation time
of each processors should be approximately the
same.

2. distribute the data: the database should be dis-
tributed among the processors so that processor
pi has database partition of size |D|/P .

The algorithms that use the simple static load-
balancing have the potential to have the database
distributed, so each processor pi has |D|/P number
of transactions.

5 Approximate counting by
sampling

Our method for parallel mining of FIs is based on
efficiently estimating the number of FIs in a given
prefix-based equivalence class (PBEC in short). To
estimate the relative number of FIs in a PBEC, we do

not need to count the relative number of FIs exactly.
We can estimate the relative sizes of FIs in PBECs
with a sampling algorithm that approximately counts
the relative number of FIs in a PBEC. Further, when
talking about the relative (absolute) size of a PBEC,
we always mean the relative (absolute) number of FIs
in the PBEC.

This chapter is organized as follows: first, in Sec-
tion 5.1 we show how to estimate support of an item-
set from a database sample. In Section 5.2 we show
the two methods for estimating the size of a PBEC.
In Section 5.3 we discuss how to choose the sampling
parameters and the effect on the estimating of the size
of the relative number of FIs in a union of PBECs.

5.1 Estimating the support of an
itemset from a database sample

The time complexity of the detection whether an
itemset U is frequent or not is in fact the complex-
ity of computing the relative support Supp∗(U,D)
in the input database D. If we know the approxi-
mate relative support of U , we can detect whether
U is frequent or not with certain probability. We
can estimate the relative support Supp∗(U,D) from

a database sample D̃, i.e., we can use Supp∗(U, D̃)
instead of Supp∗(U,D). The approach of estimating
the relative support of U was described by Toivonen
[30].

We define the error of the estimate of Supp∗(U,D)

from a database sample D̃ by errsupp(U, D̃) =

|Supp∗(U,D) − Supp∗(U, D̃)|. The estimation error
can be analyzed using the Chernoff bound without
making other assumptions about the database. The
error analysis then holds for a database of arbitrary
size and properties.

Theorem 5.1. [30] Given an itemset U ⊆ B, two
real numbers εD̃, δD̃, 0 ≤ εD̃, δD̃ ≤ 1, and a random

sample D̃ drawn from database D of size

|D̃| ≥ 1

2ε2
D̃

ln
2

δD̃
,

then the probability that errsupp(U, D̃) > εD̃ is at
most δD̃.
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Proof. See [30] for proof.

5.2 Estimating the relative size of a
PBEC

To differentiate between the MFIs M, the FIs F ,
and other stuff computed using the D from the stuff
computed using D̃, we use the symbol ∼ over the
same symbols: all frequent itemsets F̃ , all maximal
frequent itemsets M̃, and the sample of FIs F̃s.

In our parallel method for mining FIs, we need to
estimate the relative size of a PBEC. This can be esti-
mated using a sample of FIs F̃s ⊆ F̃ computed using
D̃. There are two ways for creating F̃s: 1) compute

M̃ and get F̃s using the modified coverage algorithm;
2) Compute F̃ and get F̃s using the reservoir sam-
pling. These two algorithms are presented in the next
two sections.

5.2.1 The coverage algorithm and its modifi-
cation

Let us have the MFIs M̃, computed from D̃. The
set of all MFIs M̃ is the upper bound on the set F̃ ,
i.e., F̃ =

⋃
m∈M̃ P(m). To create a sample F̃s ⊆ F̃

of independently and identically distributed (i.i.d.)
elements chosen from the uniform distribution, we
can use the coverage algorithm [23] that uses M̃ for
creation of the sample. To make the sampling in
our parallel method for mining of FIs faster, we have
modified the algorithm, so it does not create sample
from uniform distribution, it creates only indepen-
dently distributed sample. The coverage algorithm
(or its modification) produces only the sample F̃s.

The coverage algorithm estimates the relative size
of a set F ⊆ F̃ . The basic idea is to sample the set
F̃ by selecting the set m ∈ M̃ and create a sample
U as a subset U ⊆ m. Unfortunately, this process
samples the set S =

⊎
m∈M̃ P(m), where

⊎
denotes

the multiset sum(union), i.e., S contains all subsets

of m ∈ M̃ multiple times and |S| =
∑
m∈M̃ |P(m)|.

To make the sample uniformly distributed, we should
sample F̃ =

⋃
m∈M̃ P(m). Assuring that we sample

F̃ is very time-consuming in the case of large |M̃|,
see [23]. We give up sampling of F̃ and sample S,

not making identically distributed sample.
In the case of the coverage algorithm, we can anal-

yse the dependency of the error εF̃s
and the probabil-

ity of the error δF̃s
of the estimated size of a PBEC

on the number of samples |F̃s|:

Theorem 5.2 (estimation error of the size of a sub-

set F ⊆ F̃). [23] Let M̃ be the set of MFIs such that

F̃ =
⋃
mi∈M̃ P(mi), F ⊆ F̃ , ρ = |F |/|F̃ |, two real

numbers εF̃s
, δF̃s

such that 0 ≤ εF̃s
, δF̃s

≤ 1, and F̃s
is the independently and identically distributed sam-

ple of F̃ . Then the estimate |F∩F̃s|
|F̃s|

is an estimation

of |F |/|F̃ | with error at most εF̃s
with probability at

least 1− δF̃s
provided

|F̃s| ≥
4

ε2
F̃s
ρ

ln
2

δF̃s

.

Proof. The proof of the theorem is again based
on the Chernoff bounds. We know that

P
[
|F ∩ F̃s| ≥ (1 + εF̃s

)ρ|F̃s|
]
≤ e

−|F̃s|ρε2F̃s
/4

and

similarily for the lower bound:

P
[
|F ∩ F̃s| ≤ (1− εF̃s

)ρ|F̃s|
]
≤ e−|F̃s|ρε2F̃s

/4
. There-

fore:

P
[
(1− εF̃s

)|F̃s|ρ ≤ |F ∩ F̃s| ≤ (1 + εF̃s
)|F̃s|ρ

]
≥

1− 2e
−|F̃s|ρε2F̃s

/4
= 1− δF̃s

In our case, we do not have uniform sample of F̃
and therefore the bounds cannot be used. But the es-
timates of the size of a PBEC made using the sample
are sufficient for our purpose.

5.2.2 The reservoir sampling algorithm

In this section, we show the reservoir sampling al-
gorithm that creates an uniformly but not indepen-
dently distributed sample F̃s of F̃ on the contrary of
the previous section.

Vitter [32] formulates the problem of reservoir

sampling as follows: given a stream of records, F̃ , the
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task is to create a sample F̃s of size n without replace-
ment from the stream without any prior knowledge
of |F̃ |. This solves our problem of making a uniform

sample F̃s ⊆ F̃ . The Vitter’s [32] algorithm runs in

O(|F̃s|(1 + log |F̃|
|F̃s|

)).

In Theorem 5.2 we analysed the error of the ap-
proximation of the relative size of an arbitrary set
using an i.i.d. sample using the Chernoff bounds. In
the case of the reservoir sampling, we have to use the
bounds for the hypergeometric distribution:

Theorem 5.3 (Estimation error of the size of a

subset F ⊆ F̃). Let F ⊆ F̃ be a set of itemsets.

The relative size of F , |F |
|F̃|

, is estimated with error

εF̃s
, 0 ≤ εF̃s

≤ 1, with probability δF̃s
, 0 ≤ δF̃s

≤ 1,

from a hypergeometrically distributed sample F̃s ⊆ F̃
with parameters N = |F̃ |,M = |F | of size:

|F̃s| ≥ −
log(δF̃s

/2)

D(ρ+ εF̃s
||ρ)

where D(x||y) is the Kullback-Leibler divergence of
two hypergeometrically distributed variables with pa-
rameters x, y and ρ = |F |/|F̃ |.

The expected value of the size |F ∩ F̃s| is E[|F ∩
F̃s|] = |F̃s| · |F ||F̃| .

Proof. The proof is based on bounds provided in [29]
which are a summarization of [8] and the fact that
D(p+ ε||p) > D(p− ε||p).

