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1.1 General introduction
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1.2 Notations

We shall use the following notations. The ith row of a matrix A is denoted by Ai·, the
jth column by A·j. For two matrices A,B of the same size, inequalities like A ≤ B or
A < B are understood componentwise. A is called nonnegative if 0 ≤ A and symmetric
if AT = A; AT is the transpose of A. A◦B denotes the Hadamard (entrywise) product
of A,B ∈ Rm×n, i.e., (A ◦ B)ij = AijBij for each i, j. The absolute value of a matrix
A = (aij) is defined by |A| = (|aij|). We shall use the following easy-to-prove properties
valid whenever the respective operations and inequalities are defined:

(i) A ≤ B and 0 ≤ C imply AC ≤ BC,
(ii) A ≤ |A|,
(iii) |A| ≤ B if and only if −B ≤ A ≤ B,
(iv) |A + B| ≤ |A|+ |B|,
(v) if A ◦B ≥ 0, then |A + B| = |A|+ |B|,
(vi) if |A−B| < |B|, then A ◦B > 0,
(vii) ||A| − |B|| ≤ |A−B|,
(viii) |AB| ≤ |A||B|.

The same notations and results also apply to vectors which are always considered
one-column matrices. Hence, for a = (ai) and b = (bi), aT b =

∑
i aibi is the scalar

product whereas abT is the matrix (aibj). Maximum (or minimum) of two vectors a, b
is understood componentwise, i.e., (max{a, b})i = max{ai, bi} for each i. In particular,
for vectors a+, a− defined by a+ = max{a, 0}, a− = max{−a, 0} we have a = a+−a−,
|a| = a+ + a−, a+ ≥ 0, a− ≥ 0 and (a+)T a− = 0. I denotes the unit matrix, ej is the
jth column of I, e = (1, . . . , 1)T is the vector of all ones and E = eeT ∈ Rm×n is the
matrix of all ones (in these cases we do not designate explicitly the dimension which
can always be inferred from the context). In our descriptions to follow, important role
is played by the set Ym of all ±1 vectors in Rm, i.e.,

Ym = {y ∈ Rm; |y| = e}.
Obviously, the cardinality of Ym is 2m. For each x ∈ Rm we define its sign vector sgn x
by

(sgn x)i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . ,m),

so that sgn x ∈ Ym. For a given vector y ∈ Rm we denote

Ty =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 . (1.1)

With a few exceptions we shall use the notation Ty for vectors y ∈ Ym only, in which
case we have T−y = −Ty, T−1

y = Ty and |Ty| = I. For each x ∈ Rm we can write
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|x| = Tzx, where z = sgn x; we shall often use this trick to remove the absolute value
of a vector. Notice that Tzx = (zixi)

m
i=1 = z ◦ x. λmin(A), λmax(A) denote the minimal

and maximal eigenvalue of a symmetric matrix A, respectively. As is well known,
λmin(A) = min‖x‖2=1 xT Ax and λmax(A) = max‖x‖2=1 xT Ax hold. σmin(A), σmax(A)
denote the minimal and maximal singular value of A, and %(A) is the spectral radius
of A. All notations are summed up in the next two subsections.
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1.2.1 Linear algebraic notations

A matrix
Ai· the ith row of A
A·j the jth column of A
A−1 inverse matrix
A+ the Moore-Penrose inverse of A
AT transpose of A
‖A‖∞,1 = max‖x‖∞=1 ‖Ax‖1

A ≤ B Aij ≤ Bij for each i, j
A < B Aij < Bij for each i, j
A ≥ B ⇔ B ≤ A
A > B ⇔ B < A
A ◦B = (aijbij) for A = (aij), B = (bij) (Hadamard product)
a column vector
aT b =

∑
i aibi (scalar product)

abT outer product ((abT )ij = aibj for each i, j)
a+ = max{a, 0}
a− = max{−a, 0}
C the set of complex numbers
Cn complex vector space
Conv X the convex hull of X
det A determinant of A
diag (A) = (A11, . . . , Ann)T for A ∈ Rn×n (diagonal of A)
E = eeT ∈ Rm×n (the matrix of all ones)
e = (1, 1, . . . , 1)T

ej the jth column of the unit matrix I
2 end of proof (“halmos”)
I unit (or identity) matrix
λi(A) ith eigenvalue of a symmetric A (λ1(A) ≥ . . . ≥ λn(A))
λmax(A) = λ1(A) (maximum eigenvalue of a symmetric A)
λmin(A) = λn(A) (minimum eigenvalue of a symmetric A)
max{A,B} componentwise maximum of matrices (vectors)
min{A,B} componentwise minimum of matrices (vectors)
R the set of real numbers
Rm×n the set of m× n real matrices
Rn real vector space
%(A) spectral radius of A
σmax(A) maximum singular value of A
σmin(A) minimum singular value of A

12



1.2.2 Specific notations

Notations marked in red are important and should be memorized.

A interval matrix
|A| absolute value of a matrix (|A| = (|aij|) for A = (aij))
A lower bound of an interval matrix A = [A, A]
A upper bound of an interval matrix A = [A,A]
Ac midpoint matrix of an interval matrix A = [Ac −∆, Ac + ∆]

As = [(A + AT )/2, (A + A
T
)/2] for A = [A,A] (symmetrization)

AT = [AT , A
T
] for A = [A, A] (transpose)

Ayz = Ac − Ty∆Tz
a
0

= 0 for a = 0, = ∞ for a > 0 (case a < 0 does not occur)
b interval vector

b lower bound of an interval vector b = [b, b]

b upper bound of an interval vector b = [b, b]
bc midpoint vector of an interval vector b = [bc − δ, bc + δ]
by = bc + Ty∆
δ radius vector of an interval vector b = [bc − δ, bc + δ]
∆ radius matrix of an interval matrix A = [Ac −∆, Ac + ∆]
f(A, b, c) optimal value of a linear programming problem
f(A,b, c) lower bound of the range of the optimal value of an

interval linear programming problem

f(A,b, c) upper bound of the range of the optimal value of an
interval linear programming problem

%0(A) real spectral radius of A (maximum of moduli of real eigenvalues)
Rn

z = {x ∈ Rn ; Tzx ≥ 0} (z-orthant, z ∈ Yn)
sgn A sign matrix of a matrix A ((sgn A)ij = 1 if Aij ≥ 0, (sgn A)ij = −1 otherwise)
sgn x sign vector of a vector x ((sgn x)i = 1 if xi ≥ 0, (sgn x)i = −1 otherwise)
Ty the diagonal matrix with diagonal vector y
X the solution set of Ax = b
[X] the interval hull of X
|x| absolute value of a vector (|x| = (|xi|) for x = (xi))
[x, x] the interval hull of the solution set X
[x, x] enclosure of X (in particular, that by Hansen-Bliek-Rohn)
xy mostly used for the unique solution of the equation Acx− Ty∆|x| = by

