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http://www.nusl.cz/ntk/nusl-135478
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

The Primal-Dual Active
Set (PDAS) Method for Dynamic
Variational Inequalities Arising
from the Fractured Bone
Neoplasm Models

Jǐŕı Nedoma

Technical report No. 1167

November 2012
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Abstract:

The paper deals with efficient algorithms for dynamic variational inequalities arising from fractured neoplasm
(benign and malignant tumors and cysts) growth models. Since the geometry of bones with neoplasms
changes in time, therefore, mathematical models of tumor and cyst evolutions are shortly presented. Owing
to a loading the bones with neoplasms are fractured. The models of fractured bones with neoplasms are
based on the theory of dynamic contact problems without or with Coulomb or Tresca frictions. The
numerical solutions of these part of problems are based on mortar methods for nonconforming meshes with
dual Lagrange multipliers and the primal-dual active set algorithms for problems without and with friction
are derived. It is shown that the propagation of the crack can be calculated with both remeshing and nodal
relaxation; some crack growth criteria are also mentioned. Moreover, it is shown that generalized crack
models lead to solve problems with nonpenetration conditions and the primal-dual active set method.
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1 Introduction

In biology and medical sciences mathematical models play an important role. The role of mathemat-
ical models are then to explain a set of biomedical experiments and analyses, and to make certain
predictions which will then be tested by further biomedical, biological or numerical experiments as well
as further analyses of obtained data. During the last four decades, various neoplasms (cysts, benign
and malign tumors) models have been developed, analyzed and discussed. They also need to take into
considerations the facts that the tumour regions are changing in time and that their boundaries are
unknown in advance, and they are denoted as free boundary problems and in the case of fractured
bones it leads to solve problems based on variational inequalities.

By neoplasm, or tumor, is meant a mass of tissue that forms when cells divide uncontrollably,
that is, by an overproduction of cells. Neoplasms are benign tumors, malignant tumors or cancers
and cysts. Cancers are of several types due to their origin, that is, due to the tissue from which they
arise and the type of cells involved. A cancer of white blood cells is called leukemia, cancers arising
in muscles and connective tissue are called sarcoma, and a cancer originated from epithelial cells is
called carcinoma. A bone tumors are represented by abnormal growth of cells within the bone that
are of (i) noncancerous types, and we speak about benign bone tumors, or (ii) cancerous types,
and we speak about malignant bone tumors. Bone tumors are of primary types, originating within
the bone tissues, or of secondary types, which result from the spread cancer cells from the primary
tumors located in other tissues in the human body and we speak about metastasis. Another type of
neoplasms are cysts, expect that they are filled by fluid and that are formed either in bones or in
soft tissues, respectively. Growing tumors replace healthy tissue with abnormal benign or malignant
tissues. Benign tumors are not life-threatening, expecting such benign tumors that are changed into
malignant tumors. Benign bone tumors as well as cysts do not metastasize, that is, they do not spread
to other tissues but remain situated in the bone or in the other tissue.

Since bones are composed of hard mineralized tissues, they are more resistant to destruction than
other soft tissues, but in some cases the loaded long bones, vertebra or jaw-bones with tumors and
cysts can fracture. The classifications of neoplasms are published by the World Health Organization
– WHO.

Cancers arise from one single tumor cell. The transformation from the normal cells into tumor cells
are multistage processes, where the evolution of cells are regulated and controlled by genes constrained
in their nucleus (Weinberg [22]). A special feature in tumor growth is proliferation. Proliferating cells
are causes of the tumor volume which varying in time. A tumor contains different populations of
cells, such as (i) proliferating cells, i.e., cells that undergo abnormally fast mitosis; (ii) necrotic cells,
i.e., cells that died due to a luck of nutrion; (iii) quiescent cells, i.e., cells that are alived but their rate
of mitosis is balanced by the rate of natural death.

In growing masses of abnormal cells remain clustered together and confined to the cavity we
then speak about benign tumors. These types of neoplasms rise relatively slowly, approximately
several millimeters per year. In the case that the neoplasms (tumors) have emerged of the cavity,
by braking out through the basal membrane and then proliferating into the extracellular matrix, or
stroma, then the tumors have been malignant, and we then speak about malign tumors or cancers.
In some cases the cancer cells invade into the blood or the lymphatic vessels and then transported
into another locations, where they create secondary tumors. About this process we speak about
metastasis process. Malign tumors rise relatively very quickly approximately 1mm/day. A primary
tumors are traced to mutated cells, from which during short time colonies of cells are formed. In all
types of neoplasms a solid tumors can be detected when it reaches a size of several millimeters.

Cysts are pathological cavity lined by the own epithelium and in the cyst lumen filled by fluid
or semi-fluid contents which are not created by the accumulation of pus materials and generally are
formed by a connective tissue walls. In this study we will limit ourselves to the odontogenic cysts
only. Odontogenic cysts are cysts of the jaw which are lined by an odontogenic epithelium (that
is, avascular epithelial tissues). Odontogenic cysts are in general slow growing and represent in early
states of evolution no great problem and treat to human life. When there are occurred in the bones,
they are called central cysts, and when they are occurred in soft tissues they are called peripheral
cysts.
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2 Mathematical models of tumor and cystic growths

2.1 Mathematical models of tumor growths

In our study a continuum model will be used, and moreover, we limit ourselves to avascular and
vascular models only. We will formulate our models in terms of cell densities, denoted by up(x, t),
uq(x, t) and uD(x, t) for proliferating, quiescent and dead cells, respectively, where x denotes a spatial
coordinate and t time, t ∈ I, I ∈ [t0, tp], t0 ≥ 0, tp > 0 (see Cui and Friedman [4, 5], Friedman [7]).

We assume that proliferating cells divide as a rate, that is, they are limited by crowding effect of
the total cell population, and therefore, that proliferating cells become quiescent at a rate KQ(uc)
that depends on the concentration uc(x, t) of a generic nourishment having an influence on a tumor
growth and that their death rate is KA(uc), that also depends on uc(x, t). On the other hand, the
quiescent cells become necrotic at a rate KD(uc) that depends also on the concentration uc(x, t).
The quiescent cells become proliferating at a rate KP (uc) which also depends on the concentration of
nutrient uc(x, t). The density of proliferating cells is increasing due to proliferation at a rate KB(uc)
also depending on uc(x, t). Finally, the dead cells are removed from the tumor, as they decompose,
at a constant rate KR. Since cells proliferate and dead cells are removed from the tumor, there exists
a continuous motion of cells within the tumor, which is represented by a velocity vT . Denoting by
Ω(t) a region occupied by a tumor at time t and ∂Ω(t) its boundary, then the conservation of mass
laws for the densities of the proliferating cells up(x, t), the quiescent cells uq(x, t) and the dead cells
uD(x, t) are as follows:

∂up
∂t

+ div(upv) = [KB(uc)−KQ(uc)−KA(uc)] up +KP (uc)uq , (2.1)

∂uq
∂t

+ div(uqv) =KQ(uc)up − [KP (uc) +KD(uc)]uq , (2.2)

∂uD
∂t

+ div(uDv) =KA(uc)up +KD(uc)uq −KRuD . (2.3)

Assuming that the tumor tissue is modelled by a porous medium and the moving cells as fluid
flow, then the velocity vT of fluid flow is related to the fluid pressure σ by the Darcy law, thus

vT = −β∇σ, where β > 0 . (2.4)

Moreover, assuming that all cells are physically identical in volume and mass, therefore, their density
is constant inside the tumor, that is,

up + uq + uD = N = const.

For simplicity, we can put β = 1 and N = 1.
To determine the appropriate equation for the concentration uc(x, t), we must consider the context

in which the tumor is growing, that is, in its avascular stage or in the process of angiogenesis or in
its vascular stage. Next, due to our investigation of fractured long bone and/or of jaw-bone with
tumor(s), it is possible to limit ourselves to avascular and vascular stages of tumor evolution only.
Then, for an avascular evolution of tumors we find

ε0
∂uc
∂t

= Dc∇
2uc − λuc, ε0 =

Tdiffusion
Tgrowth

, (2.5)

where Dc is a diffusion coefficient, about which is assumed to be constant, λ is the nutrient con-
sumption rate, ε0 is the ratio of the nutrient diffusion time scale to the tumor growth time scale,
Tdiffusion ∼ 1 minute, while Tgrowth ∼ 1 day, so that ε0 is small. For a vascular evolution of tumors
the Eq. (2.5) must be replaced by

ε0
∂uc
∂t

= Dc∇
2uc + Γ(ucB − uc)− λuc , (2.6)

where ucB is the nutrient concentration in the vasculature, Γ is the rate of the blood-tissue transfer,
so that Γ(ucB − uc) represents the nutrient concentration after the process of angiogenesis.
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In the case of vascularized tumors if we use the change of variables, that is, if we put

uc −
ΓucB
Γ + λ

→ uc, Γ + λ→ λ , (2.7)

then Eq. (2.6) is transformed to Eq. (2.5), that is, uc in the avascular and vascular tumors are described
by the same equation (2.5). Adding Eqs (2.1), (2.5) with (2.7), we find

div v = KB(uc)up −KRuD ,

and substituting uD = 1− up − uq, then we obtain the following problem:

Problem (PT ): Find uc, up, uq, σ satisfying the following system of equations

ε0
∂uc
∂t

= Dc∇
2uc − λuc in Ω(t), t > 0 , (2.8)