5.3 Estimating the size of a union of
PBECs

It can be expected that the relative sizes of PBECs
computed using D̃ will be similar to the relative sizes
computed using D. The following theorem bounds
the difference between the size of union of PBECs
computed from D and D̃:

Theorem 5.4 (bounds on the size of a set of FIs from
a given PBEC). Let Vi ⊆ B, 1 ≤ i ≤ n, [Vi] ∩ [Vj ] =
∅, i 6= j. We use two sets of itemsets:

1. A = {U |Supp∗(U,D) <

min support∗ and Supp∗(U, D̃) ≥

min support∗}, i.e., the collection of item-

sets U infrequent in D and frequent in D̃ –
wrongly added FIs to F̃ .

2. B = {U |Supp∗(U,D) ≥
min support∗ and Supp∗(U, D̃) <
min support∗}, i.e., the collection of item-

sets U frequent in D and infrequent in D̃ –
wrongly removed FIs from F̃ .

The relative size of A is denoted by a = |A|
|F| and the

relative size of B is denoted by b = |B|
|F| . Then for two

sets of itemsets C =
⋃
i[Vi] ∩ F and C̃ =

⋃
i[Vi] ∩ F̃ ,

we have:

|C̃|
|F̃ |

(1 + a− b)− a ≤ |C|
|F|
≤ |C̃|
|F̃ |
· (1 + a− b) + b

Proof. From the assumptions follows: |F̃ | = |F|(1 +

a− b). Therefore: |F̃|
(1+a−b) = |F|. We know that the

fraction a of FIs is not frequent in D but is frequent
in D̃ are present in F̃ . Therefore, we can compute
the lower bound of the relative size of C: |C̃| ≤ |C|+
a · |F|, i.e., |C̃||F| ≤

|C|
|F| + a. Then using the fact that

|F| = |F̃|
(1+a−b) we have: |C̃|

|F̃|
(1 + a− b)− a ≤ |C||F| .

We compute the upper bound of |C||F| using similar

computations as for the lower bound. The fraction b
of FIs F was not frequent in D̃ and frequent in D and
therefore the lower bound of the size |C̃| is |C| − b ·
|F| ≤ |C̃| and therefore |C||F| ≤

|C̃|
|F̃|
· (1 + a− b) + b

Corollary 5.5. If the size of |C̃|
|F̃|

is estimated with

error εF̃s
, 0 ≤ εF̃s

≤ 1, with probability 0 ≤ δF̃s
≤ 1

then:

|C̃|
|F̃ |

(1− εF̃s
)(1 + a− b)− a ≤ |C|

|F|
and

|C|
|F|
≤ |C̃|
|F̃ |

(1− εF̃s
)(1 + a− b) + b

with probability δF̃s
.
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Set C can be viewed as a partition processed by
a single processor. We estimate the relative size of
|C|/|F| from F̃s and we are able to bound the error
made while estimating the size of a partition. Unfor-
tunately, the bounds are not very tight and making
tighter bounds is hard.

Let Ui ⊆ B, 1 ≤ i ≤ n, be prefixes and [Ui] cor-
responding PBECs. We are creating the PBECs
by recursive splitting, see Propositions 2.4 and 2.5,
and estimating the size using the sample, i.e., |[Ui] ∩
F̃|/|F̃ | ≈ |[Ui] ∩ F̃s|/|F̃s|. Let L ⊆ [1, n] be the set
of indexes of the PBECs. The set of indexes is cho-
sen in such a way that |

⋃
i∈L[Ui] ∩ F̃s|/|F̃s| ≈ 1/P .

That is: the set L is dependent on the created sample
F̃s. Therefore, we are not able to use the Chernoff
bounds (or the estimates using the Kullback-Leibler

divergence) with the same sample F̃s (used for cre-
ation of PBECs) for estimation of the relative size of

F =
⋃
j∈L[Uj ] ∩ F̃ because the sets [Uj ], the set F

and the sample F̃s are not independent. Instead, we
must choose εF̃s

such that εF̃s
·|L| is small enough. In

Chapter 8, we experimentaly show the error and its
probability made by a particular choice of the number
of samples.

6 Approximate parallel mining
of MFIs

In our method described in [21], we need to compute

an approximation of MFIs M̃. In our previous paper
[21], we have proposed that we can execute an arbi-
trary algorithm for mining of MFIs in parallel and
compute a set M , such that M̃ ⊆M , instead of M̃.
In this section, we show an important property of
|M |.

Because, we have P processors at our disposal, we
could execute an arbitrary algorithm for mining of
MFIs in parallel. Unfortunately, parallel mining of
MFIs using a DFS algorithm, is a hard task. We can
relax the requirement of computing M̃ to a require-
ment of computing the setM such that M̃ ⊆M ⊆ F̃ .
We define a candidate on an MFI as follows:

Definition 6.1 (candidate itemset on MFI). Let

U ⊆ B be a frequent itemset and Σ the extensions
used by a DFS MFI algorithm for extending U . We
call U a candidate itemset (or candidate in short) on
an MFI if for each b ∈ Σ the itemset U ∪ {b} is not
frequent, i.e., Supp(U ∪ {b}) < min support.

The candidates are the leafs of the DFS algorithm
for mining of MFIs.

Definition 6.2 (longest subset of a MFI in a PBEC).
Let W be a maximal frequent itemset, b ∈ B an item,
the set Σ = {b′ ∈ B : b < b′}, and [{b}|Σ] the PBEC.
We call the set U = W ∩ (Σ∪{b}) the longest subset
of W in the PBEC [{b}|Σ].

For example, let U = {1} be a prefix and Σ =
{2, 3, 5} its extensions. For the MFI m = {1, 3, 4, 5}
the longest subset of m in [U |Σ] is the set {1, 3, 5}.

The longest subset of a MFI in a PBEC can be a
candidate set, but there exists longest subsets that
are not candidates. We say that W is a candidate on
the MFI U,W ( U in a PBEC, if it is a candidate
and a longest subset of U in the PBEC, i.e., it is a
leaf of a DFS tree and it is a longest subset.

A MFI W = (bw1
, . . . , bw|W |), bw1

< . . . < bw|W |
is discovered by a DFS MFI algorithm by expand-
ing first [(bw1

)], then [(bw1
, bw2

)], etc. To our best
knowledge, all MFIs DFS mining algorithms works
as follows: the algorithm initializes M̃ ← ∅ and
starts a DFS search in the lattice of all FIs, skip-
ping some FIs. The PBECs are expanded in the or-
der of bi, i.e., [(b1)|(b2, b3, . . . , b|B|)] is processed first,
then [(b2)|(b3, . . . , b|B|)] is processed, etc. Therefore,
if U = (bu1

, . . . , bu|U|) is an MFI and W ⊆ U a candi-
date itemset. Candidate itemsets W are discovered
after discovering U . If the algorithm finds a candi-
date itemset W , it looks into M̃ and if M̃ contains
a superset of W , the algorithm skips W (not storing

W in M̃). If M̃ does not contains a superset of W ,

it is an MFI and is stored into M̃.
An important fact is that an MFI U ∈ M̃ is always

discovered by a DFS algorithm for mining MFIs be-
fore discovering any of its candidates. This follows
from the fact that the items in the baseset B are or-
dered and a DFS algorithm for mining of MFIs pro-
cesses [(bi)] and its extensions in the order of the
items in B.
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Schema of parallel computation of M : be-
cause D̃ is much smaller than the whole database
D, the processors have a copy of D̃ and knows the
items that are frequent in the database D. All pro-
cessors partition the base set B to P blocks of size
≈ |B|/P . Processor pi runs a sequential DFS MFI
algorithm in the i-th part of B, where the items bj
are interpreted as 1-prefixes, i.e., prefix-based equiv-
alence classes [(bj)]. When a processor finishes its as-
signed items, it asks other processors for work. The
computation is terminated using the Dijkstra’s token
termination detection algorithm. The output of the
algorithm is a superset of all MFIs. This approach
computes the set M such that M̃ ⊆M .

We demonstrate the parallel execution (the par-
allel processing of assigned PBECs) of a sequen-
tial DFS algorithm for mining of MFIs on the
following example (for simplicity without dynamic
load balancing): because the computation is dis-
tributed, the algorithm is unable to check the candi-
date against all already computed MFIs which results
in a superset of all MFIs. Let B = {1, 2, 3, 4, 5, 6}
and P = 3 and assume that the prefix-based
equivalence classes [(1)|(2, 3, 4, 5, 6)], [(2)|(3, 4, 5, 6)]
were assigned to p1; the prefix-based equivalence
classes [(3)|(4, 5, 6)], [(4)|(5, 6)] were assigned to p2;
and the classes [(5)|(6)], [(6)|∅] to p3. The MFIs
{{1, 3, 4}, {2, 3, 4}, {2, 4, 5}} are correctly computed
by p1. The processor p2 correctly computes the MFI
{3, 4, 5, 6}, but processor p3 computes also the item-
set {5, 6} as an MFI. The reason is that p3 does not
know that the MFI {3, 4, 5, 6} was already computed
by processor p2.

