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Oscillations of bubbles attached to a capillary: case of pure liquid

J. Vejrazka'®, L. Vobecka' and J. Tihon'

'Institute of Chemical Process Fundamentals, Rozvojova 135, 165 02 Prague, Czech Republic

Abstract. An oscillating bubble attached to a tip of a capillary is used for probing interfacial properties of
liquids containing surface-active agents. Nevertheless, available theories even for the case of pure liquid are
not satisfactory. In this contribution, we therefore present results of a linear inviscid theory for shape
oscillations of a spherical bubble, which is in contact with a solid support. The theory allows determining
eigenmodes (i.e. eigenfrequencies, eigenmode shapes and damping of eigenmode oscillations), but also
response of the bubble shape to a motion of its support or to volume variations. Present theory covers also the
cases previously analyzed by Strani and Sabetta (J. Fluid Mech., 1984) and Bostwick and Steen (Phys. Fluids,
2009), and it can be applied to both bubbles and drops. The theory has been compared to experiments. Good
agreement is found for the case of small bubbles, which have spherical static shape. Experimental results for
larger bubbles and drops deviate from the theory, if a neck is formed. It is shown that this deviation correlates
well with a ratio of bubble volume to the maximum volume, when a detachment occurs.

1 Introduction

Shape oscillations of drops and bubbles are extremely
sensitive to the presence of surface active agents at the
liquid-gas interface. For this reason, bubble/drop
oscillations are of interest, if the interfacial properties like
the interfacial elasticity or viscosity are studied [1,2],
especially in the range of high frequencies.

Standard configuration in the equipment for
measurements of the dilatational interfacial properties is a
bubble or drop, which is attached to a tip of a capillary.
When probing interfacial properties, volume variations
are imposed to the drop in order to vary periodically its
interfacial area [3]. In a different type of experiment, the
supporting capillary can move, exciting shape oscillations
[4].

For analyzing the shape oscillations, an assumption of
irrotational flow remains reasonable, if the liquid is pure.
The eigenmodes of such a supported bubble or drop are
predicted by irrotational analyses of Strani and Sabetta
[5] and of Bostwick and Steen [6]. These analyses differ
mostly in the way how constraints due to attachment are
implemented. The case studied by Bostwick and Steen
was reexamined more recently with the use of more
suitable approaches [7,8]. However, none of these
analyses covers the cases with variable volume or
moveable support, encountered in the equipment.

We have therefore developed another analytical
solution [9], which is parallel to the analyses [5-8], but
can deal also with variable bubble or drop volume and
with the motion of bubble/drop support. In this
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contribution, we present result of this irrotational and
linear analysis.

Experiments, in which bubble oscillations are excited
by a motion of its support, have also been performed, and
the observed oscillations are compared with the analytical
results.

2 Results of the analysis

The actual bubble shape is described by a deformation #
(figure 1) from the basic spherical shape. The
deformation # is a function of time ¢ and position
p#=cos . For the purposes of the analysis,  is
decomposed into series

Nt = b, OF, (), ()

where F; are the Legendre polynomials. By the analysis
[9], a system of differential equations for &; coefficients is
established by variational methods, and the behavior of
the bubble or drop is hence entirely described. The
resulting system of differential equations is

MLy Fy 505 S Kb=f, (2
de” peR”  dt p,R

where
b =b(d) = (by, ..., by, Lidm0), ..., ht(dma))T  (3)
is the vector of N unknown coefficients & and of M

unknown Lagrange multipliers 4;, which are not further
discussed in this text, M is the truncation order
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characterizing accuracy, by which the attachment
condition is satisfied (M= 1 or 2 is sufficient for typical
attachment angles 6,<30°). R is the radius of non-
deformed bubble or drop, x, and p, are the viscosity and
density of the reference fluid, and & is the interfacial
tension. The mass, damping and stiffness matrices M, D
and K are square matrices with (N + M)’ elements

P 1 4P 1
Po J(2i+1)  py (F+D(2j+]1)

M, = for j=I1=12..N, (4
0 for other elements,
Hij=l B g2
Ho J Mo J+1

D, = for j=1=12,.,N, (5
0 for other elements,

J2j-2
2j+1
for j=1=12,..,N,
My
PP () dp
1
K, = for j=1,2,.,Nand/I=N+1,... N+ M,

Hy

[ s (P () dp
1
for j=N+L..N+Mand/=1,2,.., N,

0 for other elements.

(6)

The viscosities g; and g, are that of the fluid inside and
outside the bubble or drop, respectively, and both
densities p; and p, are denoted similarly. Finally, the
elements of the forcing vector f are

Fig. 1. Analyzed configuration.

gAY .
e for j =1,
47R’ J
0 for j=2,3,.., N,
= )

[ Anlt,p)  AV(R)

———--—=|P, . (1)d,
f]( R prrl U (p)du

for j=N+1.,N+M.