Ym the set of all ±1-vectors in Rm

13



1.3 Auxiliary results
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1.3.1 An algorithm for generating plus/minus-one vectors

It proves helpful at a later stage to generate all the ±1-vectors forming the set Ym

systematically one-by-one in such a way that any two successive vectors differ in exactly
one entry. We describe here an algorithm for performing this task, formulated in terms
of generating the whole set Ym; in later applications the last-but-one line “Y = Y ∪{y}”
is replaced by the respective action on the current vector y. The algorithm employs an
auxiliary (0, 1)-vector z ∈ Rm used for determining the index k for which the current
value of yk should be changed to −yk, and its description is as follows (throughout,
we describe algorithms in the form of MATLAB-like functions):

function Y = yset(m)
z = 0 ∈ Rm; y = e ∈ Ym; Y = {y};
while z 6= e

k = min{i ; zi = 0};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;
Y = Y ∪ {y};

end

Figure 1.1: An algorithm for generating the set Ym.

Theorem 1. For each m ≥ 1 the algorithm at the output yields the set Y = Ym.

Proof: [98]. 2

Proof: We shall prove the assertion by induction on m. For m = 1 it is a matter
of simple computation to verify that the algorithm, if started from y = 1, generates
Y = {1,−1}, and if started from y = −1, generates Y = {−1, 1}, in both cases
Y = Y1. Thus let the assertion hold for some m− 1 ≥ 1 and let the algorithm be run
for m. To see what is being done in the course of the algorithm, let us notice that in
the main loop the initial string of the form

(1, 1, . . . , 1, 0, . . .)T

of the current vector z is being found, where 0 is at the kth position, and it is being
changed to

(0, 0, . . . , 0, 1, . . .)T

until the vector z of all ones is reached (the last vector preceding it is (0, 1, . . . , 1, 1)T ).
Hence if we start the algorithm for m, then the sequence of vectors z and y, restricted
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to their first m − 1 entries, is the same as if the algorithm were run for m − 1, until
vector z of the form

(1, 1, . . . , 1, 0)T (1.2)

is reached. By that time, according to the induction hypothesis, the algorithm has
constructed all the vectors y ∈ Ym with ym being fixed throughout at its initial value.
In the next step the vector (1.2) is switched to

(0, 0, . . . , 0, 1)T

and ym is switched to −ym. Now, from the point of view of the first m− 1 entries, the
algorithm again starts from zero vector z and due to the induction hypothesis it again
generates all the (m − 1)-dimensional ±1-vectors in the first m − 1 entries, this time
with the opposite value of ym. This implies that at the end (when vector z of all ones
is reached) the whole set Ym is generated, which completes the proof by induction. 2

The performance of the algorithm for m = 3 is illustrated in the following table.
The algorithm starts from z = 0, y = e (the first row) and the current values of z, y
at the end of each pass through the while loop are given in the next seven rows of the
table.

zT yT

(0, 0, 0) (1, 1, 1)
(1, 0, 0) (-1, 1, 1)
(0, 1, 0) (-1, -1, 1)
(1, 1, 0) (1, -1, 1)
(0, 0, 1) (1, -1, -1)
(1, 0, 1) (-1, -1, -1)
(0, 1, 1) (-1, 1, -1)
(1, 1, 1) (1, 1, -1)
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1.3.2 Norms

Vector norms in Rn:

‖x‖1 = eT |x| =
n∑

i=1

|xi|,

‖x‖2 =
√

xT x,

‖x‖∞ = max
i=1,...,n

|xi|.

Matrix norms in Rm×n:

‖A‖1 = max
j=1,...,n

m∑
i=1

|aij|,

‖A‖2 =
√

λmax(AT A),

‖A‖∞ = max
i=1,...,m

n∑
j=1

|aij|,

‖A‖1,∞ = max
ij
|aij|,

‖A‖∞,1 = max
y∈Yn

‖Ay‖1 = max
z∈Ym, y∈Yn

zT Ay (1.3)

(see Horn and Johnson [22] for a general treatment and [97] for (1.3)). The last
norm ‖A‖∞,1 plays a particular role in interval analysis, for two reasons. First, it arises
quite naturally with many interval linear problems (see e.g. Theorem 38). Second,
its computation is NP-hard (Theorem 21), a fact which shreds bad light on all these
problems, making them also NP-hard. The following algorithm for computing ‖A‖∞,1

uses the first formula in (1.3) in conjunction with the algorithm for computing the set
Yn (Fig. 1.1):

Given two vector norms ‖x‖α and ‖x‖β in Rn, a subordinate matrix norm ‖A‖α,β

for A ∈ Rn×n is defined by
‖A‖α,β = max

‖x‖α=1
‖Ax‖β (1.4)

(see Higham [20], p. 121). If we use the norms ‖x‖1 = eT |x| =
∑

i |xi|, ‖x‖∞ =
maxi |xi|, then from (1.4) we obtain ‖A‖1,1 = maxj

∑
i |aij|, ‖A‖∞,∞ = maxi

∑
j |aij|,

and ‖A‖1,∞ = maxij |aij|, so that all three norms are easy to compute. This, however,
is no more true for the fourth norm ‖A‖∞,1. In [97] it is proved that

‖A‖∞,1 = max
y∈Yn

‖Ay‖1 = max
z,y∈Yn

zT Ay, (1.5)

where the set Yn consists of 2n vectors. One might hope to find an essentially better
formula for ‖A‖∞,1, but such an attempt is not likely to succeed due to the following
complexity result proved again in [97]:
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function ν = norminfone (A)
y = e ∈ Rn; z = 0 ∈ Rn−1;
x = Ay;
ν = ‖x‖1;
while z 6= e

k = min{i ; zi = 0};
x = x− 2ykA•k;
ν = max{ν, ‖x‖1};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;

end

Figure 1.2: An algorithm for computing the norm ‖A‖∞,1.

1.3.3 The Sherman-Morrison formula

Theorem 2. (Sherman-Morrison) Let A ∈ Rn×n be nonsingular, b, c ∈ Rn, and let
α = 1 + cT A−1b. Then we have:

(i) det(A + bcT ) = α det A,

(ii) if α = 0, then A + bcT is singular,

(iii) if α 6= 0, then

(A + bcT )−1 = A−1 − 1
α
A−1bcT A−1.

Proof: [15]. 2

The Sherman-Morrison formula comes in question as soon as we are to deal with a
matrix of the form A + bcT (a so-called rank one update of A). It is used e.g. in the
proof of one of our basic results, Theorem 30.