Lemma 6.3. Let W = (bw1
, . . . , bw|W |) be an MFI,

b ∈ W any of its element. There exists at most one
candidate on the MFI W in the PBEC [(b)]. If such
candidate exists then it is the longest subset SW =
{b′|b′ ∈W, b ≤ b′} of the MFI W in the PBEC [(b)].

Proof. In each PBEC [(b)] all frequent sets X ∈ [(b)]
such that X ⊆W are always subsets of SW . Consider
sets X ( SW : X cannot be a candidate because
there exists an item b ∈ SW such that X ∪ {b} is
frequent, due to the monotonicity of the support, see
Theorem 2.1. Note that SW is a candidate if and

only if there is no frequent itemset in [(b)], which is
a proper superset of SW .

The number of candidates of the MFI W depends
on all other mined MFIs and subset/superset rela-
tions of the longest subsets of all MFIs. The following
theorem is a direct consequence of Lemma 6.3:

Theorem 6.4. Let have a baseset B and 1 < P <
|B| processors p1, . . . , pP , a database D̃, Mi is a set
of itemsets computed by pi, and M =

⋃
1≤i≤P Mi.

Let W be the longest MFI, i.e., for all U,W ∈ M̃
holds that |U | ≤ |W |. An arbitrary DFS algorithm
for mining MFIs that is executed in parallel computes
(as we have described in our schema) a set of itemsets

M , such that M̃ ⊆M , of size:

|M̃| < |M | =

∣∣∣∣∣∣
⋃

1≤i≤P

Mi

∣∣∣∣∣∣ ≤ |W | · |M̃|.
Proof. The proof of this theorem follows from the
Lemma 6.3 and the fact that for each MFI U there
are at most |U | PBECs that contains some subsets of
U , i.e., in the worst case the dynamic load-balancing
causes that the described scheme discovers all candi-
dates on a single MFI.

If we do not use dynamic load-balancing and assign
the items statically (each processor processig |B|/P
PBECs), for an MFI U = (bu1

, . . . , bu|U|) each pi com-
putes the candidate on the MFI U , if it exists, in each
of its assigned PBECs with prefix of size 1. Denote
the longest MFI by W , as in the previous theorem. If
we statically assign the PBECs to each processor and
do not use dynamic load-balancing, the upper bound
on |M | is |M | < P · |M̃|. The two bounds can be

combined: |M | < min(P, |W |) · |M̃|.

7 Proposal of a new DM paral-
lel method

In this section, we present our two methods [20], and
[21] and a new method that is based on the reservoir
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sampling [19]. These methods provides paralleliza-
tions of the DFS (or BFS) sequential frequent item-
sets mining algorithm. The method has the following
advantages over current existing algorithms: 1) it is
universal, i.e., it is possible to parallelize any exist-
ing sequential algorithm for mining of FIs; 2) The
computation is balanced staticaly: for a very large
databases the dynamic load-balancing is too expen-
sive. An important property of our method is that it
distributes the computed FIs among processors.

Our new method is called Parallel Frequent Item-
set MIning (Parallel-FIMI in short) and has three
variants: Parallel-FIMI-Seq [20], Parallel-
FIMI-Par [21], and a new variant Parallel-FIMI-
Reservoir. This method works for any number of
processors P � |B|. The basic idea is to partition
all FIs into P disjoint sets Fi, using PBECs, of rela-

tive size |Fi|
|F| ≈

1
P . Each processor pi then processes

partition Fi.

The input and the parameters of the whole method
are the following: 1) Minimal support: the real num-
ber min support∗; 2) The sampling parameters: real
numbers 0 ≤ εD̃, δD̃, εF̃s

, δF̃s
≤ 1; 3) the relative size

of a smallest PBEC: the parameter ρ, 0 ≤ ρ ≤ 1;
4) partition parameter: real number α, 0 ≤ α ≤ 1;
5) database parts Di, 1 ≤ i ≤ P . Without loss of
generality, we expect that each bi ∈ B is frequent.

The whole method consists of four phases:
Phases 1 and 2 prepare the PBECs and its assign-
ment to the processors for Phase 4, i.e., the static
load-balancing is created in Phases 1 and 2. In the
Phase 3, we redistribute the database partitions so
each processor can proceeds independently with the
assigned PBECs. In the Phase 4, we execute an arbi-
trary algorithm for mining of FIs and the processors
computes the FIs in it assigned PBECs.

7.1 Detailed description of Phase 1

In Phase 1, we create a sample F̃s of all frequent
itemsets. The input of this phase, for processor
pi, are the database partitions Di such that Di ∩
Dj = ∅, i 6= j, |Di| ≈ |D|/P , the relative min-
imal support min support∗, and the real numbers
0 ≤ εD̃, εF̃s

, δD̃, δF̃s
≤ 1. The output of this phase

is the sample of FIs F̃s and the database sample D̃.
We propose three methods for creation of F̃s. The
input and the output is the same for all of the three
proposed variants of Phase 1. For the details on sam-
pling, see the Sections 5.1 and 5.2.

We propose three variants of the first phase:

1. Compute the boundary M of F̃ , see [21, 20]:

(a) Sequentially: the boundary in this case is

the set M = M̃, the Parallel-FIMI-Seq
method, [20].

(b) In parallel: the boundary in this case is

a set M , such that M̃ ( M ( F̃ , the
Parallel-FIMI-Par method, [21].

And finally create the sample F̃s using the mod-
ified coverage algorithm.

2. Create the sample F̃s by putting together an
arbitrary sequential algorithm for mining of
FIs and the so called reservoir sampling, the
Parallel-FIMI-Reservoir method, see [19].

7.1.1 The modified coverage algorithm based
sampling

In this section, we show two variants of Phase 1 based
on our modification of the coverage algorithm, see
[20], [21]. Additionally, we put together the frag-
ments of the algorithms shown in previous chapters.

(a) M̃ is computed sequentially[20]: the M̃
is computed on processor p1 using an arbitrary algo-
rithm for mining of MFIs. The sampling is performed
sequentially by processor p1 using the modified cov-
erage algorithm. We omit the detailed description
of this version of Phase 1 as it is a simple execu-
tion of an arbitrary sequential algorithm for mining
of MFIs. For the purpose of showing the pseudocode
of Parallel-FIMI-Seq.

(b) The set M,M̃ ⊆ M ( F̃ (M̃ plus some
additional frequent itemsets) is computed in
parallel[21]: we have already described the parallel
execution of a DFS algorithm for mining of MFIs in
Section 6. Therefore, we only describe one important
detail: creation of the sample F̃s from the candidates
on the MFIs in parallel.
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The computed sets are distributed among the pro-
cessors and the number of these sets can be large.
Therefore, we perform the sampling in parallel. We
denote the set of itemsets computed by pi by Mi.
The parallel sampling of F̃ using M =

⋃
1≤i≤P Mi

is performed in the following way: every processor
pi broadcasts the sum si =

∑
m∈Mi

|P(m)| of sizes
of powersets of its local MFIs (hence, an all-to-all
broadcast takes place), creates a fraction of sample

F̃s of size |F̃s| · si∑
1≤j≤P sj

, and finally sends them

to p1. We should pick the number of samples cho-
sen by each processor from a multivariate binomial
distribution with parameters pi = si∑

1≤j≤P sj
and

n =
∑

1≤j≤P sj . However, using the modified cov-
erage algorithm makes from the sample just a heuris-
tic. Therefore, we do not have any guarantees on the
error and pi takes |F̃s| · si∑

1≤j≤P sj
number of samples.

7.1.2 The sampling based on the reservoir al-
gorithm

In the previous section, we have shown a variant of
Phase 1, based on the modified coverage algorithm,
that samples F non-uniformly. In this section, we
propose a new variant of the Phase 1: a sampling
process based on the reservoir sampling [32] that

samples F̃ uniformly, i.e., it creates an identically
distributed sample of F̃ . This work is also described
in [19].