In the forcing vector, g is the gravity acceleration. 4y is
the deformation of the interface in the parts, which are
required to follow the motion of the capillary, AV is the
imposed variation of the bubble or drop volume. The
integration limit is z, = cos 6,

By cquation (2), the evolution of bubble shape is
entirely described. It is possible to evaluate the response
of the bubble or drop to volume variations or to motion of
its support. The eigenmodes (their frequencies, damping
rates and shapes) can be also obtained from (2) by
standard methods.

2 Experiments

The oscillations of bubbles are studied experimentally by
using a setup schematized in figure 2. In the setup, a
bubble grows on a capillary. The bubble size is controlled
by proper timing of valves, which either connect the
capillary to a pressurized air, or drain it. The capillary can
be moved by means of an electromagnetic coil, and a
response of the bubble shape is recorded by a high-speed
camera. By fitting the observed shapes of the bubble by
(1), the values of b; coefficients are experimentally
determined.  Several types of experiments can be
performed, differing in the way how the capillary tip
moves; experimental procedures are explained in detail in
[9].

By moving the capillary tip periodically and by
sweeping slowly across a frequency range, a frequency-
response-function of the bubble to the motion of its
support can be measured. Typical result (measured with
2R=1mm bubble, attached with attachment radius
2R, = 0.32 mm) is shown in figure 3. The amplitude of b;
coefficients (characterized by their root-mean-squares
and normalized by the root-mean-square of the position

compensation
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Fig. 2, Experimental setup.
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rms(b;)/rms(z,)

Fig. 3. Frequency response of a bubble to motion of its
support.

of the capillary tip) is plotted against the angular driving
frequency @ (which is made dimensionless by
normalizing by its scale (a/p.R)"). Experimental
measurements (points) and predicted frequency response
(lines) are compared. Good agreement is found for the
lower frequencies, while some disagreement is observed
for higher frequencies. Still, the agreement is reasonable.
Resonances are seen close to the predicted
eigenfrequencies (black arrows). Close to the
eigenfrequencies of a free (non-attached) bubble (white
arrows), shape is described by a single &; coefficient.

In a different kind of experiment, the capillary moves
first with a frequency close to a resonant peak and this
motion is then progressively stopped. The frequency and
damping rate of the excited eigenmode can be determined
from the consequent decaying oscillations [9]. Figure 4
shows the measured eigenfrequencies in dependence on
the attachment angle &, (symbols without dots) and
compares them with the predicted eigenfrequencies
(lines). At higher attachment angles, the measured values
follow correctly the predicted trend, but a larger deviation
is observed for small 8,. Noticeably, this deviation occurs
when @, is close a value, at which detachment of the
bubble occurs due to buoyancy; this value is around 7°
and 11.6° for the data shown by circles and triangles,
respectively, and these values are shown by arrows,

The deviation at small @, is linked with a formation of
a neck, which forms as the bubble is about to detach due
to buoyancy. The bubble shape, around which
oscillations take place, becomes non-spherical, and this is
not taken in account in the analytical solution,
Unfortunately, the development of a theory for the non-
spherical basic shape seems uneasy. To some extent, the
decrease of the oscillation frequency can be estimated
from the modification of the shape of bubble oscillations.
As discussed in [9], it follows for the frequency of ith
eigenmode from an energy balance,

o ""j2+j—2[3,9-]2
2 poRl i1 2j+1 ‘Bklc

. =
k R 5, ; J(ﬂ]z 8
Py G+1D(2j+1) \ By

.

o

S\ P J(2j+1)

5 10° 15? 20° 25° 30° 6,
Fig. 4. Dependence of the eigenfrequency on attachment
angle.

where By; = rms(,) for oscillations in the form of pure Ath
cigenmode. The eigenmode frequencies, determined from
the observed shape of oscillations by means of the last
equations, are also shown in figure 4 (symbols marked
with an inside dot). Though the agreement is far from
being perfect due to limited accuracy of experimental
values of By, the decrease of the frequency is still
correctly reflected. This might have a practical
implication to the characterization of interfacial
properties, as the eigenmode frequency of the reference
case with pure bubble or drop (with interface free of
surfactants) could be estimated just from the observed
oscillatory shape.

The effect of the neck formation on the eigenmode
frequency can be characterized also empirically. In figure
5, a dimensionless frequency is shown in dependence on
the ratio of the actual bubble volume to the volume, at
which the detachment occurs. The eigenfrequency is
normalized differently by taking the length scale 2, in
account, where

A= 4L
2k +1

is a characteristic wavelength of given eigenmode and it
is determined by the arc length L of the meridian between
the bubble apex and the attachment point, and & is the
mode order [9]. As seen from figure 5, in this
dimensionless expression, the eigenfrequencies of various
modes more or less collapses to a master curve, which is,
however, different for each mode order.