Proof: (i) From the identities

(
I + A−1bcT 0

−cT 1

)
=

(
I −A−1b
0T 1

)(
I A−1b
−cT 1

)
,

(
I A−1b
0T α

)
=

(
I 0
cT 1

)(
I A−1b
−cT 1

)

it follows that

det(I + A−1bcT ) = det

(
I A−1b
−cT 1

)
= det

(
I A−1b
0T α

)
= α,
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hence
det(A + bcT ) = det A · det(I + A−1bcT ) = α det A.

(ii) If α = 0, then det(A + bcT ) = 0 by (i).

(iii) If α 6= 0, then direct computation shows that

(A + bcT )(A−1 − 1
1+cT A−1b

A−1bcT A−1)

= I − 1
1+cT A−1b

bcT A−1 + bcT A−1 − 1
1+cT A−1b

b(cT A−1b)cT A−1

= I + (− 1
1+cT A−1b

+ 1− cT A−1b
1+cT A−1b

)bcT A−1 = I,

since the last term in parentheses equals zero. This implies that

(A + bcT )−1 = A−1 − 1
1+cT A−1b

A−1bcT A−1 = A−1 − 1
α
A−1bcT A−1.

2
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1.3.4 Spectral radius and related results

Definition. The number

%(A) = max{|λ|; λ is an eigenvalue of A}
is called the spectral radius of a square matrix A.

Theorem 3. For each A ∈ Rn×n and each ε > 0 there exists a matrix norm ‖ · ‖
(depending on A and ε) such that

%(A) ≤ ‖A‖ < %(A) + ε.

Proof: See [22], p. 297. 2

We utilize the following properties of the spectral radius; all the proofs can be found
in Horn and Johnson [22].

Theorem 4. Let A,B ∈ Rn×n. Then we have:

(a) %(AB) = %(BA),

(b) if |A| ≤ B, then %(A) ≤ %(|A|) ≤ %(B).

Theorem 5. For a matrix A ∈ Rn×n, the following assertions are equivalent:

(i) %(A) < 1,
(ii) Aj → 0 as j →∞,

(iii) I − A is nonsingular,
∑∞

j=0 Aj converges and (I − A)−1 =
∑∞

j=0 Aj holds.

Proof: We shall prove (i)⇒(ii)⇒(iii)⇒(ii)⇒(i).

(i)⇒(ii): If %(A) < 1, then there exists a matrix norm satisfying ‖A‖ < 1 (Theorem
3), and equivalence of norms implies existence of a constant c > 0 such that ‖X‖1 ≤
c‖X‖ for each X ∈ Rn×n. Then for each j ≥ 1 we have by induction

‖Aj‖1 ≤ c‖Aj‖ ≤ c‖A‖j,

where ‖A‖j → 0 because of ‖A‖ < 1, hence ‖Aj‖1 → 0, which implies that Aj → 0
(componentwise).

(ii)⇒(iii): If I − A were singular, we would have Ax = x for some x 6= 0 and by
induction Ajx = x for each j ≥ 1. Since Aj → 0, this would imply Ajx → 0, hence
x = 0, a contradiction. Thus I − A is nonsingular. Then from the identity

(I − A)
k∑

j=0

Aj = I − Ak+1 (k = 0, 1, 2, . . .)
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we have
k∑

j=0

Aj = (I − A)−1(I − Ak+1)

and since Ak+1 → 0, this implies that
∑∞

j=0 Aj converges and

∞∑
j=0

Aj = (I − A)−1

holds.

(iii)⇒(ii): If
∑∞

j=0 Aj converges, then Aj → 0.

(ii)⇒(i): Let λ ∈ C be an arbitrary eigenvalue of A, i.e., Ax = λx for some
0 6= x ∈ Cn×n. Then Ajx = λjx for each j ≥ 1. Since Aj → 0, we have λjx → 0, and
in view of x 6= 0 it must be λj → 0, implying |λ| < 1. Hence %(A) < 1. 2

Theorem 6. (Perron) If A is square nonnegative, then there holds

Ax = %(A)x

for some x ≥ 0, x 6= 0.

Theorem 7. For a nonnegative square matrix A, the following assertions are equiva-
lent:

(i) %(A) < 1,
(ii) I − A is nonsingular and (I − A)−1 ≥ I,

(iii) Ax < x for some x > 0.

Proof: We prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii): If %(A) < 1, then by Theorem 5 in view of nonnegativity of A we have
(I − A)−1 =

∑∞
j=0 Aj ≥ I.

(ii)⇒(iii): Take an arbitrary y > 0 and put x = (I − A)−1y. Then x ≥ Iy = y > 0
and x = Ax + y > Ax.

(iii)⇒(i): Since AT is again nonnegative and has the same eigenvalues as A, by
the Perron theorem there holds AT y = %(A)y for some y ≥ 0, y 6= 0. If Ax < x
for some x > 0, then xT y > 0 and (Ax)T y < xT y, hence premultiplying the equality
AT y = %(A)y by xT yields

%(A) =
xT AT y

xT y
=

(Ax)T y

xT y
<

xT y

xT y
= 1.

2
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Theorem 8. For each a, b ∈ Rn there holds

%(abT ) = |bT a|.
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1.3.5 Eigenvalues of symmetric matrices

It is well known that a symmetric matrix A ∈ Rn×n has all eigenvalues real. They are
usually ordered in a nonincreasing sequence as

λ1(A) ≥ . . . ≥ λn(A).

The Courant-Fischer minimax theorem [15] gives explicit formulae for the eigenvalues
of a symmetric matrix A by

λk(A) = max
dim W=k

min
06=x∈W

xT Ax

xT x
= max

dim W=k
min
x∈W

‖x‖2=1

xT Ax (k = 1, . . . , n), (1.6)

where the maximum is taken over all subspaces W of Rn of dimension k. In particular,
for k = 1 and k = n we obtain

λ1(A) = max
‖x‖2=1

xT Ax,

λn(A) = min
‖x‖2=1

xT Ax.

It is customary to write also λmax(A), λmin(A) instead of λ1(A), λn(A).

Theorem 9. (Wielandt-Hoffman) For symmetric matrices A,B ∈ Rn×n there holds

|λk(A)− λk(B)| ≤ %(A−B)

for k = 1, . . . , n.

Proof: [15]. 2

This shows that for each k, λk(A) is a continuous function of A provided the argu-
ment stays within the set of symmetric matrices.

Eigenvalues of symmetric matrices can be computed very effectively by the sym-
metric version of the QR algorithm (see Golub and van Loan [15] or Watkins [118]).
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1.3.6 Singular values

Each rectangular matrix A ∈ Rm×n has q = min{m,n} uniquely determined singular
values σ1(A), . . . , σq(A). Although they are usually introduced by means of the singu-
lar value decomposition (see Horn and Johnson [22], [23] or Golub and van Loan [15]),
they can also be expressed in the following way. Let r ∈ {0, . . . , n} be the number
of positive eigenvalues of the symmetric matrix AT A. Then the singular values of A
satisfy

σi(A) =
√

λi(AT A) (i = 1, . . . , r), (1.7)

σi(A) = 0 (i = r + 1, . . . , q) (1.8)

(the matrix AT A is positive semidefinite, so that all its eigenvalues are nonnegative).
Hence there holds

σ1(A) ≥ . . . ≥ σq(A) ≥ 0.