To speedup the sampling phase of our parallel
method, we execute the reservoir sampling in par-
allel. The database sample D̃ is distributed among
the processors – each processor having a copy of the
database sample D̃. The baseset B is partitioned
into P parts Bi ⊆ B of size |Bi| ≈ |B|/P such that
Bi ∩ Bj = ∅, i 6= j. Processor pi then takes part Bi
and executes an arbitrary sequential DFS algorithm
for mining of FIs, enumerating [(bj)] ∩ F̃ , bj ∈ Bi.

The output, the itemsets [(bj)]∩ F̃ , of the sequential
DFS algorithm are read by the reservoir sampling al-
gorithm. If a processor finished its part Bi, it asks
other processors for work. For terminating the paral-
lel execution, we use the Dijkstra’s token termination
algorithm.

The task of the process is to take |F̃s| =

− log(δF̃s
/2)

D(ρ+εF̃s
||ρ) samples, see Theorem 5.3. Because the

reservoir algorithm and the sequential algorithm is
executed in parallel, it is not known how many FIs
is computed by each processor. Denote the unknown
number of FIs computed on pi by fi, the total num-
ber of FIs is denoted by f =

∑
1≤i≤P fi. Because, we

do not know fi in advance, each processor samples
|F̃s| frequent itemsets using the reservoir sampling

algorithm, producing F̃s, and counts the number of
FIs computed by the sequential algorithm. When the
reservoir sampling finishes, each processor pi sends
fi to p1. p1 picks P random variables Xi, 1 ≤ i ≤ P
from multivariate hypergeometrical distribution with
parameters Mi = fi. The value of Xi is send to pi. pi
then choose Xi itemsets U ∈ F̃s at random out of the
|F̃s| sampled frequent itemsets computed by pi. The
samples are then send to processor p1. p1 stores the
received samples in F̃s. This procedure guarantees
us the bounds made in the Theorem 5.3.

7.2 Detailed description of Phase 2

In Phase 2 the method partitions F sequentially on
processor p1. As an input of the partitioning, we
use the samples F̃s, the database D̃ (computed in
Phase 1), and a real number α, 0 < α ≤ 1.

The process of creation of prefixes follows directly
from Proposition 2.4 and Corollary 2.5. The size of
each created PBEC is estimated using F̃s. We create
PBECs with relative size ≤ α · 1

P . The reason is the
granularity of the relative sizes of PBECs.

In Chapter 2, we defined without loss of general-
ity a single order of bi ∈ B: b1 < b2 < . . . < b|B|.
But: a sequential DFS algorithms (like Eclat and
FPGrowth) expands every prefix Wk using the ex-
tensions Σk sorted by the support in ascending order
by the support of b, b′ ∈ Σk and b < b′ if and only
if Supp(W ∪ {b},D) < Supp(W ∪ {b′},D), i.e., each
prefix Wk can have different order of the extensions
Σk. The dynamic re-ordering of items can signifi-
cantly reduce the execution time of the sequential
algorithm executed in Phase 4. To make the parallel
algorithm fast, we have to use the same order as the
sequential algorithm for mining of FIs. To make the
order the same as the sequential algorithm, we esti-
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mate the order of extensions Σk for prefix Wk using
the supports from D̃, i.e., Supp(W ∪ {b}, D̃), b ∈ Σk.
The different order of items for different prefix does
not influence the output of a sequential algorithm for
mining of FIs.

The only problem that remains to show is how to
schedule the created PBECs. That is: we need to cre-
ate index sets Li, such that Fi =

⋃
k∈Li

([Uk]∩F) and
maxi |Fi|/|F| is minimized, i.e., we want to sched-
ule

∑
i |Li| tasks on P equivalent processors. The

scheduling task is known NP-complete problem with
known approximation algorithms. We use the LPT-
Schedule algorithm (LPT stands for least process-
ing time). The LPT-Schedule algorithm, see [13],
is a best-fit algorithm: it schedules the largest PBECs
on the least loaded processor.

Lemma 7.1. [13] LPT-Schedule is 4/3-
approximation algorithm.

Let OPT be the time of the optimum schedule.
The lemma says that the LPT-Schedule algorithm
finds a schedule with the time at most 4/3 ·OPT.

The index sets Li together with Uk and Σk are then
broadcast to all processors.

7.3 Detailed description of Phase 3

The input of Phase 3 for a processor pi is the set
of indexes of the assigned PBECs Li together with
the prefixes Uk and its extensions Σk, created in
Phase 2. The processor pi needs for the computa-
tion of Fi =

⋃
k∈Li

([Uk]∩F) a database partition D′i
that contain all the information needed for compu-
tation of Fi. For the description of the algorithm of
Phase 3, we expect that we have a distributed mem-
ory machine whose nodes are interconnected using a
network such as Myrinet[24] or Infiniband[16], i.e.,
a network that is not congested while an arbitrary
permutation of two nodes communicates with each
other. The problem is the congestion of the network
in Phase 3.

To construct D′i on processor pi, every processor
pj , i 6= j, has to send a part of its database partition
Dj needed by the other processors to all other pro-
cessors (an all-to-all scatter takes place3). That is:

3all-to-all scatter is a well known communication operation:

processor pi send to processor pj the set of transac-
tions {t|t ∈ Di, k ∈ Lj , and Uk ⊆̇ t}, i.e., all transac-
tions that contain at least one Uk, k ∈ Lj as a sub-
set. Each processor pi then has the database part
D′i =

⋃
`{t|t ∈ D`, k ∈ Li, and Uk ⊆̇ t} = {t|t ∈

D, exists k ∈ Li, Uk ⊆̇ t}. Each round of the all-to-all
scatter is done in bP2 c parallel communication steps.
We can consider the scatter as a round-robin tourna-
ment of P players [28]: each processor is a player and
has to play(exchange data) with all other players.

7.4 Detailed description of Phase 4

The input to this phase, for processor pq, 1 ≤ q ≤ P,
is the database partition Dq (the database partition
that is the input of the whole method, the database
partition), the set Q = {(Uk,Σk)|Uk ⊆ B,Σk ⊆
B, Uk ∩ Σk = ∅} of prefixes Uk and the extensions
Σk (forming disjoint PBECs [Uk|Σk]), and the sets
of indexes Lq of prefixes Uk and extensions Σk as-
signed to processor pq, and D′q =

⋃
1≤i≤P {t|t ∈

D, such that for each k ∈ Lq holds Uk ⊆̇ t} (the
database received in Phase 3 from other processors).

In Phase 4, we execute an arbitrary algorithm
for mining of FIs. The sequential algorithm is
run on processor pq for every prefix and extensions
(Uk,Σk) ∈ Q, k ∈ Lq assigned to the processor, i.e.,
pq enumerates all itemsets W ∈ [Uk|Σk], k ∈ Lq.
Therefore, the datastructures used by a sequential
algorithm, must be prepared in order to execute the
sequential algorithm for mining of FIs with particular
prefix and extensions. To make the parallel execution
of a DFS algorithm fast, we prepare the datastruc-
tures by simulation of the execution of the sequential
DFS algorithm, e.g., to enumerate all FIs in a PBEC
[Uk|Σk] Phase 4 simulates the sequential branch of a
DFS algorithm for mining of FIs up to the point the
sequential algorithm can compute the FIs in [Uk|Σk].

each processor pi sends a messagemij to processor pj such that
mij 6= mik, i 6= k
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7.5 The summary of the new parallel
FIMI methods

From the previous discussion it follows that we can
create three parallel FIMI methods. Two of the
methods are based on the modified coverage algo-
rithm. We call these two methods Parallel-FIMI-
Seq(M̃ computed sequentially) and Parallel-

FIMI-Par (set M , such that M̃ ⊆ M , com-
puted in parallel). The third method that lever-
ages the reservoir sampling, called Parallel-FIMI-
Reservoir. The Parallel-FIMI-Reservoir com-
putes the sample F̃s in parallel. The methods can be
parametrized using an arbitrary algorithm for mining
of MFIs and/or an arbitrary algorithm for mining of
FIs. The pseudocode showing the overall process is
shown in Method 1. The Parallel-FIMI method
becomes one of the three methods by using appropri-
ate sampling method at line 5 in Method 1.