Figure 6 compares the measured damping rate of the
lowest two cigenmodes (symbols without dots) with the
predictions (lines). Similarly as in the case of frequency,
the damping rate can be determined from the observed
eigenmode shape [9]. It follows from the energy balance

3 [if_‘%rﬁf_*z}(‘g_&]
P{,Rz A\ My T My JHL N By

e o
TP J2j+D) py (G+DE27+D) N By )

The damping rate determined using the last equation is
shown in figure 6 by symbols denoted by dots. Again,
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Fig. 5. Dependence of the eigenmode frequency on the
volumne-to-detachment-volume ratio

similar trends between the measured values and those
determined using (9) are observed. This again has a
practical implication that the damping expected for a
bubble or drop with pure interface (without surfactants)
can be estimated from the observed shape of oscillations.

The damping rate can be also normalized with the use
of 4, as a characteristic length. In figure 7, such a
dimensionless damping rate is plotted in dependence on
the ratio of actual to the detachment bubble volume, It is
observed that a constant value (different for each mode
order) is found, The damping rate is hence determined
uniquely by the characteristic wavelength 2, on mode
order & of the given eigenmode.

3 Conclusions

Results of analytical solution for bubble and drop
oscillation have been presented. The analysis is able to
predict a response of bubble or drop shape to variations
of its volume and/or to motion of its support. The
analytical results are compared to experiments, which
were carried out for a bubble attached to a moveable
capillary. Satisfactory agreement is found. The analysis,
however, does not take in account a modification of the
bubble shape due to buoyancy effects, For this reason, a
deviation between the predicted and measured values
increases as the bubble size approaches the size, at which
a detachment due to buoyancy occurs. On the other hand,
the oscillation frequency and the damping rate can be
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Fig. 7. Dependence of the eigenmode frequency on the
volume-to-detachment-volume ratio

Fig. 6. Dependence of the eigenmode damping rate on the
attachment angle.

estimated from the observed shape of oscillations. This
conclusion might have a practical implication for
interpretation of experiments with bubbles or drops,
which have surfactant molecules adsorbed at their
interfaces.
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Evaluation of material properties determining the moisture transfer
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Abstract. Due to solution the problems of moisture transfer is necessary to deal with two mechanisms of transfer:
the molecular mass transfer and mass transfer by convection. Transfer driving force is the differcnce of
concentrations of moisture, respectively the difference of partial vapour pressure. For molecular transfer is deciding
value the cocfficient of diffusivity, i.c. the property of the matcrial. For mass transfer by convection is deciding the
convection mass transfer cocfficient, which depends on many parameters, but for one particular arrangement of the
experiment will be influenced primarily velecity of the flow. Experimentally detectable is the overall moisture
transfer caused by both mechanisms, i.e. the overall moisture transfer coefficient. Our goal was to attempt to cvaluate
the value of cocfficient of diffusivity of some matcrials from the set of measured date. The date was obtained in
different modes on different samples of materials. The next goal was to evaluate the dependence of the convection
mass transfer cocfficient on the speed of flow for the cxperiment alignment.

1 Introduction

The necessity to solute the problem of moisture transfer
ensues on the Department of Power Engineering
Equipment of Technical University of Liberec in
connection on the solution of the project TA01020313.
Its part was just the measurement of the amount of the
transferred moisture of various materials. The experiment
was cxecuted by P. Dandova [1]. As the results of the
measurement she obtained the mass flow of the vapour
through various materials. For practisc use of the results
was nccessary to evaluate "property” of the materials,
best the coefficient of diffusivity.

2 Description of the experiment

In expcrimental measurcments on the Department of
Power Engincering Equipment of Technical University of
Liberec [1] the moist air was flowing on both sides of the
researched sample of material of rectangular shape. The
airflow had the same temperature and pressure on either
sidec of the sample. The air flow had lower relative
humidity on the one hand of the material (we marked it
"dry" air) and higher relative humidity beyond the
material (we marked it "moist" air). The moister was
transferred during the flow of air along the plate from the
"moist" air to the "dry" air [2] and therefore the relative
humidity of the air was changed on the both sides. The
change of the relative humidity between input and output
of both airflow was cvaluated during the experiment.
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Experiment was conducted in two different modes of
relative humidity of the "moist" air and in ten different
modes of volume flow.

2.1 Measured values

During the cxperiment there was measured thesc values:

1. relative humidity of the ,.dry* air on the input
(keeping in range 4.7 — 7.4%),

2. relative humidity of the ,,dry* air on the output,

3. relative humidity of the ,,moist* air on the input
(first mode: 65 — 81%, second mode: 40 - 70%),

4. relative humidity of the ,moist* air on the
output,

5. temperatures of "dry" and "moist" air on the
input and on the output (20 - 21 °C, isothermal
process),

6. volume flow of the air through the exchanger
(200 — 2000 Vhour., it is corresponding with
speed of flow 0.26 — 2.6 m/s, ten modes),

7. pressure of "dry" and "moist" air on the input
and on the output (barometric pressure just about
970 hPa).

2.2 Experimental samples
Ten different samples were measured:

1. sample S1: material "S", 2.6 g/mz,
2. sample S2: material "S", 4.6 g/m”,