Again it is customary to write σmax(A), σmin(A) instead of σ1(A) and σq(A). There
is also another characterization of singular values which turns out to be better suited
for our purposes because it avoids computation of AT A:

Theorem 10. (Jordan-Wielandt) If a matrix A ∈ Rm×n has singular values σ1(A) ≥
. . . ≥ σq(A) ≥ 0, q = min{m,n}, then the symmetric (m + n)× (m + n) matrix

(
0 A

AT 0

)
(1.9)

has eigenvalues

σ1(A) ≥ . . . ≥ σq(A) ≥ 0 = . . . = 0 ≥ −σq(A) ≥ . . .− ≥ σ1(A).

Proof: [114]. 2

Hence, we can obtain the singular values of A simply by taking the positive eigen-
values of the symmetric matrix (1.9) and adding zeros to the overall number q =
min{m, n}.
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1.3.7 The Moore-Penrose inverse

Theorem 11. (Moore-Penrose) For each A ∈ Rm×n there exists exactly one matrix
A+ ∈ Rn×m satisfying
1. AA+A = A,
2. A+AA+ = A+,
3. (AA+)T = AA+,
4. (A+A)T = A+A.

Proof: [114]. 2

Definition. The matrix A+ is called the Moore-Penrose inverse (or, pseudoinverse)
of A.

We have the following special cases:

(a) A+ = (AT A)−1AT if A has linearly independent columns,

(b) A+ = AT (AAT )−1 if A has linearly independent rows,
(c) A+ = A−1 if A is square nonsingular.

This can be proved by direct verification that in each of the three cases A+ has the
above properties 1.-4.

For a general A, its Moore-Penrose inverse can be computed either from the SVD
decomposition of A (Stewart and Sun [114]), or by Greville’s algorithm [16], [17].
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1.3.8 Least squares problem

Definition. Let A ∈ Rm×n and b ∈ Rm. A vector x ∈ Rn satisfying

‖Ax− b‖2 = min{‖Ay − b‖2 ; y ∈ Rn}

is called the least squares solution of the system Ax = b.

Theorem 12. The set X of the least squares solutions of a system Ax = b is described
by

X = {A+b + (I − A+A)y ; y ∈ Rn}.

Proof: [114]. 2

This implies that a least squares solution always exists since x = A+b is one of them.
If A has linearly independent columns, then A+A = I (Subsection 1.3.7, (a)) and A+b
is the unique least squares solution of Ax = b.

We shall later employ another useful characterization:

Theorem 13. A vector x ∈ Rn is a least squares solution of Ax = b if and only if it
satisfies (

A −I
0 AT

)(
x
y

)
=

(
b
0

)
(1.10)

for some y ∈ Rm.

Proof: [114]. 2

The advantage of (1.10) is that the system matrix is square and does not con-
tain terms of the form A+A or AT A whose use for systems with interval data is not
recommendable.
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1.3.9 P -matrices and the linear complementarity problem

Definition. A matrix A ∈ Rn×n is said to be a P -matrix (or, to have the P -property)
if all its principal minors are positive; principal minors are determinants of square
submatrices formed from rows and columns with the same indices (there are 2n− 1 of
them).

Theorem 14. (Fiedler and Pták) A matrix A ∈ Rn×n is a P -matrix if and only if
for each x 6= 0 there exists an i ∈ {1, . . . , n} such that xi(Ax)i > 0.

Proof: [10]. 2

For us, P -matrices are important mainly due to their essential property:

Theorem 15. (Samelson, Thrall and Wesler; Ingleton; Murty) A square ma-
trix A is a P -matrix if and only if for each right-hand side b the linear complementarity
problem

x+ = Ax− + b (1.11)

has a unique solution.

Comment. For x = (xi), x+ = (max{xi, 0}) and x− = (max{−xi, 0}), see p. 10.

Proof: Samelson, Thrall and Wesler [104]; independently Ingleton [24]; independently
Murty [51]. 2

The problem (1.11) is called the linear complementarity problem. We use it in this
form which is most suitable for our purposes. Another equivalent formulation, used in
most textbooks, is

y = Az + b,

y ≥ 0, z ≥ 0,

yT z = 0.
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1.3.10 Farkas lemma

In this section we consider systems of linear equations Ax = b or systems of linear
inequalities Ax ≤ b. It is assumed that A ∈ Rm×n and b ∈ Rm, where m and n are
arbitrary positive integers.

Definition. A system of linear equations Ax = b is called solvable if it has a solution,
and feasible if it has a nonnegative solution.

Throughout this text the reader is kindly asked to bear in mind that feasibility means
nonnegative solvability. The basic result concerning feasibility of linear equations was
proved by Farkas [9] in 1902.

Theorem 16. (Farkas)1 A system

Ax = b (1.12)

is feasible if and only if each p with AT p ≥ 0 satisfies bT p ≥ 0.

Proof: Farkas [9]; also available in [98]. 2

Proof: (a) If the system (5.2) has a solution x ≥ 0 and if AT p ≥ 0 holds for some
p ∈ Rm, then bT p = (Ax)T p = xT (AT p) ≥ 0. This proves the “only if” part of the
theorem.

(b) We shall prove the “if” part by contradiction, proving that if the system (5.2)
does not possess a nonnegative solution, then there exists a p ∈ Rm satisfying AT p ≥ 0
and bT p < 0; for the purposes of the proof it is advantageous to write down this system
in the column form

pTA·j ≥ 0 (j = 1, . . . , n), (1.13)

pT b < 0. (1.14)

We shall prove this assertion by induction on n.

(b1) If n = 1, then A consists of a single column a. Let W = {αa; α ∈ R} be the
subspace spanned by a. According to the orthogonal decomposition theorem (Meyer
[43], p. 405), b can be written in the form

b = bW + bW⊥ ,

where bW ∈ W and bW⊥ ∈ W⊥, W⊥ being the orthogonal complement of W . We
shall consider two cases. If bW⊥ = 0, then b ∈ W , so that b = αa for some α ∈ R.
Since Ax = b does not possess a nonnegative solution due to the assumption, it
must be α < 0 and a 6= 0, so that if we put p = a, then pT a = ‖a‖2

2 ≥ 0 and

1Also called “Farkas lemma”.
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pT b = α‖a‖2
2 < 0, hence p satisfies (5.3), (5.4). If bW⊥ 6= 0, put p = −bW⊥ , then

pT a = 0 and pT b = −‖bW⊥‖2
2 < 0, so that p again satisfies (5.3), (5.4).