Method 1 The Parallel-FIMI method scheme
Parallel-FIMI(In: Integers ND̃, NF̃s

, In: Double α,

Out: Sets Fi)

1 for all pi do-in-parallel
2 // Phase 1: sampling.
3 Read Di.
4 create a database sample of size ND̃
5 create a sample of FIs F̃s of size NF̃s

(in parallel on all

processors or on p1)
6 // Phase 2: partitioning.
7 p1 creates prefixes Uk and its extensions ΣUk

of PBECs

such that |[Uk|ΣUk
]∩ F̃s|/|F̃s| < α · 1

P
and stores them

in X = {(Uk,ΣUk
)}.

8 p1 partitions F on disjoint sets F`, 1 ≤ ` ≤ P by
scheduling the PBECs [U,Σ], (U,Σ) ∈ X , using the
LPT-Makespan algorithm.

9 p1 stores to L` the indexes of the prefixes and its exten-
sions from X assigned to p`

10 // Phase 3: data distribution.
11 send to p`, ` 6= i, database part D′` = {t|t ∈ Di, k ∈

L`, and Uk ⊆̇ t}.
12 // Phase 4: execution of arbitrary sequential algorithm

for computation of FIs.
13 execute an arbitrary algorithm for mining of FIs in the

assigned PBECs Fi

14 end for

8 Experimental evaluation

We have proposed a method for dynamic load-
balancing of an arbitrary DFS or BFS sequential al-
gorithm for mining of FIs. In this section, we evaluate
the speedup of our method on databases generated by
the IBM generator.

8.1 Implementation and experimental
setup

We have implemented our methods using the C++ lan-
guage and the g++ compiler version 4.4.3 with the
-O4 option (highest optimalizations on speed of the
resulting code). As the sequential algorithm, we have
used the Eclat algorithm [34, 11]. As the algorithm
for mining of MFIs, we have chosen the fpmax* [14]
algorithm. As the algorithm for mining of FIs, we
have chosen the Eclat algorithm [34, 11].

The fpmax* algorithm was downloaded from [12]
and the Eclat algorithm was downloaded from [11].
Both algorithms were modified, so we can run them
in parallel using dynamic load-balancing (balancing
on prefixes of size 1). We have preformed all the
experiments with our methods on a cluster of work-
stations interconnected with the Infiniband network.
Every node in the cluster has two dual-core 2.6GHz
AMD Opteron processors and 8GB of main memory.

8.2 Datasets

The experiments were performed on datasets gener-
ated using the IBM database generator – a standart
way of assessing parallel algorithms. We have used
datasets with 500k transactions and supports for each
dataset such that the sequential run of the Eclat al-
gorithm is between 100 and 12000 seconds (≈ 3.3
hours) and two cases with running time 33764 sec-
onds (9.37 hours) and 132186 seconds (36.71 hours).
The IBM generator is parametrized by the average
transaction length TL (in thousands), the number of
items I (in thousands), by the number of patterns
P used for creation of the parameters, and by the
average length of the patterns PL. To clearly differen-
tiate the parameters of a database we are using the
string T[number in thousands]I[items count in
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Dataset Supports
TXI0.1P100PL20TL50 0.11, 0.12, 0.13, 0.14, 0.15,

0.16, 0.17, 0.18
TXI0.1P250PL10TL40 0.05, 0.07, 0.09, 0.1
TXI0.1P50PL10TL40 0.09, 0.1, 0.13, 0.15, 0.18
TXI0.1P50PL20TL40 0.05, 0.07, 0.09, 0.1
TXI0.4P250PL10TL120 0.2, 0.25, 0.26, 0.27, 0.3
TXI0.4P250PL20TL80 0.02, 0.03, 0.05, 0.07, 0.09
TXI0.4P50PL10TL40 0.02, 0.05, 0.07, 0.09
TXI1P100PL20TL50 0.02, 0.03, 0.05, 0.07, 0.09

Table 2: Databases used for measuring of the speedup
and used supports values for each dataset, X ∈
{500, 1000, 2000, 3000}.

1000]P[number]PL[number]TL[number], e.g. the
string T500I0.4P150PL40TL80 labels a database with
500K transactions 400 items, 150 patterns of average
length 40 and with average transaction length 80.
All speedup experiments were performed with vari-
ous values of the support parameter on 2, 4, 6, 10,
16, and 20 processors. The databases and supports
used for evaluation of our methods is summarized in
the Table 2.

We have chosen the parameters of the IBM gen-
erator so that the distribution of lengths of FI, the
lengths of intersections of MFI, and lengths of MFI
for particular support of min support∗ are similar to
the same characteristics of some real databases. For
details, see Appendix A. There is a possibility to take
a real database D = {ti} and create a bigger database
D′ = {t′` = (id × `, U)| for each t = (id, U) ∈ D, 1 ≤
` ≤ N} by N time replication of the database D. The
reason is that some algorithms could behave in the
same way when run on D or D′, e.g., the FPGrowth
algorithm and the fmpax* algorithm that is based on
the FPGrowth algorithm.

8.3 Evaluation of the estimate of the
size of PBECs

In the previous sections, we have shown that the par-
allel mining of FIs is a two stage sampling process.
Theorem 5.4 and Corollary 5.5 suggests that the re-
sults of the double sampling process can be very bad.

In this section, we show that the results are not that
pesimistic.

We use the notation from our previous sections:
by Uj , we denote the prefixes of PBECs, by Li we
denote a set of indexes of prefixes assigned to proces-
sor pi. The indexsets Li are chosen as described in

Section 7.2, i.e.,
|
⋃

j∈Li
[Uj ]∩F̃s|
|F̃s|

≈ 1/P .

For each dataset we have measured the error of the
estimate of the amount of work per processor: for a
set of prefixes {Uk} and for P processors such that
|
⋃

j∈Li
[Uj ]∩F̃s|
|F̃s|

≈ 1/P , we show a graph of probability

of the error
∣∣∣ 1P − |⋃j∈Li

[Uj ]∩F|
|F|

∣∣∣. This graph is very

important for our work.

The Figures 2–4 show the size of the union of the
PBECs created in Phase 2. There are four lines per
graph: combination of dashed and solid line with red
and blue color. The red color indicates measurement
with |D̃| = 42856 and the blue color indicates mea-

surements with |D̃| = 14450. The solid line shows the

probability of the error with |F̃s| = 1001268 and the
dashed line shows the probability of the error with
|F̃s| = 26492. The left-hand graph show the mea-
surements for P = 5 and the right hand graph show
the measurements for P = 10. The graphs shows
a summarization of the errors for different values of
supports. It can be seen from the graphs that the
larger database sample the smaller the probability of
the error. The probability of the error is similar for
different size of |F̃s|.

In addition to the measurements, we have com-
puted for each dataset the number of PBECs that
make 96% of the total number of FIs. We denote the
set of the prefixes of the 96% of PBECs by S = {U},
i.e.,

∑
U∈S |[U ] ∩ F| ≥ 0.96 · |F̃s|. We have discov-

ered that 96% of all FIs are contained in ≈ 100–200
PBECs (the number of all PBECs varies from ≈ 300–
3000). Let Vmin = arg minW∈S |[W ]∩F| be the prefix
of the smallest PBEC, we have measured the relative
size of the smallest PBEC |[Vmin] ∩ F| ≈ 0.0007-
0.003. Therefore, the value of ρ can be chosen be-
tween 0.0007-0.003, depending on the dataset.
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Figure 2: Probability of error of the estimation of the union of PBECs using a database sample cre-
ated in Phase 1 and 2. Experiments made using 5 processors (left) and 10 processors (right). The
T500I0.1P100PL20TL50 dataset.
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Figure 3: Probability of error of the estimation of the union of PBECs using a database sample cre-
ated in Phase 1 and 2. Experiments made using 5 processors (left) and 10 processors (right). The
T500I0.4P250PL20TL80 dataset.
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Figure 4: Probability of error of the estimation of the union of PBECs using a database sample cre-
ated in Phase 1 and 2. Experiments made using 5 processors (left) and 10 processors (right). The
T500I1P100PL20TL50 dataset.