∂up
∂t

−∇σ · ∇up = f(uc, up, uq) in Ω(t), t > 0 , (2.9)

∂uq
∂t

−∇σ · ∇uq = g(uc, up, uq) in Ω(t), t > 0, (2.10)

∆σ = −h(uc, up, uq) in Ω(t), t > 0 , (2.11)

where

f(uc, up, uq) = [KB(uc)−KQ(uc)−KA(uc)]up +KP (uc)uq − h(uc, up, uq)up,

g(uc, up, uq) =KQ(uc)up − [Kp(uc) +KD(uc)]uq − h(uc, up, uq)uq ,

h(uc, up, uq) = [KB(uc) +KR]up +KRuq −KR ,

with the boundary conditions on ∂Ω(t)

uc = uc1 on ∂Ω(t), t > 0, (2.12)

σ = γκ,
∂σ

∂n
= −vn on ∂Ω(t), t > 0, (2.13)

and with the initial conditions

uc(x, t0) = uc0(x) in Ω(t0), uc0(x) ≥ 0, (2.14)

up(x, t0) = up0(x) in Ω(t0), up0(x) ≥ 0, (2.15)

uq(x, t0) = uq0(x) in Ω(t0), uq0(x) ≥ 0, (2.16)

where up0(x) + uq0(x) ≤ 1, and where uc1 is a constant concentration of nutrients, vn is the velocity
of the free boundary, κ is the mean curvature, γ is the surface tension coefficient and uc0, up0, uq0 are
given functions.

Under the assumption that the initial data are smooth and the initial and boundary data are
consistent with the Eq. (2.8) at ∂Ω(t0), we have the following result:

Theorem 1 Let the initial data be sufficiently smooth, the physical data be constant and the con-
sistency conditions be satisfied, then there exists a unique smooth solution to Problem (PT ) for
t ∈ I = [0, tp].

For the proof see Cui and Friedman [5].

2.2 Mathematical model of cystic growths

Our mathematical model of cystic growth is based on the important diffusive mechanisms, cell birth
and death, the idea of osmosis, the balance between osmotic and hydrostatic pressure forces within
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the cyst structure and its neighboring tissue. By the osmosis we understand the diffusive process of
permeability between two different liquids which are mutually separated by a porous membrane.

Let us assume that the cyst occupies the region, we denote it by Ωc (e.g. it can be a sphere of
radius R or of an arbitrary shape) with a thin epithelial rim of cells covering its surface. The lumen
of the cyst is assumed to be filled by dead cellular material, consisting partly of osmotic material
concentration C+, with total mass S, generating an osmotic pressure P+

0 . Inside the cyst is observed
the hydrostatic pressure, we denote it as P+

h . The neighborhood of the cyst is created by a material,
consisting of a fixed osmotic material of concentration C−, generating an osmotic pressure P−

0 . The
hydrostatic pressure here is P−

h . According to the size of the cavity the thickness of the capsule and
the epithelial layer can be neglected. The growth of radicular cysts is of about a few millimeters
per year, while in the keratocyst’s case their growths are several times higher. The osmotic pressure
difference ∆P0 = P+

0 − P−
0 relates to the difference in osmolality ∆m, that is,

∆P0 = ∆mRgT , (2.17)

where ∆m is the molar concentration of “osmotic active” molecular per litre (∼ 0.011 Osml ≡
0.011 mol), Rg = 8.31 J/mol.K is the ideal gas constant, T is the absolute temperature. We see
that the osmotic pressure will be dependent on the deformation of the jaw. The osmotic pressure
∆P0 is ∼ 28.3 Nm−2. Therefore, the osmotic process is also slow or relatively quick, but the pas-
sage of fluid (fluid passage) through the epithelial membrane in response to the differences between
pressures inside the cyst and in its neighborhood is instantaneous. Hence, the hydrostatic pressure dif-
ference between the interior of the cyst and the neighborhood balances the osmotic pressure difference
between the cyst interior and its neighborhood at the cyst rim, i.e.,

P+
h − P−

h = P+
0 − P−

0 , (2.18)

where P+
h , P+

0 are the hydrostatic and osmotic pressures, respectively, inside the cyst and P−
h , P−

0

are the hydrostatic and osmotic pressures, respectively, in its neighborhood.
The cyst’s epithelial layer keeps a constant mitotic rate. The rates of epithelial birth and death

of the cell are balanced approximately to maintain a fixed rim thickness. Since the cyst grows, cells
migrate towards the interior of cavity, where they die and since the degraded material driving the
osmosis does not penetrate the epithelial layer (i.e. membrane) it then start to be a part of osmotic
material. The osmotic material is trapped in the cavity of the cyst and only fluid can pass the semi-
permeable epithelial membrane. Let “s” be the total amount of degraded material inside the cyst.
Then the rate of change of mass of osmotic material in the core in time, i.e. of “ṡ = ds

dt
”, is proportional

to the surface area of the covering epithelium, we denote it as Sc, then we have

ds

dt
= βSc , (2.19)

where β is a supply rate of the osmotic material, i.e., of degraded material into the cavity, and it can
change according to the type of cyst. If β increases, the pathological change in the epithelium will
increase the amount of osmotically material in the lumen of the cyst.

The jump in osmotic pressures across the epithelial lining is proportional to the concentration
difference of osmotic material (degraded cells), i.e., it satisfies the so-called van Hoff equation

P+
0 − P−

0 = α(C+ − C−) , (2.20)

where C+ is the concentration of material inside the cyst, C− is the concentration of material outside
the cyst, α = RgT is the proportional coefficient, where Rg is the ideal gas constant, T is the
temperature (Tombs, Peacocke [20]).

The concentration of material inside the cyst, given as its total mass “s” divided by the cavity
volume Vc, is

C+ =
s

Vc
=

s

|Ωc|
, (2.21)

where Ωc represents the region occupied by the cyst, i.e., Vc = |Ωc|. When the cyst grows into a bony
tissue, the bone is resorbed and the cyst grows as there it was no obstacle stopping it from expanding.
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The hydrostatic pressure jump across the epithelial membrane balances the stresses in the semi-
permeable membrane and the stresses on the cyst (cyst surface) from the neighboring bone tissue
(which can be also a soft tissue). Thus

P+
h − P−

h = f(r, ṙ) + fb(r, ṙ) , (2.22)

where f is the physical stresses, depending on the material properties of the cyst and the neighboring
bone tissue, which in general is a function of a position vector r of the surface point, and ṙ = dr

dt
is

the time derivative of r, and fb corresponds to the biological stresses, i.e., stresses due to biological
processes, such as tension shifts in the epithelial lining due to the cell proliferation. These biological
stresses may probably play an substantial role in keratocysts. The natures of these stresses in situ are
not known currently, therefore, the term fb(r, ṙ) can be omitted, i.e., fb(r, ṙ) = 0.

Magar et al. [13] expect that the material of surrounding tissue is mixture of elastic and non-elastic
(viscous) materials and that it can be modelled by a linear viscoelastic fluid of Maxwell type with
a stiffness E and a viscosity ν. The total strain is the sum of the elastic and viscous strains and the
total strain rate is the sum of its elastic and viscous strain rate

ε = εe + εν , ε̇ = ε̇e + ε̇ν ,

where ε̇ = dε
dt
. Since ε̇e = ḟ

E
, and ε̇ν = f

ν
, we obtain

ḟ + τ−1f = Eε̇ , (2.23)

where τ = ν
E

is the so-called relaxation time.

From (2.20) we find C+ − C− = 1
α
(P+

0 − P−
0 ), i.e., the concentration difference C+ − C− is the

osmotic pressure difference divided by α. From (2.18) the osmotic pressure difference is equal to
the hydrostatic pressure difference, i.e. 1

α
(P+

0 − P−
0 ) = 1

α
(P+

h − P−
h ) = 1

α
f(r, ṙ), and therefore, the

physical stresses 1
α
f(r, ṙ) = C+ − C−. Hence, the concentration of degraded material

C+ = C− +
1

α
f(r, ṙ) , (2.24)

that is, it is a linear function of the stresses, since C− and α are assumed to be constant.
Since C+ = s

Vc(r)
, then substituting s = C+Vc(r) into (2.19), i.e., ds

dt
= βSc, and using (2.24), then

after some modification, we obtain

V̇c
α
f(r, ṙ)ṙ+ V̇cC

−ṙ+
Vc
α
ḟ(r, ṙ) = βSc , (2.25)

representing expression relating the cyst size, its shape and the physical stresses exerted by the stroma,
where β is the core supply rate of osmotic material ([mol/m2.s]) and is different for radicular cysts
and keratocysts for which is several times higher than for radicular cysts.

Since we model the material which is a mixture of fluid, collagenous capsule, and crystalline
structures, than it can be described as Maxwell’s fluid. Due to (2.23) the stresses satisfy

τ ḟ(r, ṙ) + f(r, ṙ) = νε̇ , (2.26)

as τ = ν
E
. The problem will be complete, if the initial condition on r and f will be given. Thus, for

t = 0
r(0) = r0, f(0) = f0 , (2.27)

where r0 and f0 are given.
Assuming that the cyst is of a spherical shape, then Vc =

4
3πR

3 and Sc = 4πR2, where R is a radius
of the cyst. For more details see Magar et al. [13], Ward et al. [21], Nedoma [18]. The problem can
be solved by numerical methods for ODEs.
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3 Stress-strain analysis of the fractured bone with neoplasms

3.1 Mathematical model

Let the bones with neoplasms be approximated by elastic or visco-elastic rheologies, respectively, and
let occupy a region Ω ∈ RN , N = 2, 3. (Fig.1a,b,c), the geometry of which was determined on the
obtained results from the previous section. Further, we will limit ourselves to the linear elasticity and
the visco-elasticity with short memory (Kelvin-Voigt type).