(b2) Let the induction hypothesis hold for n− 1 ≥ 1 and let a system (5.2), where
A ∈ Rm×n, does not possess a nonnegative solution. Then neither does the system

n−1∑
j=1

A·jxj = b

(otherwise for xn = 0 we would get a nonnegative solution of (5.2)), hence according
to the induction hypothesis there exists a p ∈ Rm satisfying

pTA·j ≥ 0 (j = 1, . . . , n− 1), (1.15)

pT b < 0. (1.16)

If pTA·n ≥ 0, then p satisfies (5.3), (5.4) and we are done. Thus assume that

pTA·n < 0. (1.17)

Put

αj = pTA·j (j = 1, . . . , n),

β = pT b,

then α1 ≥ 0, . . . , αn−1 ≥ 0, αn < 0 and β < 0. Consider the system

n−1∑
j=1

(αnA·j − αjA·n)xj = αnb− βA·n. (1.18)

If it had a nonnegative solution x1, . . . , xn−1, then we could rearrange it to the form

n−1∑
j=1

A·jxj + A·nxn = b, (1.19)

where

xn =
β −∑n−1

j=1 αjxj

αn

> 0

due to (5.5), (5.6), (5.7), so that the system (5.9), and thus also (5.2), would have
a nonnegative solution x1, . . . , xn contrary to the assumption. Therefore the system
(5.8) does not possess a nonnegative solution and thus according to the induction
hypothesis there exists a p̃ such that

p̃T (αnA·j − αjA·n) ≥ 0 (j = 1, . . . , n− 1), (1.20)

p̃T (αnb− βA·n) < 0. (1.21)
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Now we set
p = αnp̃− (p̃TA·n)p

and we shall show that p satisfies (5.3), (5.4). For j = 1, . . . , n− 1 we have according
to (5.10)

pTA·j = αnp̃TA·j − (p̃TA·n)pTA·j ≥ αj p̃
TA·n − (p̃TA·n)αj = 0, (1.22)

for j = n we get

pTA·n = αnp̃
TA·n − (p̃TA·n)pTA·n = αnp̃

TA·n − (p̃TA·n)αn = 0, (1.23)

and finally from (5.11)

pT b = αnp̃T b− (p̃TA·n)pT b < βp̃TA·n − (p̃TA·n)β = 0, (1.24)

so that (5.12), (5.13), (5.14) imply (5.3) and (5.4), hence p is a vector having the
asserted properties, which completes the proof by induction. 2

With the help of Farkas theorem we can characterize solvability of systems of linear
equations:

Corollary 17. A system Ax = b is solvable if and only if each p with AT p = 0 satisfies
bT p = 0.

Proof: [98]. 2

Proof: If x solves Ax = b and AT p = 0 holds for some p, then bT p = pT b = pT Ax =
(AT p)T x = 0. Conversely, let the condition hold. Then for each p such that AT p ≥ 0
and AT p ≤ 0 we have bT p ≥ 0. But this, according to the Farkas theorem, is just the
sufficient condition for the system

Ax1 − Ax2 = b (1.25)

to be feasible. Hence (5.15) has a solution x1 ≥ 0, x2 ≥ 0, thus A(x1 − x2) = b and
Ax = b is solvable. 2

For systems of linear inequalities we introduce the notions of solvability and feasi-
bility in the same way:

Definition. A system Ax ≤ b is called solvable if it has a solution, and feasible if it
has a nonnegative solution.

Again, we can use Farkas theorem for characterizing solvability and feasibility:

Corollary 18. A system Ax ≤ b is solvable if and only if each p ≥ 0 with AT p = 0
satisfies bT p ≥ 0.
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Proof: [98]. 2

Proof: If x solves Ax ≤ b and AT p = 0 holds for some p ≥ 0, then bT p = pT b ≥
pT Ax = 0. Conversely, let the condition hold, so that each p ≥ 0 with AT p ≥ 0,
AT p ≤ 0 satisfies bT p ≥ 0. This, however, in view of the Farkas theorem means that
the system

Ax1 − Ax2 + x3 = b

is feasible. Hence due to the nonnegativity of x3 we have A(x1 − x2) ≤ b, and the
system Ax ≤ b is solvable. 2

Corollary 19. A system Ax ≤ b is feasible if and only if each p ≥ 0 with AT p ≥ 0
satisfies bT p ≥ 0.

Proof: [98]. 2

Proof: If x ≥ 0 solves Ax ≤ b and AT p ≥ 0 holds for some p ≥ 0, then bT p = pT b =
pT Ax = (AT p)T x ≥ 0. Conversely, let the condition hold; then it is exactly the Farkas
condition for the system

Ax1 + x2 = b (1.26)

to be feasible. Hence (5.16) has a solution x1 ≥ 0, x2 ≥ 0, which implies Ax1 ≤ b, so
that the system Ax ≤ b is feasible. 2

We sum up the results in the form of a table which reveals similarities and differences
among the four necessary and sufficient conditions:

Problem Condition

solvability of Ax = b (∀p)(AT p = 0 ⇒ bT p = 0)
feasibility of Ax = b (∀p)(AT p ≥ 0 ⇒ bT p ≥ 0)
solvability of Ax ≤ b (∀p ≥ 0)(AT p = 0 ⇒ bT p ≥ 0)
feasibility of Ax ≤ b (∀p ≥ 0)(AT p ≥ 0 ⇒ bT p ≥ 0)

An important result published by Khachiyan [34] in 1979 says that feasibility of a
system of linear equations can be checked (and a solution to it, if it exists, found) in
polynomial time. Since all three other problems can be reduced to this one, it follows
that all four problems can be solved in polynomial time.
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1.3.11 Existence lemma

Lemma 20 (Existence lemma) Let A ∈ Rm×n, b ∈ Rm and let for each y ∈ Y the
inequality

TyAx ≥ Tyb (1.27)

have a solution xy. Then the equation

Ax = b

has a solution in the set
Conv{xy; y ∈ Y }. (1.28)

Proof: We shall prove that the system of linear equations

∑
y∈Y

λyAxy = b, (1.29)

∑
y∈Y

λy = 1 (1.30)

has a solution λy ≥ 0, y ∈ Y . In view of the Farkas theorem, it suffices to show that
for each p ∈ Rm and for each p0 ∈ R,

pT Axy + p0 ≥ 0 for each y ∈ Y (1.31)

implies
pT b + p0 ≥ 0. (1.32)