Variant of our method |D̃| |F̃s|
Parallel-FIMI-Reservoir 10000 19869
Parallel-FIMI-Par 10000 33115
Parallel-FIMI-Seq 10000 19869

Table 4: Best combintations of |D̃| and |F̃s| for P =
20

8.4 Evaluation of the speedup

Two of the proposed parallel methods, namely the
Parallel-FIMI-Seq method and the Parallel-
FIMI-Par method, need to compute the MFIs M̃
from a database sample D̃. In the expriments, in
Phase 1, we use the fpmax* [14] algorithm that com-
putes the MFIs. In the case of the Parallel-FIMI-
Seq the fpmax* algorithm is executed sequentially
on processor p1. In the case of the Parallel-FIMI-
Par, we execute the fpmax* algorithm in parallel.

We have evaluated our methods on various com-
binations of |D̃| and |F̃s|. The combinations of |F̃s|
and |D̃| are shown in Table 3. The best combina-
tion of parameters for P = 20 are summarized in Ta-
ble 4. Additionally to the datasets with size 500′000
transactions, we have choosed the best combination
of sampling parameters and made experiments with
the Parallel-FIMI-Reservoir on datasets of size

1′000′000, 2′000′000, and 3′000′000.

We show an example of speedup graphs for |D̃| =

10000 and F̃s = 19869 in Figures 5–10 shows the
Figures 5–10 clearly demonstrate that for the small-
est databases with reasonable structure, the speedup
is up to ≈ 12 on 20 processors. The Parallel-
FIMI-Seq achieves speedup up to ≈ 8 on 20 pro-
cessor, the Parallel-FIMI-Par method achieves
maximal speedup up to ≈ 11 on 20 processors and
the Parallel-FIMI-Reservoir method achieves
speedup up to ≈ 13 on 20 processors. The speedup
for datasets of size > 500′000, using the Parallel-
FIMI-Reservoir, have bigger values of speedups up
to ≈ 17 on 20 processors. The speedups are usually
bigger with lower values of support. In the case of
T3000I0.4P250PL10TL120 the communication net-
work get congested on 20 processors, see Figure 8.

The speedups 0, in the graphs, indicates that the
program run out of memory. The reason of the
memory exhaustion is the large amount of upper
bounds used in the coverage algorithm, see The-
orem 6.4. That is: if the program implementing
the Parallel-FIMI-Seq method runs out of mem-
ory then the program implementing the Parallel-
FIMI-Par method also runs out of main memory.
The program implementing the Parallel-FIMI-
Reservoir method never runs out of memory be-
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|D̃| 10000 10000 10000 14450 14450 14450 14450 14450 20000 20000 20000

|F̃s| 19869 26492 33115 13246 19869 26492 33115 39738 19869 26492 33115

Table 3: Sizes of |D̃| and |F̃s| used in our experiments.

cause it need not to store the MFIs in main memory.
The evaluation of the sampling process in Section 8.3
shows that the estimates are quite good. The ques-
tion is, why the speedup is not almost linear with
the value of the speedup being close to the number of
processors? The answer to this question is obvious:
making the sample takes some time. Additionally,
we can observe that lower values of min support∗

makes better speedup with the two cases for the
T500I0.4P250PL20TL80 dataset having a very good
speedup of ≈ 13 on P = 20 processors. The rea-
son is obvious: the sampling process taking the same
number of sample on the database of the same size
makes better speedup, i.e., if it takes more time to
compute sequentiall the FIs for given support in the
given dataset then the speedup is usually better.

From the graphs on Figures 5–10 and tables on
the Tables 5–7 follows that the Parallel-FIMI-
Par is usually faster then the Parallel-FIMI-
Seq. The average speedup of Parallel-FIMI-Par
is better, compared to the Parallel-FIMI-Seq, for
P < 20. The Parallel-FIMI-Reservoir performs
usually better compared to Parallel-FIMI-Par.
Still, there is a possibility to improve the speedup
of the Parallel-FIMI-Reservoir method. How-
ever, the average speedup is always better, com-
pared to the Parallel-FIMI-Seq and Parallel-
FIMI-Par methods, see Tables 5–7. The bold val-
ues in the tables for the Parallel-FIMI-Par and
Parallel-FIMI-Seq represents the better speedup
of the two methods. The value in the Table
for the speedup if Parallel-FIMI-Reservoir is
bold if it is the best average speedup from the
three methods. Additionally, there is an advan-
tage of the Parallel-FIMI-Reservoir over the
two other methods: the need of computation of
MFIs. The number of MFIs can be very large and
the program implementing the Parallel-FIMI-Seq
method or the Parallel-FIMI-Par can run out
of main memory. This happens for some supports

of the following datasets: T500I0.4P250PL20TL80,
T500I0.4P50PL10TL40, and T500I1P100PL20TL50.

Examples of the results of the experiments with
datasets of size > 500′000 are on Figures 7–8. The
average speedups are shown in Tables 8–10.

Other complicated cases are the datasets with 1000
items in the Figure 10. The reason for such a bad
speedup lies in Phase 1 and 2. There is always
a processor that has much bigger running time in
Phase 4. For example, for min support∗ = 0.02
and for P = 10 the execution time of Phase 4 is
(in seconds): 194, 1199, 319, 245, 536, 357, 477,
212, 332, 212. A sum of these times is 4087 sec-
onds, the sequential algorithm runs ≈ 3800 seconds.
The probability of error of the estimates made in
Phase 2 of T500I1P100PL20TL50 are competitive to
other datasets, see Figure 4. The best speedup that
achieved by Parallel-FIMI-Reservoir is ≈ 8 on
20 processors formin support∗ = 0.02. In other cases
the speedup is not so good. The reason of such be-
haviour is unknown.

Another unexpected behavior is the slighlty
super-linear speedup on 2 processors for
the datasets T1000I0.4P250PL10TL120,
T2000I0.4P250PL10TL120, and
T3000I0.4P250PL10TL120. We are sure that
we do not have an error on our implementation due
to several testing of our implementation: 1) in some
cases comparison of the output with the sequential
algorithm; 2) comparison of the number of all FIs
of the parallel algorithm against the number of FIs
of the sequential algorithm. The hypothesis for
such behaviour is the following: due to the usage of
diffsets and the fact that the ordering of items for the
PBECs for the Phase 4 is taken from the database
sample, we can have slightly different ordering of
items. This ordering of items is more efficient in
this case. Additionally, these datasets show the
bottleneck of the algorithm hidden in Phase 3.

Another consequence of the different ordering of
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items can be also a slow-down of the execution of
the sequential algorithm in the Phase 4, resulting in
lower speedups. Generally speaking: in some cases
it may not be easy to use the sample for estimation
of the amount of work in a single PBEC resulting in
need to add weight for each sample. The weighting
then may be specific for certain domain, or type of
data.

8.5 The evaluation of the database
replication experiments

Let Di be the database part obtained by processor
pi in Phase 3, i.e., the database partition loaded by
pi in Phase 1 and the transactions received by pi in
Phase 3. We define the database replication factor

by:
∑P

i=1 |Di|
|D| .

The LPT-Schedule algorithm assigns the prefix-
based equivalence classes to the processors based
solely on their sizes. If we want to minimize the
database replication, we have to consider the mutual
sharing of the database portions among the prefix-
based classes. In this sub-section, we will show how
the problem of scheduling of the PBECs with respect
to the mutual share of transactions is related to the
Quadratic Knapsack Problem (QKP in short) and the
values of the database replication factor. For a good
source of information on knapsack problems, see [18].

The QKP can be defined as follows: let have n
items and the j-th item having a positive integer
weight wj , and a limit on the total weight of the
chosen items is given by a positive integer knapsack
capacity c. In addition, we have a n×n profit matrix
S = (Sij), where Sij is the profit of having item i
together with item j in the knapsack. Additionally,
we have indicator variables xi ∈ {0, 1} where xi = 1
if the item i was selected to the knapsack and 0 oth-
erwise. The QKP selects subset of items that fit in
the knapsack and have maximal profit. The problem
can be stated in the following way:

maximize
∑
i

∑
j

Sijxixj

subject to
∑
j wjxj ≤ c

We can reformulate the QKP in the terms of our

problem: let have a list of prefixes P = {Ui|Ui ⊆
B}. The profit matrix S, contains the number of
shared transactions for every two PBECs, i.e., Sij =
Supp(Ui∪Uj), i 6= j and Sii = 0. The weight wi is de-
fined as the size of the prefix-based class [Ui]∩F . The
size |[Ui] ∩ F| is determined by the relative number

of samples F̃s belonging to [Ui], i.e., |[Ui] ∩ F̃s|/|F̃s|.
The task is to put prefix-based equivalence classes
into the knapsack, such that the size of the knapsack
c =

∑
i si/P while maximizing the share of trans-

actions. This task is the same as solving the QKP.
When we have a set of prefixes, we assign them to a
processor, remove them from the set Q, update the
matrix and the weight vector, and repeat the process
until we assign all the prefix-based classes. We can
assign some PBECs to a processor pi and repeat the
process of assigning the PBECs not yet assigned to
other processor then pi.