Let I = (0, tp), tp > 0, be a time interval. Let Ω ⊂ RN , N = 2, 3, be a region occupied by a system
of bodies of arbitrary shapes Ωι such that Ω = ∪r

ι=1(Ω
ι ∪ Γι

cv). Let Ωι have Lipschitz boundaries
∂Ωι and let us assume that ∂Ω = Γτ ∪ Γu ∪ Γc, where the disjoint parts Γτ , Γu, Γc are open subsets.
Moreover, let Γτ = 1Γτ ∪ 2Γτ , Γu = 1Γu ∪ 2Γu and Γc = ∪s,mΓsm

c , Γsm
c = ∂Ωs ∩ ∂Ωm, s 6= m,

s,m ∈ {1, . . . , r}, Γsm
c represent the contact boundaries between the components of joints as well as

between two opposite faces of cracks, Γcv = ∪sΓ
s
cv, Γ

s
cv ⊂ ∂Ωs

1 ∩ ∂Ωs
2, represent virtual interfaces

between regions Ωs
1 and Ωs

2. It is evident that these boundaries are determined as results of the used
neoplasm’s growth models. Let Ω(t) = I × Ω denote the time-space domain and let Γτ (t) = Γτ × I,
Γu(t) = Γu × I, Γc(t) = Γc × I denote the parts of its boundary ∂Ω(t) = ∂Ω× I. In the study we will
assume that the contact boundaries Γsm

c are between contact boundaries of joints (i.e., hip joints, knee
joints, temporomandibular joints, etc.) as well as contact boundaries between the opposite boundaries
in the fractures of bones and/or of vertebra.

Furthermore, let n denote the outer normal vector of the boundary, un = uini, ut = u − unn,
τn = τijnjni, τ t = τ − τnn be normal and tangential components of displacement and stress vectors
u = (ui), τ = (τi), τi = τijnj , i, j = 1, . . . , N . Let F, P be the body and surface forces, ρ the density.
The respective time derivatives are denoted by “′”. Let us denote by u′ = (u′k) the velocity vector.
To formulate the contact and friction conditions, let us introduce at each point of Γs

c the vectors tsi ,
i = N−1, spanning in the corresponding tangential plane. Let {ns, tsi}, i = 1, 2, be an orthogonal basis
in R

N for each point of Γs
c. To formulate the non-penetration condition we use a predefined relation

between the points of the possible contact zones Γc. Therefore, we introduce a smooth mapping
R : Γs

c → Γm
c such that R(Γs

c) ⊂ Γm
c , and we will assume that the mapping R is well defined and maps

any x ∈ Γs
c to the intersection of the normal on Γs

c at x with Γm
c . Then [u]sm := us(x, t)−um(R(x, t)),

[un]
sm := [u]sm ·ns is the jump in normal direction, [ut]

sm = (us(x, t)−um(R(x, t)))− [u]sm ·ns and
τsn = (ns)T τ s(x, t)ns = (ns)T τm(R(x, t))ns is the boundary stress in normal direction on the possible
contact part, and moreover, (tsi )

T τ s(x, t)tsi = (tsi )
T τm(R(x, t))tsi , i = N − 1, must be ensured.

From the momentum conservation law the equation of motion is of the form

ρ
∂2uιi
∂t2

=
∂τ ιij
∂xj

+ F ι
i , i, j = 1, . . . , N, ι = 1, . . . , r, (x, t) ∈ Ωι(t) = Ωι × I , (3.1)

where for the linear elastic rheology

τ ιij = τ ιij(u) = c
(0)ι
ijkl(x)ekl(u

ι), eij(u) =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

,

i, j, k, l = 1, . . . , N , ι = 1, . . . , r, (3.2)

and for the linear visco-elastic rheology

τ ιij =τ
ι
ij(u

ι,u′ι) = c
(0)ι
ijkl(x)ekl(u

ι) + c
(1)ι
ijkl(x)ekl(u

′ι) =

=eτ ιij(u
ι) + ντ ιij(u

′ι), i, j, k, l = 1, . . . , N , ι = 1, . . . , r, (3.3)

where c
(n)ι
ijkl (x), n = 0, 1, are anisotropic elastic and viscous coefficients and eij(u) are components of

the small strain tensor, N is the space dimension. For the tensors c
(n)ι
ijkl (x), n = 0, 1, we assume that

they satisfy the symmetric and Lipschitz conditions, that is,

c
(n)ι
ijkl ∈ L∞(Ωι), n = 0, 1, ι = 1, . . . , r, c

(n)ι
ijkl = c

(n)ι
jikl = c

(n)ι
klij = c

(n)ι
ijlk ,

c
(n)ι
ijkl eijekl ≥ c

(n)ι
0 eijeij ∀eij , eij = eji and a.e. x ∈ Ωι, c

(n)ι
0 > 0,

ι = 1, . . . , r, (3.4)
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(a) (b)

(c)

Figure 3.1: a, b,c Mathematical models of the long bone and spine with tumors and the jaw-bone
with cyst: crack initiation and ensuing crack propagation and crack opening.

where a repeated index implies summation from 1 to N .
The problem to be solved has the following classical formulation:

Problem (P): Let N = 2, 3, r ≥ 2. Find a displacement vector uι : Ω
ι
× I → RN satisfying Eqs (3.1)

with Eq. (3.2) or (3.3) and the boundary and initial conditions
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τijnj = Pi, i, j = 1, . . . , N, (x, t) ∈ Γτ (t) = ∪r
ι=1(Γτ ∩ ∂Ωι)× I , (3.5)

ui = u2i, i = 1, . . . , N, (x, t) ∈ Γu(t) = ∪r
ι=1(Γu ∩ ∂Ωι)× I , (3.6)

[un]
sm ≤ dsm, τsn = τmn ≡ τsmn ≤ 0,

([un]
sm − dsm) τsmn = 0, τ sm

t = 0,

}

(x, t) ∈ ∪s,mΓsm
c × I, (3.7)

in the case without friction and in the case with Coulombian friction

[un]
sm ≤ dsm, τsn = τmn ≡ τsmn ≤ 0,

([un]
sm − dsm) τsmn = 0,

[u′
t]
sm = 0 ⇒ |τ sm

t | ≤ Fsm
c |τsmn (u)| ,

[u′
t]
sm 6= 0 ⇒ τ sm

t = −Fsm
c |τsmn (u)| [u′

t]
sm

|[u′

t]
sm| ,















(x, t) ∈ ∪e,mΓsm
c × I, (3.8)

uι(x, 0) = uι
0(x), u′ι(x, 0) = uι

1(x), x ∈ Ωι , (3.9)

where τ sm
t ≡ τ s

t = −τm
t , Fsm

c = Fsm
c (x,u′

t) is globally bounded, nonnegative, and satisfies the
Carathéodory conditions (Eck et al. [6], Nedoma [17], Nedoma et al. [19]) and u0, u1 are the given
functions, u2(6= 0 on 1Γu or = 0 on 2Γu) has a time derivative u′

2, and on ∪Γsm
c due to the equilibrium

of forces τij(u
s)ns

j = −τij(u
m)nm

j and where [v]sm = vs − vn is a jump (difference) of quantities vs

and vm and dsm is a gap, where

dsm(x) =
ϕs(x) − ϕm(x)
√

1 + |∇ϕs(x)|2
,

where ϕs, ϕm ∈ C1 are functions defined on an open subset Γsm
c of RN−1 parametrized the two contact

boundaries, e.g. of joints in the first case, and the two opposite faces of the cracks in the second case.
Thus the terms dsm ≥ 0 are the normalized gaps between the contact boundaries of Ωs and Ωm (e.g. of
joints) and between the two faces of the crack (i.e., Γs

c and Γm
c ).

Since the problem with Coulombian friction formulated in displacements is up-to-date an open
problem, therefore, for the existence analysis the contact conditions of nonpenetration (Signorini
conditions) will be formulated in velocities, that is,

[u′n]
sm ≤ 0, τsn = τmn ≡ τsmn ≤ 0, [u′n]

smτsmn = 0 . (3.10)

Let us introduce the spaces Lp,N(Ω), p ∈ [1,+∞), L∞(Ω), the Sobolev spaces H1,N (Ω), H1,N
0 (Ω),

H
1
2
,N (Γc), H

1
2
,N

00 (Γc) by the usual way, and let B(M) be the space of bounded functions endowed
with the sup norm, and moreover, the spaces and sets

V0 =
{

v|v ∈ ⊓r
ι=1H

1,N (Ωι),v = 0 a.e. on Γu

}

,

V = u2 + V0, V = u′
2 + V0 = L2(I;V ), K = {v ∈ V |[vn]

sm ≤ dsm a.e. on Γsm
c } ,

K =
{

v|v ∈ L2(I;⊓s
ι=1H

1,N(Ωι)),v = u′
2 on Γu(t), [vn]

sm ≤ 0 a.e. on Γsm
c (t)

}

.