Thus let p, p0 satisfy (5.21). Put y = −sgn p, then p = −Ty|p| and from (5.17), (5.21)
we have

pT b + p0 = −|p|T Tyb + p0 ≥ −|p|T TyAxy + p0 = pT Axy + p0 ≥ 0,

which proves (5.22). Hence the system (5.19), (5.20) has a solution λy ≥ 0, y ∈ Y .
Put x =

∑
y∈Y λyxy, then Ax = b by (5.19) and x belongs to the set (5.18) by (5.20). 2

In the “if” part of the proof we proved that for each A ∈ A and b ∈ b the equation
Ax = b has a solution in the set Conv{x1

y − x2
y; y ∈ Ym}. The proof, relying on Farkas

lemma, was purely existential. It is worth noting, however, that such a solution can
be found in a constructive way when using an algorithm described in [85]. For its
description we need a special order of elements of Ym defined inductively via the sets
Yj, j = 1, . . . , m− 1, in the following way:

(i) the order of Y1 is −1, 1,
(ii) if y1, . . . , y2j is the order of Yj, then (y1,−1), . . . , (y2j ,−1), (y1, 1), . . . ,

(y2j , 1) is the order of Yj+1.
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Further, for a sequence z1, . . . , z2h with an even number of elements, each pair zj, zj+h

is called a conjugate pair, j = 1, . . . , h. As in Theorem ..., let for each y ∈ Ym, x1
y and

x2
y be a solution to ..., .... Then the algorithm runs as follows:

1. Select A ∈ A and b ∈ b.

2. Form a sequence of vectors ((x1
−y − x2

−y)
T , (A(x1

−y − x2
−y)− b)T )T ordered in the

order of the y’s in Ym.

3. For each conjugate pair x, x′ in the current sequence compute

λ =

{
x′k/(x

′
k − xk) if x′k 6= xk,
1 otherwise,

where k is the index of the current last entry, and set

x := λx + (1− λ)x′.

4. Cancel the second part of the sequence and in the remaining part delete the last
entry of each vector.

5. If there remains a single vector x, terminate: x solves Ax = b and x ∈ Conv{x1
y−

x2
y; y ∈ Ym}. Otherwise go to Step 3.

The algorithm starts with 2m vectors ((x1
−y − x2

−y)
T , (A(x1

−y − x2
−y) − b)T )T ∈ Rn+m,

y ∈ Ym, and proceeds by halving the sequence and deleting the last entry, hence it is
finite and at the end it produces a single vector x ∈ Rn. The assertion made in Step
5 is a consequence of Theorem 2 in [85] because we have

TyAxy ≥ Tyb

for each y ∈ Ym, hence also
TyAx−y ≤ Tyb

for each y ∈ Ym, which is the form used in [85].
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1.3.12 Complexity

1.3.12.1 Basic notions of the complexity theory

An algorithm is called a polynomial–time algorithm if there exists a polynomial p such
that for each instance (input data) of length ` the number of steps of the algorithm is
≤ p(`). Length: number of bits of the input. Consequence: only rational data allowed
(usually represented by pairs of integers). Example: modified Gaussian elimination2

[2].

Decision (“yes or no”) problems are considered in complexity theory. (So that
problem setting consists of an instance, i.e. the set of allowed data, and a question,
see e.g. Theorem 21 below.) A problem belongs to the class P if it is solvable by a
polynomial–time algorithm, and to the class NP if a guessed3 candidate for a solution
can be verified by a polynomial–time algorithm.

A problem I can be reduced in polynomial time to problem J , which we denote by
I → J , if there exists a polynomial–time algorithm π which transforms each instance
i of I to an instance π(i) of J so that the answer to i is “yes” if and only if the answer
to π(i) is “yes” (or, the answer to i is “yes” if and only if the answer to π(i) is “no”).
Hence, if I → J , then each algorithm for solving J may be employed for solving I;
consequently, J is “at least as difficult” as I.

A problem J is called NP–hard if I → J for each I ∈ NP . If, moreover, J itself
belongs to NP , then it is called NP–complete. An NP–complete problem exists (Cook
[6]; thousands of them have been found since). If J is NP -hard and the problem J ′

formed from J by negating its question is in NP , then J is called co-NP -complete.4

Method of proving NP–hardness/NP–completeness: if J is NP–hard and J → K,
then K is NP–hard; if, additionally, K ∈ NP , then K is NP -complete. (Hence, one
must have an “appropriate” problem NP -hard/NP–complete problem J at hand; two
such problems are presented below.)

Computing the value of
max
x∈X

f(x)

is said to be NP–hard if the decision problem
“is f(x) ≥ r for some x ∈ X ?”

2Gaussian elimination itself is not a polynomial-time algorithm; it must be modified. But this
can be done, so that computing determinants, solving linear systems and inverting matrices can be
performed in polynomial time.

3You may view it as presented by an “oracle”.
4For explanation, look at the problem formulation in Theorem 41. Assume we have already

proved that the problem is NP -hard. The negated question is “does [Ac − E, Ac + E] contain a
singular matrix?”. If we are given a (guessed candidate) matrix A ∈ [Ac −E,Ac + E], we can verify
its singularity in polynomial time by checking det(A) = 0. Hence the problem J ′ is in NP and thus
the original problem of Theorem 41 is co-NP -complete, which is a less loose - and thus preferable -
property than NP -hardness.
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is NP–hard (r rational).

If some NP–hard problem can be solved by a polynomial–time algorithm, then all
problems in NP are solvable by polynomial–time algorithms (due to the definition
of NP -completeness). This would imply P = NP . However, no such problem (or
algorithm) is known to date, and it is widely believed (but not proved) that

P 6= NP.

Hence, if this conjecture is true, then no NP–hard/NP–complete problem can be
solved by a polynomial–time algorithm.

This abridged description comes from [94]. For more details, see Garey and Johnson
[13].

1.3.12.2 Two basic NP -complete problems

Definition. A square matrix A = (aij) is called an M -matrix if aij ≤ 0 for i 6= j and
A−1 ≥ 0.

Theorem 21. The following decision problem is NP-complete:
Instance. A symmetric rational M-matrix A ∈ Rn×n with ‖A‖1 ≤ 2n− 1.
Question. Is ‖A‖∞,1 ≥ 1?

Proof: [90], [97]. 2

Theorem 22. The problem of checking whether a system of inequalities

− e ≤ Ax ≤ e, (1.33)

eT |x| ≥ 1 (1.34)

has a solution is NP-complete in the set of nonnegative positive definite rational ma-
trices.

Comment. Clearly, eT |x| = ‖x‖1, so that the inequality (1.34) could be equivalently
written as ‖x‖1 ≥ 1. We prefer, however, the formulation given because terms of
the form eT |x| arise quite naturally in the analysis of complexity of interval linear
problems.