Due to the randomnes of the data generated by
the IBM generator the replication factor is almost
P on P processors. Therefore, we have used real
datasets downloaded from the internet [12]: kosarak,
accidents, chess, connect, mushroom, pumsb star,
and pumsb [12]. As the implementation of the QKP
algorithm, we have downloaded the source code from
[27], which is the implementation of the algorithm
from [5].

The results of the experiments are summarized in
tables. For each dataset there are three tables: im-
provement of the QKP scheduling against the LPT-
Makespan algorithm, the database replication using
the greedy schedule, and the database replication us-
ing the QKP schedule. We have chosen the number
of processors: 4, 6, 10, and 14.

The biggest improvement of the database replica-
tion (28%) is on the mushroom dataset. It can be
seen that the biggest improvement is at the relative
support level 0.001. The improvements are much
smaller, when the relative support is > 0.01. The
mushroom dataset is also one of the two datasets
where we have achieved a replication factor after min-
imalization � P − 1 (for P = 14 processors). The
lowest replication factor 2.7 on 14 processors was
measured on the mushroom dataset. In most cases
the replication factor is between P − 1 and P for the
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datafile/Parallel-FIMI-Seq 2 4 6 10 16 20
T500I0.4P50PL10TL40 1.349 1.918 2.423 3.037 3.532 3.578
T500I0.1P50PL20TL40 1.417 2.399 3.040 4.280 6.113 6.761
T500I0.4P250PL20TL80 0.771 1.471 1.906 2.928 4.108 4.703
T500I1P100PL20TL50 1.020 1.520 1.824 1.939 2.281 2.273
T500I0.1P50PL10TL40 1.345 2.264 3.103 4.538 6.386 7.385
T500I0.4P250PL10TL120 0.759 1.471 2.101 3.044 4.159 4.985
T500I0.1P100PL20TL50 1.062 1.832 2.413 3.660 5.349 6.110
T500I0.4P150PL40TL80 0.965 1.635 2.282 3.163 4.121 4.658
T500I0.1P250PL10TL40 0.985 1.724 2.285 3.513 4.830 5.778

Table 5: Average speedups of Parallel-FIMI-Seq for |D̃| = 10000, |F̃s| = 19869, and for database with
500′000 transactions.

datafile/Parallel-FIMI-Par 2 4 6 10 16 20
T500I0.4P50PL10TL40 1.524 2.209 2.889 2.649 2.972 3.255
T500I0.1P50PL20TL40 1.502 2.553 3.452 4.829 6.372 7.973
T500I0.4P250PL20TL80 0.945 1.838 2.882 3.679 4.813 5.374
T500I1P100PL20TL50 1.116 1.498 1.980 1.697 2.763 2.051
T500I0.1P50PL10TL40 1.371 2.244 2.633 4.862 6.194 7.461
T500I0.4P250PL10TL120 0.879 2.030 2.549 4.011 5.553 6.273
T500I0.1P100PL20TL50 1.122 1.932 2.237 3.869 5.583 5.885
T500I0.4P150PL40TL80 1.076 1.955 2.591 3.630 4.776 3.156
T500I0.1P250PL10TL40 1.100 1.898 2.791 3.954 5.525 6.239

Table 6: Average speedups of Parallel-FIMI-Par for |D̃| = 10000, |F̃s| = 19869 and for database with
500′000 transactions.

datafile/Parallel-FIMI-
Reservoir

2 4 6 10 16 20

T500I0.4P50PL10TL40 1.628 2.347 3.372 4.776 6.202 6.893
T500I0.1P50PL20TL40 1.455 2.550 3.093 4.076 5.670 6.342
T500I0.4P250PL20TL80 1.453 2.757 3.965 5.761 6.208 8.430
T500I1P100PL20TL50 1.121 1.923 2.374 2.841 4.026 5.753
T500I0.1P50PL10TL40 1.380 2.521 3.281 4.464 6.772 8.860
T500I0.4P250PL10TL120 1.216 2.249 3.117 4.584 6.179 7.067
T500I0.1P100PL20TL50 1.172 2.071 2.767 3.802 6.840 8.967
T500I0.4P150PL40TL80 1.211 2.155 2.858 3.789 4.976 5.423
T500I0.1P250PL10TL40 1.243 2.161 2.930 4.606 6.863 7.793

Table 7: Average speedups of Parallel-FIMI-Reservoir for |D̃| = 10000 and |F̃s| = 19869
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datafile/Parallel-FIMI-Reservoir 2 4 6 10 16 20
T3000I0.4P50PL10TL40 1.869 2.757 3.324 4.324 5.477 5.802
T3000I0.1P50PL20TL40 1.958 3.120 4.531 5.659 7.858 8.345
T3000I0.4P250PL20TL80 1.910 3.557 4.944 7.324 10.205 11.060
T3000I1P100PL20TL50 1.731 2.838 3.891 5.412 8.158 9.696
T3000I0.1P50PL10TL40 1.969 3.441 4.771 6.569 10.604 13.357
T3000I0.4P250PL10TL120 2.205 3.927 5.229 8.250 10.292 7.192
T3000I0.1P100PL20TL50 1.920 3.278 4.377 6.046 11.572 14.358
T3000I0.4P150PL40TL80 1.773 3.185 4.427 6.332 8.061 8.475
T3000I0.1P250PL10TL40 1.914 3.568 4.879 7.180 11.626 14.160

Table 8: Average speedups of Parallel-FIMI-Reservoir on database of size 3′000′000 for |D̃| = 10000

and |F̃s| = 19869

datafile/Parallel-FIMI-Reservoir 2 4 6 10 16 20
T2000I0.4P50PL10TL40 1.792 2.829 3.342 4.655 4.759 5.465
T2000I0.1P50PL20TL40 1.865 3.218 3.920 5.919 8.675 8.650
T2000I0.4P250PL20TL80 1.935 3.166 4.767 6.775 8.884 9.315
T2000I1P100PL20TL50 1.861 2.890 4.078 4.799 8.146 10.081
T2000I0.1P50PL10TL40 1.951 3.426 4.462 6.604 8.563 12.164
T2000I0.4P250PL10TL120 2.134 3.773 5.543 8.284 10.448 12.141
T2000I0.1P100PL20TL50 1.905 3.613 4.332 6.327 12.093 14.223
T2000I0.4P150PL40TL80 1.938 3.362 4.655 6.531 8.304 9.299
T2000I0.1P250PL10TL40 1.897 3.582 4.369 7.137 11.703 13.817

Table 9: Average speedups of Parallel-FIMI-Reservoir on database of size 2′000′000 for |D̃| = 10000

and |F̃s| = 19869

datafile/Parallel-FIMI-Reservoir 2 4 6 10 16 20
T1000I0.1P50PL10TL40 1.993 3.666 4.403 6.191 10.884 11.991
T1000I0.1P50PL20TL40 1.940 3.472 4.515 5.482 8.544 8.936
T1000I0.4P250PL20TL80 1.935 3.560 4.995 7.497 9.537 10.043
T1000I1P100PL20TL50 1.816 3.438 3.483 4.914 8.180 11.410
T1000I0.1P50PL10TL40 1.993 3.666 4.403 6.191 10.884 11.991
T1000I0.4P250PL10TL120 2.083 3.837 5.289 7.778 10.741 12.229
T1000I0.1P100PL20TL50 1.877 3.530 4.620 6.098 11.651 14.002
T1000I0.4P150PL40TL80 1.841 3.256 4.487 6.548 8.300 8.731
T1000I0.1P250PL10TL40 1.901 3.643 4.576 7.130 11.171 13.736