Let ρι ∈ C(Ω
ι
), ρι ≥ ρι0 > 0, cιijkl ∈ L∞(Ωι), Fι,F′ι ∈ L2(I;L2,N(Ωι)), P,P′ ∈ L2(I;L2,N(Γτ )),

u0 ∈ K, u1 ∈ V , u′
2 ∈ L2

(

I;⊓r
ι=1H

1,N(Ωι)
)

, dsm ∈ H
1
2
,N (Γsm

c ), dsm ≥ 0 a.e. on Γsm
c , Fsm

c ∈

L∞(Γsm
c ), Fsm

c ≥ 0 a.e. on Γsm
c . In a special case if Γ

s

c = ∂Ωι \ Γs
u then instead of the space

H
1
2
,N (Γsm

c ) we will use the space H
1
2
,N

00 (Γsm
c ).

Then multiplying (3.1) by v − u′, where v are suitable test functions, integrating over Ωι × I for
all ι, using the Green’s theorems and boundary and contact conditions, then we obtain the following
variational problem:

Problem (P)v: Find a vector function u ∈ K with u′ ∈ K ∩ B(I;L2,N(Ω)) and u(·, 0) = u0,
u′(·, 0) = u1, such that for all t ∈ I

∫

I

{

(u′′(t),v − u′(t)) + a(0)(u(t),v − u′(t)) + a(1)(u′(t),v − u′(t))+

+j(v)− j(u′(t))} dt ≥
∫

I

(f(t),v − u′(t))dt ∀v ∈ K , (3.11)
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holds, where

(u′′,v) =
r

∑

ι=1

(u′′ι,vι) =

∫

Ω

ρu′′i vidx ,

a(n)ι(uι,vι) =

r
∑

ι=1

aι(uι,vι) =

∫

Ω

c
(n)
ijklekl(u

ι)eij(v
ι)dx, n = 0, 1 ,

(f ,v) =

r
∑

ι=1

(f ι,vι) =

∫

Ω

F · vdx +

∫

Γτ

P · vds ,

j(v) =

∫

∪s,mΓsm
c

Fsm
c |τsmn (u,u′)| ([vt]

sm) ds,

and where the bilinear forms a(n)(u,v), n = 0, 1, are symmetric in u, v and satisfy a(n)(u,u) ≥

c
(n)
0 ‖u‖21,N , c

(n)
0 = const > 0, a(n)(u,v) ≤ c

(n)
1 ‖u‖1,N‖v‖1,N , c

(n)
1 = const > 0, u,v ∈ V0, and

moreover, where we assume that the initial data u0, u1 satisfy, e.g., the static contact multibody
linear elastic problem (Nedoma [14]). The elastic problem is a special case of the above problem
(for details see Eck et al. [6]) and will be discussed in more details in the subsection concerning the
algorithms.

The proof of the existence of the solution is based on the penalization and regularization techniques
and is modification of that of Eck et al. [6], Nedoma [16], and see also Cocou and Scarella [3].

3.2 Approximation of the problem by the Tresca model of friction

Let us assume that the Coulombian law of friction in every time level is approximated by its value gsmc
from the previous time level, i.e., gsmc ≡ Fsm

c |τsmn (u,u′)|) (t−∆t). Thus gsmc is a non-negative function
and has a meaning of a given friction limit (or a given friction bound, representing the magnitude
of the limiting friction traction at which slip originates), and where −gsmc has a meaning of a given
frictional force, and ∆t is a time element. Thus this problem is approximated by another problem in
which in every time level we will solve the dynamic contact problem with the given friction, called the
Tresca model of friction.

Multiplying (3.1) by v − u, integrating over Ω = ∪r
ι=1(Ω

ι ∪ Γι
cv), using the Green theorem, the

boundary conditions and contact conditions in displacements, then we have

Problem (P0)v: Find a displacement field u : I → V such that u(t) ∈ K for a.e. t ∈ I, and

(u′′(t),v − u(t)) + a(0)(u(t),v − u(t)) + a(1)(u′(t),v − u(t))+

+ j(v)− j(u(t)) ≥ (f(t),v − u(t)) ∀v ∈ K, t ∈ I , (3.12)

u(x, 0) = u0(x),u
′(x, 0) = u1(x) , (3.13)

where we assume that the initial data u0, u1 are given functions as above, and where

(u′′,v) =
r

∑

ι=1

(u′′ι,vι) =

∫

Ω

ρu′′i vidx ,

a(n)(u,v) =

r
∑

ι=1

a(n)ι(uι,vι) =

∫

Ω

c
(n)
ijklekl(u)eij(v)dx, n = 0, 1,

(f ,v) =

r
∑

ι=1

(f ι,vι) =

∫

Ω

Fividx+

∫

Γτ

Pivids ,

j(v) =

∫

∪s,mΓsm
c

gsmc [vt]
smds,

where the bilinear forms a(n)(u,v), n = 0, 1, are symmetric in u, v and satisfy a(n)(u,u) ≥ c
(n)
0 ‖u‖21,N ,

c
(n)
0 = const > 0, a(n)(u,v) ≤ c

(n)
1 ‖u‖1,N‖v‖1,N , c

(n)
1 = const > 0, u,v ∈ V0.

9



Problem (P0)v is equivalent with the following problem:

Problem (P)v: Find a vector function u ∈ B(I;⊓r
ι=1H

1,N(Ωι)) with u(·, t) ∈ K, for a.e. t ∈ I, u′ ∈
L2(I;⊓r

ι=1H
1,N (Ωι))∩L∞(I;⊓r

ι=1L
2,N(Ωι)), u′(·, tp) ∈ L2,N(Ω), such that for all v ∈ ⊓r

ι=1H
1,N (Ωι(t))

with v(·, t) ∈ K a.e. in I the following inequality

∫

I

{

(u′′(t),v − u′(t)) + a(0)(u(t),v − u′(t)) + a(1)(u′(t),v − u′(t))+

+j(v)− j(u′(t))} dt ≥
∫

I

(f(t),v − u′(t))dt , (3.14)

with u(x, 0) = u0(x), u
′(x, 0) = u1(x), holds.

To prove the existence of the solution of Problem (P)v the decomposition v−u = v−u+u′−u′ =
w− u′ will be also used. Next, the test function v will correspond with the test function v − u+ u′.
The proof of the existence of the solution is based on the penalization and regularization techniques
and is parallel to that of Eck et al. [6, Chapter 4].

3.3 Numerical solution and the algorithm

Let Ω = ∪r
ι=1(Ω

ι∪Γι
cv) be approximated by Ωh = ∪r

ι=1(Ω
ι
h∪Γι

cvh) (a polygon in 2D and a polyhedron
in 3D) with the boundary ∂Ωh = Γτh∪Γuh∪Γch. Let I = (0, tp), tp > 0, let m > 0 be an integer, then
∆t = tp/m, ti = i∆t, i = 0, . . . ,m. Let {Th,Ωh

} be a regular family of finite element partitions Th
of Ωh compatible to the boundary subsets Γτh, Γuh and Γch. Let Vh ⊂ V be the finite element space
of linear elements corresponding to the partition Th, Kh = Vh ∩ K the set of continuous piecewise
linear functions that vanish at the nodes of Γuh and whose normal components are non-positive at the
nodes on ∪s,mΓsm

c ; Kh is a nonempty, closed, convex subset of Vh ⊂ V . Let u0h ∈ Kh, u1h ∈ Vh be
an approximation of u0 or u1. Let the end points Γτh ∪ Γuh, Γuh ∪ Γch, Γτh ∪ Γch, coincide with the
vertices of Thi. Since the frictional term is assumed to be approximated by its value in the previous
time level, the frictional term is approximated by a given friction limit. Then in every time level we
have the following discrete problem:

Problem (P)h: Find a displacement field uh : I → Vh with uh(0) = u0h,u
′
h(0) = u1h, such that

for a.e. t ∈ I, uh(t) ∈ Kh

(u′′
h(t),vh − uh(t)) + a(0) (uh(t),vh − uh(t)) + a(1) (u′

h(t),vh − uh(t)) +

+ j(vh)− j (uh(t)) ≥ (fh(t),vh − uh(t)) ∀vh ∈ Kh, a.e. t ∈ I , (3.15)

where

(u′′
h,vh) =

r
∑

ι=1

(u′′ι
h ,v

ι
h) =

∫

Ωh

ρu′′hivhidx ,

a(n)(uh,vh) =

r
∑

ι=1

a(n)ι(uι
h,v

ι
h) =

∫

Ωh

c
(n)
ijklekl(uh)eij(vh)dx, n = 0, 1,

(fh,vh) =

r
∑

ι=1

(f ιh,v
ι
h) =

∫

Ωh

Fivhidx+

∫

Γτh

Pivhids,

j(vh) =
r

∑

ι=1

jι(vι
h) =

∫

∪s,mΓsm
ch

gsmch |[vht]
sm| ds ≡ 〈gsmch , |[vht]

sm|〉Γsm
ch
.