Proof: Given a symmetric rational M -matrix A ∈ Rn×n, consider the system

− e ≤ A−1x ≤ e, (1.35)

eT |x| ≥ 1 (1.36)
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which can be constructed in polynomial time since the same is true for A−1 (see
Bareiss [2]). Since A is positive definite ([23], p. 114, assertion 2.5.3.3), A−1 is rational
nonnegative positive definite. Obviously, the system (1.35), (1.36) has a solution if
and only if

1 ≤ max{eT |x|; −e ≤ A−1x ≤ e} = max{eT |Ax′|; −e ≤ x′ ≤ e}
= max{‖Ax′‖1; −e ≤ x′ ≤ e} = max{‖Ay‖1; y ∈ Yn} = ‖A‖∞,1

holds, since the function ‖Ax′‖1 is convex over the unit cube {x′; −e ≤ x′ ≤ e} and
therefore its maximum is attained at one of its vertices which are just the vectors in
Yn. Summing up, we have shown that ‖A‖∞,1 ≥ 1 holds if and only if the system
(1.35), (1.36) has a solution. Since the former problem is NP-complete (Theorem ??),
the latter one is NP-hard, hence also the problem (1.33), (1.34) is NP-hard. Moreover,
if (1.33), (1.34) has a solution, then, as we have seen, it also has a rational solution of
the form x = A−1y for some y ∈ Yn, and verification whether x solves (1.33), (1.34)
can be performed in polynomial time. Hence the problem of checking solvability of
(1.33), (1.34) belongs to the class NP and therefore it is NP-complete. 2
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1.3.13 Interval arithmetic

Operations over closed real intervals are defined by the general rule

[a, a] ◦ [b, b] = {α ◦ β; α ∈ [a, a], β ∈ [b, b]},

where
◦ ∈ {+,−, ·, /}

and division is defined only if 0 /∈ [b, b].

Explicitly:

[a, a] + [b, b] = [a + b, a + b],

[a, a]− [b, b] = [a− b, a− b],

[a, a] · [b, b] = [min M, max M ],

[a, a]/[b, b] = [min N, max N ],

where

M = {ab, ab, ab, ab},
N = {a/b, a/b, a/b, a/b}.

The basic property of interval arithmetic consists in the fact that if α ∈ [a, a] and
β ∈ [b, b], then α ◦ β ∈ [a, a] ◦ [b, b].

See Alefeld and Herzberger [1] or Neumaier [55] for further properties of the interval
arithmetic.
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Chapter 2

Basic tools
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2.1 Introduction
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2.2 Existence lemma

Lemma 23. Let A ∈ Rm×n, b ∈ Rm and let for each y ∈ Ym the inequality

TyAx ≥ Tyb (2.1)

have a solution xy. Then the equation

Ax = b

has a solution in the set
Conv{xy; y ∈ Ym}. (2.2)

Proof: First proved in [73]. Journal publications: existencial proof (from Farkas
lemma) in [83], constructive proof in [85]. 2

The ith inequality in (5.17) has the form (Ax)i ≥ bi if yi = 1 and is of the form
(Ax)i ≤ bi if yi = −1. Thus, if we start from a system Ax = b and if we “relax” each
equation (Ax)i = bi to either (Ax)i ≥ bi or (Ax)i ≤ bi, we obtain as a result just the
family of all systems (5.17) for y ∈ Ym (hence, 2m of them). The lemma says that (a)
if each of these systems of inequalities has a solution, then Ax = b has a solution, (b)
at least one of solutions of Ax = b belongs to the set (5.18).

The existence lemma plays for interval linear systems a similar role as the Farkas
lemma does for noninterval ones. It is vital for the proof of the crucial convex hull
theorem 154, and is also used in the proofs of Theorems 34 (several of the assertions)⇒
and 209.

Proof: We shall prove that the system of linear equations

∑
y∈Ym

λyAxy = b, (2.3)

∑
y∈Ym

λy = 1 (2.4)

has a solution λy ≥ 0, y ∈ Ym. In view of the Farkas lemma, it suffices to show that
for each p ∈ Rm and each p0 ∈ R,

pT Axy + p0 ≥ 0 for each y ∈ Ym (2.5)

implies
pT b + p0 ≥ 0. (2.6)

Thus let p and p0 satisfy (5.53). Put y = −sgn p, then p = −Ty|p| and from (5.17),
(5.53) we have

pT b + p0 = −|p|T Tyb + p0 ≥ −|p|T TyAxy + p0 = pT Axy + p0 ≥ 0,

40



which proves (5.54). Hence the system (5.51), (5.52) has a solution λy ≥ 0, y ∈ Ym.
Put x =

∑
y∈Ym

λyxy, then Ax = b by (5.51) and x belongs to the set Conv{xy; y ∈
Ym} = Conv{x1

y − x2
y; y ∈ Ym} by (5.52). 2
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2.3 Regularity of interval matrices

Definition. A square interval matrix A is called regular if each A ∈ A is nonsingular,
and singular in the opposite case (i.e., if A contains a singular matrix).

Regularity is a very strong property and implies rich consequences; the whole long
Section 3.3 is dedicated to it. Here we present only a basic characterization used in
the proofs of theorems of this chapter. For these purposes it is better to formulate it
in terms of singularity instead of regularity:

Theorem 24. A square interval matrix A is singular if and only if the inequality

|Acx| ≤ ∆|x|

has a nontrivial solution.

Proof: A consequence of the Oettli-Prager theorem 139 for zero right-hand side; for a
direct elementary proof see e.g. [92]. 2
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2.4 Regularity lemma

Lemma 25. If A is regular, then for each A1, A2 ∈ A both A−1
1 A2 and A1A

−1
2 are

P -matrices.

Proof: First proved in [70], by elementary means; first journal publication in [81]
(another proof using the Fiedler-Pták theorem 14); also [92] (still another proof, also
using the Fiedler-Pták theorem; preferable). 2

This lemma forms a bridge between interval analysis, linear algebra and linear
complementarity theory and as such, as all the bridge-type theorems, is important
because it yields a deeper insight. It is used in one of the two proofs of the key
Theorem 26 - that one which is shorter, more evident, but only existential.

Proof: Assume to the contrary that A−1
1 A2 is not a P–matrix for some A1, A2 ∈ A =

[Ac − ∆, Ac + ∆]. Then according to the Fiedler–Pták theorem (Theorem 14) there
exists an x 6= 0 such that xi(A

−1
1 A2x)i ≤ 0 for each i. Put x′ = A−1

1 A2x, then

xix
′
i ≤ 0 (i = 1, . . . , n) (2.7)

and
x 6= x′ (2.8)

holds. In fact, since x 6= 0, there exists a j with xj 6= 0; then x2
j > 0 whereas (2.7)

implies xjx
′
j ≤ 0, hence xj 6= x′j. Now we have

|Ac(x
′ − x)| = |(Ac − A1)x

′ + (A2 − Ac)x| ≤ ∆|x′|+ ∆|x| = ∆|x′ − x| (2.9)

since |x′|+ |x| = |x′− x| due to (2.7). Hence Theorem 24, (ii) in the light of (2.9) and
(2.8) implies that A is singular, which is a contradiction. 2
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2.5 The equation Ax + B|x| = b: The key theorem

Theorem 26. Let A,B ∈ Rn×n. If the interval matrix [A − |B|, A + |B| ] is regular,
then for each right-hand side b ∈ Rn the equation

Ax + B|x| = b (2.10)

has a unique solution.