Table 10: Average speedups of Parallel-FIMI-Reservoir on database of size 1′000′000 for |D̃| = 10000

and |F̃s| = 19869
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Figure 5: Speedups of the Parallel-FIMI-Seq, Parallel-FIMI-Par, and Parallel-FIMI-Reservoir
methods (from left to right) on the T500I0.1P100PL20TL50 database.
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Figure 6: Speedups of the Parallel-FIMI-Seq, Parallel-FIMI-Par, and Parallel-FIMI-Reservoir
methods (from left to right) on the T500I0.1P50PL10TL40 database.
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Figure 7: Speedups of the Parallel-FIMI-Reservoir method on T1000I0.1P100PL20TL50,
T2000I0.1P100PL20TL50, and T3000I0.1P100PL20TL50 datasets (from left to right).
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Figure 8: Speedups of the Parallel-FIMI-Reservoir method on T1000I0.4P250PL10TL120,
T2000I0.4P250PL10TL120, and T3000I0.4P250PL10TL120 datasets (from left to right).
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Figure 9: Speedups of the Parallel-FIMI-Seq, Parallel-FIMI-Par, and Parallel-FIMI-Reservoir
methods (from top to bottom) on the T500I0.4P250PL20TL80 database.
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Figure 10: Speedups of the Parallel-FIMI-Seq, Parallel-FIMI-Par, and Parallel-FIMI-Reservoir
methods (from top to bottom) on the T500I1P100PL20TL50 database.
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datasets generated by the IBM generator and some
of the real datasets.

Overall, the improvement of the replication fac-
tor mostly ranges between ≈ 1% and ≈ 13%. It
sometimes happens that the replication factor is
worse after minimalization. The worsening is for the
pumsb dataset −0.0464%, pumsb star −2.2881% and
−0.2538%. We consider these values as outliers.

Generally it holds that for two processors the
database replication is very high, but mostly does not
reach P for P processors. However, in most cases the
replication factor is between P − 1 and P . The most
interesting case is the mushroom dataset. From the
experiments it can be seen that the lower the support
the better results. The best database replication fac-
tor is ≈ 10 on 14 processors for the mushroom dataset.

P/min support∗ 0.0050 0.0040 0.0030
4 12.6096 11.6921 15.9684
6 13.6673 19.4744 20.7549
10 18.0931 18.0157 18.7086
14 17.6054 20.2953 21.7529

Table 11: Database replication improvement (in %)
P/min support∗ 0.0050 0.0040 0.0030
4 1.76357 1.9325 1.86456
6 2.08358 2.14564 2.18368
10 2.36798 2.4311 2.49938
14 2.55512 2.55404 2.74345

Table 12: Database replication without minimaliza-
tion.

P/min support∗ 0.0050 0.0040 0.0030
4 1.54119 1.70655 1.56682
6 1.79881 1.72779 1.73046
10 1.93954 1.99312 2.03178
14 2.10528 2.03569 2.14667

Table 13: Database replication after minimalization

9 Conlusions and future work

We have two already published methods for parallel
mining of frequent itemsets, namely: the Parallel-
FIMI-Seq method [20], the Parallel-FIMI-Par
method [21], and the Parallel-FIMI-Reservoir
method [19], that is a qualitative major improvement

of the two previous methods. The results are impor-
tant from the following reasons:

1. they are very general, they can be used for paral-
lelization of an arbitrary DFS algorithm for min-
ing of FIs;

2. the proposed static load balancing captures the
amount of work for each processor: none of pre-
viously proposed methods does this;

3. we are measuring the speedup of our methods
against a very fast sequential algorithm, i.e., it
is hard to achieve good speedup;

Even that the speedup of the Parallel-FIMI-
Reservoir method is only slightly better then the
speedup of the previous methods, the new method is
a major improvement for the following reasons:

1. the previous two methods suffer from very high
memory consumption due to the fact that they
have to store the MFIs or a super set of MFIs in
main memory;

2. the Parallel-FIMI-Reservoir method needs
only to store the sample, which could consume
much smaller amount of memory then the MFIs
M̃ or the superset of all MFIs M ;

3. the new method allow us to have bounds on
the estimation of the load balancing, see The-
orem 5.4 and Theorem 5.3.

Our method can fail in the following case: if the
size of the intersections of tidlists(or diffsets) differ
substantialy in each PBEC then the sample does not
represent the amount of work in each PBEC.

There is still room for improvement: instead of us-
ing the Eclat algorithm together with the reservoir
sampling algorithm, we can use a modified fpmax*
algorithm or any other algorithm for mining of MFIs
together with the reservoir sampling algorithm. That
is: we can use similar techniques of optimalizations
used in the MFI mining algorithm. The reason is,
that we do not need to compute the support of the
FIs, we need only to enumerate the FIs. This ap-
proach can be used only in the case when the relative
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P/min support∗ 0.1 0.08 0.06 0.04 0.02 0.001
4 0.6155 0.8617 0.5663 1.0093 4.7883 11.0753
6 2.6015 3.9635 1.4903 1.8668 2.1500 14.6110
10 3.8776 3.2556 3.5445 9.6659 8.0022 22.7943
14 5.8516 5.9913 7.9623 7.7287 10.0239 28.9319

P/min support∗ 0.1 0.08 0.06 0.04 0.02 0.001
4 4 4 4 4 4 4
6 5.99951 6 5.99606 6 6 6
10 9.93599 9.98929 9.98769 9.99926 9.99852 9.96972
14 13.9791 13.8902 13.9357 13.979 13.9547 13.8765

P/min support∗ 0.1 0.08 0.06 0.04 0.02 0.001
4 3.97538 3.96553 3.97735 3.95963 3.80847 3.55699
6 5.84343 5.76219 5.9067 5.88799 5.871 5.12334
10 9.55071 9.66408 9.63368 9.03274 9.19842 7.69719
14 13.1611 13.058 12.8261 12.8986 12.5559 9.86177

Table 14: Improvement of the database replication of the mushroom dataset.

number of samples in a PBEC represents the amount
of work for enumeration of that PBEC.

Another possibility to improve the performance is
the weighting of each set U ∈ F̃s: instead of estimat-
ing the amount of work in a PBEC [W ] by [W ]∩ F̃s,
we can weight each U ∈ F̃s by the amount of work
needed to compute U .

It seems that there is a possibility to use a recently
proposed method for approximating the number of
frequent sets [3]. In the beginning of our work, we
have been considering a similar technique. However,
we have dismissed the method due to the fact that
in some cases the methods could make a big error.
For the same reasons the Parallel-FIMI-Par and
Parallel-FIMI-Seq.

Another possibility to obtain the sample F̃s is to
use directly the transactions t ∈ D as the input to
the modified coverage algorithm or to the unmodified
coverage algorithm. However, we have been consid-
ering this approach and it fails due to the following
reasons: the size of the set

⋃
t∈D P(t) is much big-

ger then the size of
⋃
m∈M P(m). Let have two finite

sets A,B such that A ⊂ B. Let ρ = |A|/|B|. The
problem is that the running time is proportional to
1/ρ.

We believe that our method can be applied also
on other frequent pattern mining algorithms such

as: mining of frequent trees, mining of frequent se-
quences, mining of frequent graphs.

A Database characteristics

In this appendix, we explain the database character-
istics used for database selection in a more detail.

Mimicking the real dataset using the IBM genera-
tor is a hard task. In order to choose databases that
are similar to the real databases, we have created the
following database characteristics:

1. The distribution of intersections of MFIs: let
have a set of MFIs M. We have measured
|mi ∩ mj |,mi,mj ∈ M for particular choice of
min support∗ and compared the histograms of
real databases and databases generated by the
IBM generator.

2. The distribution of FIs of certain length: let have
a set of FIs F . We have measured |U |, U ∈ F .
We have measured the lengths for various values
of min support∗: we have split the interval [0, 1]
on n = 1000 values i · 1

n for i = 0, . . . , n − 1
and compared histograms of real datbases and
databases generated by the IBM generator for
each value of i · 1n .
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3. The distribution of lengths of MFI: let have
a set of MFIs M. We have drawn the his-
tograms of |m|,m ∈ M for various values of
min support∗ and compared the histograms of
the databases generated by the IBM generator
to the histograms of real databases.

We have chosen the datasets so these characteris-
tics are close to the characteristics of real datasets,
e.g., connect, pumsb, see [12]. The only exception to
this choice is the T500I1P100PL20TL50 dataset. We
omit details of the measurements because they are
out of the scope of this paper.
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