To prove the existence of discrete solution uh the technique similar of that as in the continuous case,
based on the decomposition vh −uh = vh −uh + u′

h −u′
h = wh − u′

h, the penalty and regularization
techniques are used. In the next the test function v will correspond with v+ u′ − u in (3.12) and vh

with vh + u′
h − uh in (3.15) after used decomposition.
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Algorithm

The algorithm will be based on the semi-implicit scheme in time and the finite elements in space.
Let m > 0 be an integer, then ∆t = tp/m, ti = i∆t, i = 0, 1, . . . ,m. Approximating the deriva-

tives by the differences, i.e., u′′
h =

u
i+1

h
−2ui

h+u
i−1

h

∆t2
, u′

h =
u

i+1

h
−u

i
h

∆t
, and setting ui

h = uh(ti), ∆ui
h =

uh(ti)−uh(ti−1), u
i+1
h ≡ uh, g

sm
ch = gsmch (ti) = Fsm

c

(

∆t−1[∆ui
th]

sm
)

∣

∣

∣
τsmn

(

ui
h,

∆u
i
h

∆t

)
∣

∣

∣
, (F(ti+1),vh) =

∆t2 (fh(ti+1),vh) + (2ui
h − ui−1

h ,vh) +∆ta
(1)
h (ui

h,vh), F(ti+1) ≡ fh, then after some algebra in every
time level t = ti+1 we have to solve the following problem:

Problem (PA)h: Find uh ∈ Kh, a.e. t = ti+1 ∈ I, such that

A(uh,vh − uh) + j(vh)− j(uh) ≥ (fh,vh − uh), ∀vh ∈ Kh, t = ti+1 ∈ I , (3.16)

where for the visco-elastic and elastic cases

A(uh,vh) = (uh,vh) + ∆t2a(0)(uh,vh) + ∆ta(1)(uh,vh) for the viscoelastic case,

A(uh,vh) = (uh,vh) + ∆t2a(0)(uh,vh) for the elastic case,

j(vh) = ∆t2
∫

∪s,mΓsm
c

gsmch |[vht]
sm| ds,

where gsmch is the approximate given frictional limit. According to the above assumptions about the

bilinear forms a
(n)
h (·, ·), n = 0, 1, and since ρ ≥ ρ0 > 0, then the bilinear form A(uh,vh) is also

symmetric in uh and vh and

A(uh,uh) ≥ a0‖uh‖
2
1,2, a0 = const. > 0,

|A(uh,vh)| ≤ a1‖uh‖1,2‖vh‖1,2, a1 = const. > 0, uh,vh ∈ Vh,

hold.
The discretization error will be a function of the time step ∆t and the mesh size h and thus the

truncation error of the time and spatial discretization must tend to zero (Bathe [1], Belytschko et
al. [2], Nedoma [17], Nedoma et al. [19]). From the stability analysis for the critical time step size we
have

∆t ≤ ∆tcrit = γ
h(n)

π

(

ρ(n)

E(n)

)

, (3.17)

where h(n) is the diameter of the corresponding (n)-th element, h(n) = c(n)Tn, Tn is the smallest
period of the finite discretization with n degrees of freedom, c(n) is a dilatational wave velocity in the
(n)-th material element, ρ(n) and E(n) are (average) values of the density and the Young modulus on
the (n)-th element and γ is a reduction factor determining from numerical experiments. Moreover,
the algorithm is also consistent of order two, because the truncation error is of order ∆t2 in the
displacements. Hence, the algorithm is convergent.

The mortar discretization

To give a saddle point formulation it is usually to introduce a Lagrange multiplier spaceM =Mn×Mt,
being the dual space of the trace space W = ⊓sH

1
2
,N (Γs

c) (i.e., the trace space of V0 restricted to

∪sΓ
s
c) and its dual W ′ = ⊓sH

− 1
2
,N(Γs

c), assuming that Ωι, ι = 1, . . . , r, are domains with sufficiently
smooth boundaries ∂Ωι, and the bilinear form b(·, ·) on the product space V0 ×M . In the case if

Γ
s

c = ∂Ωs \ Γs
u we must use H

1
2
,N

00 (Γs
c) instead of H

1
2
,N (Γs

c).
Let every polygonal domain Ωι

h, ι = 1, . . . , r, be covered by a triangulation Th,Ωι in such a way
that on the contact boundaries Γsm

ch the points of Γs
ch and Γm

ch are not identical, therefore, the mesh
sizes hs 6= hm and the global meshsize h is h = max{hs, hm}.

Let us introduce the discrete approximation of the Lagrange multiplier space MhH =Mhn×MHt,
where
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Case I:

WhH (∪sΓ
s
ch) =Whn (∪sΓ

s
ch)×WHt (∪sΓ

s
ch) =

=
{

vs
h · ns|∪sΓs

ch
,vh ∈ Vh

}

×
{

vs
h · ts|∪sΓs

ch
,vh ∈ Vh

}

,

Mhn =
{

µhn ∈Whn (∪sΓ
s
ch) ,

∫

Γs
c

µhnψhds ≥ 0,

∀ψh ∈ Whn, ψn ≥ 0 a.e. on every Γs
ch

}

,

MHt =
{

µHt ∈ WHt (∪sΓ
s
ch) ,

∫

Γs
ch

µHtψHds−

∫

Γs
ch

gsmch |ψH |ds ≤ 0,

∀ψH ∈WHt (∪sΓ
s
ch)

}

,

Case II:

WhH (∪sΓ
s
ch) =Whn (∪sΓ

s
ch)×WHt (∪sΓ

s
ch) =

=
{

µhH |∆r
∈ [P0(∆r)]

N−1
, 0 ≤ r ≤ n(hs)

}

,

Mhn = {µhn ∈Whn (∪sΓ
s
ch) , µhn ≥ 0 a.e. on every Γs

ch} ,

MHt =
{

µHt ∈ WHt (∪sΓ
s
ch) ,

∫

Γs
ch

µHtψHds−

∫

Γs
ch

gsmch |ψH |ds ≤ 0,

∀ψH ∈ WHt (∪sΓ
s
ch)

}

,

where Γs
ch = ∪p

p=1Γ
sp
ch, Γsp

ch = ∪r∆r, ∆r = (qr, qr + hp), r = 0, 1, . . . ,m − 1, m = m(hp), where
hp is a step of mesh in the p − th segment of Γs

ch for N = 2; or ∆r are the faces of polyhedron,
r = 0, 1, . . . ,m− 1, m = m(hp), for N = 3. Let

b(µhH ,vh) = 〈µhn, [vh · n]s − dsm〉∪Γs
ch

+

∫

∪sΓs
ch

gsmch µHt · [vht]
sds,

µhH ∈MhH , vh ∈ V0h ,

where [vh · n]sm = vshn(x, t) − vmhn(R
sm(x, t)), [vht]

sm = vs
ht(x, t) − vm

ht(R
sm(x, t)), where Rsm :

Γs
ch(t) 7→ Γm

ch(t), at t ∈ I, is a bijective map satisfying Γm
ch(t) ⊂ Rsm(Γs

ch(t)), t ∈ I, and where 〈·, ·〉Γs
ch

denotes the duality pairing between WhH and MhH .
Then we have the following problem:

Problem (P)h: At every time level find (λhH ,uh) ∈MhH × Vh satisfying

A(uh,vh) + b(λhH ,vh) = (fh,vh) ∀vh ∈ Vh = ⊓r
ι=1V

ι
h , t ∈ I,

b(µhH − λhH ,vh) ≤ 〈dsm, µhn − λhn〉∪Γs
ch

∀µhH ∈MhH , t ∈ I. (3.18)

For the existence and uniqueness it is necessary to ensure that {µhH ∈MhH , b(µhH ,vh) = 0, ∀vh ∈
Vh} = {⊘}, which for the Case I is obvious and for the Case II the technique of Haslinger et al. [9],
with using the discrete Babuška-Brezzi “inf-sup” condition, is used.

Proposition 1 Let −τn(u) ∈ Mhn. Then the problem (3.18) has a unique solution (λhH ,uh) ∈
MhH × Vh, a.e. t ∈ I. Moreover, we have

λshn = −τsn(uh) and gscλ
s
Ht = −τ s

t (uh) ,

where uh is the solution of the discrete primal problem and gsc ≡ gsmch .
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The primal-dual active set (PDAS) method. As usual in the mortar approach the interface Γsm
ch

has two sides, the “slave” side from Ωs
h and the “master” side from Ωm

h . The interface Γsm
ch is assumed

to be a union of edges in the 2D case and of faces in the 3D case.
Wohlmuth and Krause [24] introduced the modification of the space Vh = V s

h × V m
h ⊂ V by

such a way that the nodal basis function on the mortar side will be biorthogonal with respect to the
piecewise linear basis on the slave side. Thus the non-penetration condition [u · n]s ≤ dsm will be
replaced by its weak discrete form

∫

∪Γs
ch

[uh · n]sϕpds ≤

∫

∪Γs
ch

dspϕpds, p ∈ S , (3.19)

giving a coupling between the vertices on the slave side and the master side, where S is the set of
all vertices in the potential contact part on the slave side. We introduce a basis transformation of
the basis of Vh in such a way that the weak non-penetration condition (3.19) in the new basis (the
so-called dual basis) only deals with the vertices on the slave side.

In the mortar approach, the Lagrange multiplier space is approximated by its (N −1)-dimensional
mesh resulting from the N -dimensional triangulation on the slave side. Here we will use discontinuous
piecewise linear nodal basis functions for the dual Lagrange multiplier. The discrete Lagrange multi-
plier space MhH can be spanned as M s

hH = span{ψiek, i = 1, . . . , nc, k = 1, . . . , N}, s ∈ {1, . . . , r},
where ψi is the i-th scalar dual basis function, ek is the k-th unit vector, nc is the number of nodes
on the slave side of Γ

s

ch, i.e., the number of freedom of the space MhH in each component. Denoting
{ϕj}, j = 1, . . . ,m, the standard piecewise linear basis on the slave side (i.e., the basis of a component
WhH(Γsm

c )), we have
∫

Γs
ch

ϕjψids = δij

∫

Γs
ch

ϕjds, 1 ≤ i, j ≤ m, (3.20)

where δij is the Kronecker delta. Let W s
hH be the vector valued trace space of V0h restricted to ∪sΓ

s
ch.

Then for each vh =
∑

i γiϕi ∈ WhH the discrete scalar product vh · nh =
∑

i(γi · ni)ϕi, where ni

denotes the outer normal of Ωs at the node i. Similarly, for each µh =
∑

iαiψi ∈ MhH the discrete
product µh · nh =

∑

i(αi · ni)ψi. Let us define

M s+
hH :=

{

µhH ∈M s
hH | 〈µhH ,vh〉 ≥ 0,vh ∈W s+

h := {vh ∈ W s
hH |vh · nh ≥ 0}

}

.

Hüeber and Wohlmuth [11] show that

M s+
hH :=

{

µhH =

m
∑

i=1

αiψi|αi ∈ R
N ,αi = αn

i n
s
i , α

n
i ∈ R, αn

i ≥ 0, i ≤ m

}

,

and that M s+
hH is not a conforming approach for the Lagrange multiplier space.

Finally, we define

M+
hH = ⊓s M

s+
hH ,

b(µhH ,vh) = 〈µhH , [vh]
s〉∪Γs

ch
.

For completeness, the discrete convex subset Kh ⊂ Vh will be then defined as

Kh :=

{

vh ∈ Vh|b(µhH ,vh) ≤

∫

Γs
ch

dsmh (µhH · nh)ds, µhH ∈M+
hH

}

,

where dsmh is a suitable approximation of dsm on WhH .
The discrete mortar formulation of the saddle point problem (3.18) for every time level

is defined as follows:

Problem (Psp)dm: At every time level find uh ∈ Vh, λhH ∈ M+
hH , a.e. t ∈ I,λhH = (λhn,λHt),

satisfying

A(uh,vh) + b(λhH ,vh) = (fh,vh) ∀vh ∈ Vh, t ∈ I ,

b(µhH − λhH ,vh) ≤ 〈dsm, (µhH − λhH) · nh〉∪Γs
ch

∀µhH ∈M+
hH , t ∈ I, (3.21)
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where

A(uh,vh) =(uh,vh) + ∆t2a(0)(uh,vh) + ∆ta(1)(uh,vh) for the viscoelastic case,

A(uh,vh) =(uh,vh) + ∆t2a(0)(uh,vh) for the elastic case,

b(µhH ,vh) = 〈µhH , [vh]
s〉∪Γs

ch
∀vh ∈ Vh, µhH ∈MhH .

In the frictionless case the tangential stress component on the contact boundary ∪Γsm
c is zero, then

λHt = 0, and therefore, MhH = Mhn. The Lagrange multipliers λhn are the approximations of the
contact forces −τ (uh) · n = − (njnkτjk(uh)) which are necessary to adjust the contact displacements
on the contact boundary ∪Γsm

ch .
Let us denote the nodal parameters uh by U, of λhn by Λhn, and since for the frictionless case the

tangential stress component on the contact boundary ∪Γsm
ch is zero, then λHt = 0, and thus ΛHt = 0.

The Eq. (3.21a) for every t ∈ I in the matrix form is of the form

AhU+ BhΛhH = Fh . (3.22)

To determine the structure of Bh, we decompose the set of all vertices in every time level into
three disjoint parts N , M and S, where S(dimnV ) denotes all vertices on the possible contact part
on the slave side, M(dimncn) all vertices of the possible contact part of the master side, and N all
the other one. The strong formulation of the non-penetration condition will be replaced by its weak
discrete form

∫

∪Γsm
ch

[uh · n]sψpds ≤

∫

∪Γsm
ch

dshψpds, p ∈ S . (3.23)

This condition connects points of sets S and M. We introduce a basis in a new transformation of the
basis of the space Vh in such a way that the weak non-penetration condition (3.23) in the new basis
only deals with the vertices on the slave side (see Hüeber, Wohlmuth [11], Wohlmuth and Krause [24],
Nedoma [16, 17], Nedoma et al. [19]).

Introducing the transformation ϕ = (ϕN , ϕM, ϕS)T , then the matrices and vectors in (3.22) will
be decomposed in the sense of the used decomposition as follows





ANN ANM ANS O

AMN AMM AMS −MT

ASN ASM ASS D













UN
UM
US
ΛS









=





FN
FM
FS



 , (3.24)

where elements of Bh are defined by Bh[p, q] =
∫

∪Γs
ch

ϕpψqdsIN = δpq
∫

∪Γs
ch

ϕpds, p = 1, . . . , nV ,

q = 1, . . . , ncn, and where IN denotes the identity matrix in RN×N . The basis functions satisfy the
condition of biorthogonality (3.20). The matrix M represents coupling between the traces of the finite
element shape functions on the master side “m” and the shape functions for the Lagrange multiplier
on the slave side “s, that is,

M[p, q] = 〈ϕp, ψq〉IN , p ∈ S, q ∈ M , (3.25)

where IN is the identity matrix in R
N×N . The matrix M is the block matrix and D, due to the

biorthogonality, is the block diagonal matrix with

D [p, q] = 〈ϕp, ψq〉 IN , p = q ∈ S. (3.26)

The matrix Bh in every time level is of the form Bh =
(

O,−MT ,D
)T
. By Ak,l, k, l ∈ {N ,M,S} we

denote the block matrices associated with the basis functions of the free structure nodes (i.e., N ),
the potential contact nodes of the master side (i.e., M) and the potential contact nodes on the slide
side (i.e., S). The entries of vectors U and F for k ∈ {N ,M,S} are denoted by Uk and Fk, respectively.

Introducing M̂ = D−1M and a new modified basis Φ = (ΦN ,ΦM,ΦS)T instead of the basis
ϕ = (ϕN , ϕM, ϕS)T , that is,

Φ = (ΦN ,ΦM,ΦS)
T =





IN O O

O IN M̂T

O O IN









ϕN
ϕM
ϕS



 = Qϕ , (3.27)
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then
U =QT

Û ,

where Û is the vector of coefficients with respect to the transformed basis Φ.
Then the modified stiffness matrix Âh associated with the transformed basis Φ is of the form

Âh = QAhQ
T =

=





ANN ANM + ANSM̂ ANS
AMN + M̂TASN AMM + AMSM̂+ M̂TASM + M̂TASSM̂ AMS + M̂TASS
ASN ASM + ASSM̂ ASS





and the vector F̂h is of the form

F̂h = QFh = (FN , FM + M̂
T
FS , FS)

T .

The weak non-penetration condition associated with the transformed basis Φ is of the form (Ne-
doma [16, 17], Nedoma et al. [19])

Ûn,p ≡ (ns
p)

T
D[p, p]Ûp ≤ dsmp ∀p ∈ S , (3.28)

where dsmp =
∫

∪sΓs
c
dsmh ψpds, p ∈ S, as the coefficients at Ûq, q ∈ M, are nullified. The matrix B̂h,

associated with the transformed basis Φ, is then of the form B̂h = QBh = (O,O,D)T .
Thus, in every time level, we will solve the following problem

ÂhÛ+ B̂hΛhH = F̂h,

Ûn,p ≤ dsmp ,Λhn,p ≥ 0, (Ûn,p − dsmp )Λhn,p = 0, ∀p ∈ S, t ∈ I,

ΛHt,p = 0, ∀p ∈ S, t ∈ I, (3.29)

where (3.29b–d) is the Karush-Kuhn-Tucker conditions of a constrained optimization problem for
inequality constraints,

Λhn,p = nsT
p D̂[p, p]ΛhH(p), ΛhH(p) ∈ R

N ,

ΛHt,p = ΛhH(p)− (ΛhH(p) · ns
p)n

s
p = (ΛhH(p) · tsp)t

s
p .

A primal-dual active set (PDAS) algorithm - the frictionless case
Hintermüller et al. [10] present a method how to find the correct “active” subset A of vertices

from S, and Nedoma [16, 17], Nedoma et al. [19] applied the method for dynamic contact problems,
where is assumed that the bodies Ωs, Ωm are in mutual contact.

Let us decompose the set S as S = A∪ I, where A is the active set and I is the inactive set. Let
us put

Cn(Ûn,p,Λhn,p) = Λhn,p −max
{

0,Λhn,p + c1(Ûn,p − dsmp )
}

, c1 = const. > 0 ,

then (3.29b–d) can be expressed as

Cn(Ûn,p,Λhn,p) = 0, p ∈ S .

Thus, at every time t ∈ I Eq. (3.29) can be rewritten as

ÂhÛ+ B̂hΛhH = F̂h ,

Cn(Ûn,p,Λhn,p) = 0 ,

ΛHt,p = 0 (3.30)

for all vertices p ∈ S and t ∈ I.
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Decomposing the set S as S = A∪ I, where A is the active set and I is the inactive set, then the
algorithm of our problem in every level leads to the primal-dual active set (PDAS) algorithm
of the form (Nedoma [16, 17], Nedoma et al. [19]):

Algorithm (FL):

STEP 1. Initiate the active set A1 and the inactive set I1, such that S = A1 ∪ I1, A1 ∩ I1 = ∅, put
the initial value (Û0,Λ0

hH), c1 ∈ (103, 104) and set k = 1.

STEP 2. If (Ûk−1,Λk−1
hH ) and Ak, Ik are known, then find the primal-dual pair (Ûk,Λk

hH) such that

ÂhÛ
k + B̂hΛ

k
hH = F̂h ,

Û
k
n,p = dsmp for all p ∈ Ak ,

Λk
hn,p = 0 for all p ∈ Ik ,

Λk
Ht,p = 0 for all p ∈ S. (3.31)

STEP 3. Set Ak+1 and Ik+1 by

Ak+1 =
{

p ∈ S : Λk
hn,p + c1(Û

k
n,p − dsmp ) > 0

}

,

Ik+1 : =
{

p ∈ S : Λk
hn,p + c1(Û

k
n,p − dsmp ) ≤ 0

}

.

STEP 4. If Ak+1 = Ak then STOP else k = k + 1; goto STEP 2;
where the active Ak and inactive Ik sets are associated with the transformed basis Φ.

The system (3.31) can be simplified by using the decomposition of the set of vertices S on the slave
side in each step k of the PDAS algorithm into the disjoint active and inactive sets as S = Ak ∪ Ik.
Since B̂h = (O,O,D)T , we decompose the diagonal matrix D into

D =

[

DIk
O

O DAk

]

, since S = Ak ∪ Ik .

According to the definition of Ûn,p, we introduce the matrix NAk
∈ R

|Ak|×N |Ak|, where |Ak| denotes
the number of vertices in Ak, by

NAk
=









. . . O

wppn
s
p,1 . . . wppn

s
p,N

O
. . .









, p ∈ Ak ,

where wpp denotes an abbreviation for D[p, p]1,1 = · · · = D[p, p]N,N =
∫

Γs
ch

ϕpds, having the meaning

of a weighting factor.
The associated tangential vectors are then given by tξp ⊥ ns

p and tηp = tξp ×ns
p with ‖ns

p‖ = ‖tξp‖ =

‖tηp‖ = 1. We define the matrix TAk
∈ R|Ak|×N |Ak|, by

TAk
=









. . . O

t
(m)
p,1 t

(m)
p,2 t

(m)
p,3

O
. . .









∈ R
|Ak|×3|Ak|, m = ξ, η, p ∈ Ak

for N = 3 and by

TAk
=









. . . O

−ns
p,2 ns

p,1

O
. . .









∈ R
|Ak|×2|Ak|, p ∈ Ak
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for N = 2 as tsp ⊥ ns
p.

The algebraic representation of (3.31) after some modification leads to













ÂNN ÂNM ÂNIk
ÂNAk

ÂMN ÂMM ÂMIk
ÂMAk

ÂIkN ÂIkM ÂIkIk
ÂIkAk

0 0 0 NAk

TAk
ÂAkN TAk

ÂAkM TAk
ÂAkIk

TAk
ÂAkAk













·









Ûk
N

Ûk
M

Ûk
Ik

Û
k
Ak









=













F̂N
F̂M
F̂Ik

dsmAk

TAk
F̂Ak













, (3.32)

with TAk
= (Tξ

Ak
,Tη

Ak
)T for N = 3, where k denotes the index of the active set step, dsmAk

denotes
the vector containing the entries dsmp associated with the active vertex p ∈ Ak, ΛhH can be locally

eliminated. Since B̂h = (0, 0,D)T , then B̂
k
hΛ

k
hH = (0, 0,DΛk

hHS)
T , where

Λk
hHS = D

−1
[

F̂S − ÂSN Û
k
N − ÂSSÛ

k
S −

(

ÂSM + ÂSSM̂
)

Û
k
M
]

. (3.33)

Moreover, since Λk
Ik

= 0, and since TAk
DAk

ΛAk
= 0, where DAk

is a diagonal matrix for all p ∈ Ak,

therefore, ΛAk
= 0. Thus, we determine

(

Ûk
N , Û

k
M, Ûk

Ik
, Ûk

Ak

)T

from (3.32) and Λk
hHS from (3.33).

A primal-dual active set (PDAS) algorithm – the 3D case with friction of Tresca type
In the 3D model with the Tresca friction if the displacements uh are known, the Lagrange multiplier

ΛhH = (Λhn,ΛHt) can be computed directly from (3.22), that is,

ΛhH = D
−1(Fh − AhU)S , (3.34)

where the subscript S denotes that we use only the entries of the vector corresponding to the nodes p ∈
S. For the normal and tangential components of the multiplier ΛhH and of the relative decomposition
uh for a node point p ∈ S, we have

uhn,p = uT
p np ∈ R, uHt,p = (uT

p t1p, uT
p t2p)

T ∈ R
2,

Λs
hn,p = (ns

p)
T
D[p, p]ΛhH(p) ∈ R, ΛhH(p) ∈ R

3,

Λs
Ht,p = ΛhH(p)− (ΛhH(p) · ns

p)n
s
p =

(

ΛhH(p) · tsp
)

tsp =

=
(

ΛT
hH(p)D[p, p]ts1,p, ΛT

hH(p)D[p, p]ts2,p

)T

∈ R
2 .

Then the discrete conditions for normal contact are given by (3.29b,c,d) and the discrete Coulomb
friction conditions are given by

∣

∣Λs
Ht,p(p)

∣

∣ ≤ Fsm
c

∣

∣Λs
hn,p

∣

∣

∣

∣Λs
Ht,p(p)

∣

∣ < Fsm
c

∣

∣Λs
hn,p

∣

∣ ⇒ uht,p = 0
∣

∣Λs
Ht,p(p)

∣

∣ = Fsm
c

∣

∣Λs
hn,p

∣

∣ ⇒ ∃ϑ ≥ 0 such that Λs
Ht,p = −ϑuht,p

for all p ∈ S, (3.35)

where for the Tresca friction model Fsm
c |Λs

hn,p| ≡ gsch,p ∈ H− 1
2 (Γs

c), g
s
ch,p ≥ 0, gsch,p =

∫

Γs
ch

gschϕpds.

For gsch,p = 0 the condition (3.35) leads to homogeneous Neumann boundary conditions in tangential

direction. Let gsch,p > 0, then the condition (3.35) is equivalent to Ct

(

Ût,p,Λ
s
Ht,p

)

= 0 for all p ∈ S,

where

Ct

(

Ût,p,Λ
s
Ht,p

)

=

= max
(

gsch,p, |Λ
s
Ht,p + c2Ût,p|

)

Λs
Ht,p − gsch,p

(

Λs
Ht,p + c2Ût,p

)

, c2 > 0 , (3.36)

which will be starting point of the algorithm, that will be based on a Newton-type algorithm for the
solution Ct(Ût,p,Λ

s
Ht,p) = 0. As it was shown in Hintermüller et al. [10] the max-function and the

Euclidean norm are semi-smooth, and therefore, a semi-smooth Newton method can be used. If the
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Euclidean norm
∣

∣

∣
Λs

Ht,p + c2Ût,p

∣

∣

∣
= 0, then max

(

gsch,p, |Λ
s
Ht,p + c2Ût,p|

)

= gsch,p and the Euclidean

norm vanishes. Hence, the derivative of the Euclidean norm only occurs for points that are differen-
tiable in the classical sense. The analysis of the generalized derivative of Ct(Ût,p,Λ

s
Ht,p) (see Hüeber

et al. [12]) shows that the nodes of S are separated into the active set AHt,k and the inactive set
IHt,k, where

AHt,k : =
{

p ∈ S; |Λs,k−1
Ht,p + c2Û

k−1
t,p | − gsch,p > 0

}

, (3.37)

IHt,k : =
{

p ∈ S; |Λs,k−1
Ht,p + c2Û

k−1
t,p | − gsch,p ≤ 0

}

. (3.38)

This separation of nodes of S into the active AHt,k and inactive IHt,k sets is provided by the charac-
teristic function in the generalized derivative of Ct(·, ·). The case if gch,p = 0 is in details analyzed in
Hüeber et al. [12].

Summing all results for the frictionless contact problem and for the Tresca friction case, then
Problem (P) can be rewritten as

ÂhÛ+ B̂hΛhH = F̂h,

Cn

(

Ûn,p,Λhn,p

)

= 0 ,

Ct(Ût,pΛHt,p) = 0 (3.39)

for all vertices p ∈ S and t ∈ I.
The PDAS algorithm for the contact problem with friction in the Tresca sense is as follows:

Algorithm (T ):

STEP 1: Initiate the active sets Ahn,1, AHt,1 and the inactive sets Ihn,1, IHt,1 such that Sn =

Ahn1∪Ihn1, St = AHt1 ∪IHt1, Ahn1∩Ihn1 = ∅, AHt1 ∩IHt1 = ∅ and put the initial value (Û0,Λ0
hH),

c1, c2 ∈ (103, 104) and set k = 1, c1 > 0, c2 > 0, m ∈ N.

STEP 2: Define the active and inactive sets

Ahn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

> 0
}

,

Ihn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

≤ 0
}

,

AHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gsch,p > 0

}

,

IHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gsch,p ≥ 0

}

,

STEP 3: For i = 1, . . . ,m, compute the generalized derivative in the sense of a semi-smooth Newton
method, i.e.,

Û
k,i
hH = G

(

Û
k,i−1
hH ,Ahn,k, Ihn,k,AHt,k, IHt,k, Û

k−1,m
hH ,Λk−1

hH

)

,

where by the symbol G we denote the generalized derivative in the sense of a semi-smooth Newton
method.

STEP 4: If
∣

∣

∣
Û

k,m
hH − Û

k,0
hH

∣

∣

∣
/
∣

∣

∣
Û

k,m
hH

∣

∣

∣
< ε then STOP.

STEP 5: Compute the Lagrange multiplier due to (3.34), that is,

ΛhH,k = D̂
−1

(

F̂hS − ÂhSÛ
k,m
hH

)

.

STEP 6: Set Ûk+1,0
hH = Û

k,m
hH , k = k + 1 and goto STEP 2.

Similarly as in the frictionless case the system (3.39) can be rewritten, if we decompose the set of
vertices S on the slave side in each step k of the PDAS algorithm into the disjoint active and inactive
sets (for more details see Hüeber et al. [12]). Since due to the dual Lagrange multiplier space, ΛhH

can be eliminated locally.
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A primal-dual active set (PDAS) algorithm – the 3D case with Coulomb friction
The algorithms can be based on the fixpoint algorithm or on the full Newton method (Hüeber et

al. [12]).
The Fixpoint Algorithm (FP) is the extension of the above PDAS algorithm for Tresca friction,

in which the friction bound gsch,p = Fsm
c |Λs

n,p| is iteratively modified using the normal component
of the Lagrange multiplier. Thus, we have the following algorithm, that the friction bound and the
active and inactive sets are updated in every step.

Algorithm (FP):

STEP 1: Initiate the initial value
(

Û0,0,Λ0
hH

)

, c1, c2 ∈ (103, 104) and set k = 1,m ∈ N.

STEP 2: Set kc = k − 1 and update the friction bound by gs,kc

ch,p = Fsm
c max{0,Λs,kc

n,p }, p ∈ S.

STEP 3: Define the active sets Ahn,k, AHt,k and the inactive sets Ihn,k, IHt,k by

Ahn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

> 0
}

,

Ihn,k : =
{

p ∈ S;Λs,k−1
hn,p + c1

(

Û
k−1,m
n,p − dsmp

)

≤ 0
}

,

AHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gs,kc

ch,p > 0
}

,

IHt,k : =
{

p ∈ S;
∣

∣

∣
Λs,k−1

Ht,p + c2Û
k−1,m
t,p

∣

∣

∣
− gs,kc

ch,p ≤ 0
}

.

STEP 4: For i = 1, . . . ,m, compute the generalized derivative in the sense of a semi-smooth Newton
method

Û
k,i
hH = G

(

Û
k,i−1
hH ,Ahn,k, Ihn,k,AHt,k, IHt,k, Û

k−1,m
hH ,Λk−1

hH

)

,

where the symbol G has the same meaning as above.

STEP 5: Compute the Lagrange multiplier due to (3.34) as

Λk
hH = D̂

−1
(

F̂hS − ÂhSÛ
k,m
hH

)

.

STEP 6: If
∥

∥

∥
Û

k,m
hH − Û

kc,m
hH

∥

∥

∥
/
∥

∥

∥
Û

k,m
hH

∥

∥

∥
< ε then STOP.

STEP 7: Set Ûk+1,0
hH = Û

k,m
hH and k = k + 1 and goto STEP 2.

If m = ∞, we obtain the exact version of the algorithm, in the previous case we speak about
inexact algorithm. The algorithm is convergent for small coefficient of friction (see Eck et al. [6]).

The Full Newton method is very advantageous method due to its fast convergence, the deriva-
tion of which see, e.g., in Hüeber et al. [12]. This fast convergence is due to the fact that the friction
bound is updated in the Newton iteration.

4 Numerical algorithm for opening the crack as the first stage

of bone fractures

With a persistent growth of the neoplasms, the possibility of fracture rises can be expected. Firstly, in
locations with highest stresses the crack initiations can be occurred (Fig. 1a,b,c), and with continuous
loading the cracks start to opening and propagate, up-to the moment when the bone fractures.

In the real situations it is very difficult to determine the location of a crack, its initiation, its
further opening and propagation, and in which direction. In the literature many crack initiation, crack
propagation and kinking criteria were introduced. These criteria depend on the material properties
and also depend on the length of possible fractures. Some of them are based on critical values of stress
and strain or on the use of a damage law and a critical damage parameter to determine the location
of the crack initiation. Since in our case the length of cracks are relatively short, the crack initiation
criterion can be based on a critical stress-value for a given material.
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(a) (b)

Figure 4.1: Location of the crack and the mesh around the crack tip: a) crack initiation; b) crack
opening.

To determine the areas of possible fracture zones, we firstly determine the areas with maximal
principle stresses, and therefore, the places where cracks are initiated. Thus we need to check, at
each time step, when the crack is start to propagate and in which direction. In the first case the
crack propagation criteria will be used, while in the second one the crack kinking criteria will be used.
When a crack propagate through a mesh, the accuracy at the crack tip will be of great importance for
determination of a possible fracture. Many numerical tools were developed to improve the accuracy
at the crack tip. Since the stress field is singular in the vicinity of the crack tip, a concentric mesh
around the crack tip can be coupled with singular elements, which can be used to model the stress
field singularity (Whiteman and Akin [23], Nedoma [15, 18]). An other approach is based on the
strain energy release rate, where a construction of ring elements in the neighborhood of the crack tip
(Fig. 2b), is also used. Finally mesh refinement around the crack tip is necessary to keep a better
precision in the vicinity of the crack. Since the crack propagates, the crack tip moves along and
the areas in the vicinity of crack are changed; thus, a new mesh is created and refined only in areas
at the front of the propagated crack. For more details see Whiteman and Akin [23], Gdontos [8],
Nedoma [18].

A location of a crack and its initiation and further opening are given in Fig. 2a,b. Many numeri-
cal algorithms have been applied to improve the accuracy at the crack tip and to determine a crack
propagation direction. With a great advantage the automatic remeshing procedure at the crack tip,
with a thickening of the mesh at the crack tip and using singular elements to model the singular
stress-strain fields, can be used (Figs 3a,b,c). To determine a crack propagation direction we compute
eigenvalues and eigenvectors of the stress tensor in all determined mesh points nearest to the crack
tip, i.e., we determine the principal stresses and their directions. The final direction of the crack prop-
agation will be obtained as a weighted average of each direction with respect to the distance between
the mesh point and the crack tip. Moreover, stress intensity factors, that is, strength singularity at
the crack tip, can be used for determination of a crack propagation. E.g., for Mode I loading, these
stress intensity factors are compared with a critical value KIc of the bone material.

From the fracture mechanics it is known that high values of strain energy We and high values of
stresses indicate the places of possible initiation of fractures. Therefore, they can be used to prevent
crack growth, and that the crack grows and propagates in the direction that minimizes the strain
energy We. Let us introduce the strain energy density we =

dWe

dV
, where dV is an element of volume.

Since the strain energy We is proportional to the square of stress, and since the stress at the crack tip
has singularity 1√

r
, then the strain energy density has also singularity ∼ 1√

r
, where r is the distance

of mesh points to the crack tip. Then at each time step in every mesh point we compute We and thus,
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Figure 4.2: Construction of the mesh at the crack tip: (a) the mesh near the crack tip; (b) the mesh
in the local coordinate system at the crack tip; (c) the design of the mesh for the h- and h-p-versions
of the finite element method.

using the strain energy density we, the strain energy density factor S = rwe, where r is the distance
of the mesh point and the crack tip. The parameter S will be computing by using rings of elements
around the crack tip (Fig. 2b). The kinking angle ϑ0 can be found as the local minimum of S(ϑ), that
is,

(

∂S

∂ϑ

)

ϑ=ϑ0

= 0;

(

∂2S

∂ϑ2

)

ϑ=ϑ0

≥ 0 .

The parameter S, e.g. in isotropic bone materials, can be found analytically as follows:

S = rwe = r

(

1 + ν

2E

)[

τ211 + τ222 + τ233 −
ν

1 + ν
(τ11 + τ22 + τ33)

2 + 2τ212

]

,

where E is the Young modulus and ν is the Poisson’s ratio.
Another crack growth criteria are (i) the so-called real crack extension and the virtual crack exten-

sion criteria, which are based on the definition of the strain energy release rate G, G = −∂Π
∂A

, where
Π is the total potential energy and A represents the crack area, and/or (ii) the path independent J
integral method (Gdoutos [8], Nedoma [18]).

With opening the crack, at the crack faces, we denote them by iΓs
c, i = 1, 2, the contact conditions

of Signorini type with or without Coulombian friction will be prescribed. The numerical realization
of such problem corresponds to formulation of a generalized crack problem, formulated by using the
nonpenetration (Signorini type) conditions. Such problem leads to solve the contact problems and
the PDAS method both discussed in the previous section. In general the dynamic contact problems
lead to solve hyperbolic variational inequalities by finite element methods and the PDAS algorithms,
discussed in the previous section. It is evident that the evolutionary mesh will be created and refined
only at the tip of the cracks and in the areas where it is needed in order to optimise calculations of
the mesh and it is unrefined in the rest of the initial mesh.
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