This is a fundamental result which because of its nature (it asserts existence of some
uniquely defined objects) plays a key role throughout the text, mainly in the proofs of
the convex hull theorem 154, existence and uniqueness of the matrices Qz (Theorem
57), several assertions of Theorem 34, etc. So far it has been published in interval
setting only (in the form of Theorem 154; first published in [70], journal publication
in [81]). But the present setting should be preferred, since in this form it is another
“bridge-type” result. We give here a short proof relying heavily on previous theorems;
a constructive form of it will be given in the next section.

Proof: Using x = x+ − x−, |x| = x+ + x− (see p. 10), we can write (2.10) in the form

(A + B)x+ − (A−B)x− = b. (2.11)

Since both A + B and A−B belong to [A− |B|, A + |B| ], we can rewrite (2.11) as

x+ = (A + B)−1(A−B)x− + (A + B)−1b,

thereby obtaining a linear complementarity problem with a P -matrix (A+B)−1(A−B)
(Lemma 25), which has a unique solution by Theorem 15. 2

Corollary 27. If [A−|B|, A+ |B| ] is regular, then for each C with |C| ≤ |B| and for
each b ∈ Rn the equation

Ax + C|x| = b (2.12)

has a unique solution.

Proof: [A− |C|, A + |C| ] ⊆ [A− |B|, A + |B| ]; then Theorem 26 applies. 2

There is a natural question what can be said if the matrix [A − |B|, A + |B| ] in
Theorem 26 is singular. In this case we can state the following (cf. Subsection 3.3.10):

odkaz

Theorem 28. If [A− |B|, A + |B| ] is singular, then there exist d ∈ [0, 1] and1 y ∈ Yn

such that the equation
Ax + dTy|B||x| = 0 (2.13)

has a nontrivial solution (and, consequently, infinitely many of them).

1For Ty, see p. 13.
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Proof: [86]. 2

Observe that |dTy|B|| ≤ |B|, so that (2.13) is of the form (2.12).
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2.6 The sign accord algorithm

Lemma 29. Let [A− |B|, A + |B| ] be regular and let

(A + BTz′)x
′ = (A + BTz′′)x

′′ (2.14)

hold for some z′, z′′ ∈ Yn and x′ 6= x′′. Then there exists a j satisfying z′jz
′′
j = −1 and

x′jx
′′
j > 0.

Proof: Assume to the contrary that for each j, z′jz
′′
j = −1 implies x′jx

′′
j ≤ 0 and hence

also |x′j − x′′j | = |x′j|+ |x′′j |. We shall prove that in this case

|Tz′x
′ − Tz′′x

′′| ≤ |x′ − x′′|, (2.15)

i.e. that
|z′jx′j − z′′j x

′′
j | ≤ |x′j − x′′j |

holds for each j. Since |z′jx′j − z′′j x
′′
j | = |z′j(x′j − z′jz

′′
j x

′′
j )| = |x′j − z′jz

′′
j x

′′
j |, this fact is

obvious for z′jz
′′
j = 1. If z′jz

′′
j = −1, then

|z′jx′j − z′′j x
′′
j | = |x′j + x′′j | ≤ |x′j|+ |x′′j | = |x′j − x′′j |,

which together proves (2.15). Now, from (2.14) we have

|A(x′ − x′′)| = |B(Tz′x
′ − Tz′′x

′′)| ≤ |B||Tz′x
′ − Tz′′x

′′| ≤ |B||x′ − x′′|
due to (2.15), where x′ − x′′ 6= 0, hence [A− |B|, A + |B| ] is singular by Theorem 24,
a contradiction. 2

Theorem 30. For each A,B ∈ Rn×n and each b ∈ Rn, the sign accord algorithm (Fig.
2.2) in a finite number of steps either finds a solution of the equation

Ax + B|x| = b, (2.16)

or states singularity of the interval matrix [A − |B|, A + |B| ] (and, in certain cases,
finds a singular matrix As ∈ [A− |B|, A + |B| ]).

Comment. For better understandability, we shall describe the basic idea behind
the sign accord algorithm (Fig. 2.2). If we knew the sign vector z = sgn x of the
solution x of (2.16), we could rewrite (2.16) as (A + BTz)x = b and solve it for x as
x = (A + BTz)

−1b. The problem is, we know neither x, nor z; but we do know that
they should satisfy Tzx = |x| ≥ 0, i.e., zjxj ≥ 0 for each j (a situation we call a sign
accord of z and x). In its kernel form the sign accord algorithm computes the z’s and
x’s repeatedly until a sign accord occurs: A combinatorial argument (parts 3.1 and
3.2 of the proof) based on Lemma 29 is used to prove that in case of regularity of
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z = sgn (A−1b);
x = (A + BTz)

−1b;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
zk = −zk;
x = (A + BTz)

−1b;
end

Figure 2.1: The kernel of the sign accord algorithm.

[A− |B|, A + |B| ], a sign accord is achieved within a specified finite number of steps,
so that crossing this number indicates singularity of [A− |B|, A + |B| ].
Proof: The proof consists of several steps.

1. Finiteness. The algorithm starts with the vector p = 0 and during each pass
through the while loop it increases some pk by 1. This means that after a finite
number of steps pk will become greater than 2n−k for some k, and the algorithm will
terminate in the fourth if statement2 (if not earlier).

2. Simplification. Next we shall simplify the description of the algorithm by proving
by induction that after each updating of C, the current values of z, x and C satisfy

x = (A + BTz)
−1b, (2.17)

C = −(A + BTz)
−1B. (2.18)

This is obviously so for the initial values of z, x and C. Thus let (2.17), (2.18) hold
true at some step. Then for each real t the matrix

A + B(Tz − 2tzkeke
T
k ) = A + BTz − (2tzkBek)e

T
k

is a rank one update of the matrix A + BTz, which is nonsingular by the induction
hypothesis because (2.17) holds, hence by the well-known formula we have

det(A + B(Tz − 2tzkeke
T
k )) = (1− 2tzke

T
k (A + BTz)

−1Bek) det(A + BTz)

= (1 + 2tzkCkk) det(A + BTz). (2.19)

Now two possibilities may occur.

2.1. The case of 1+2zkCkk ≤ 0. Then the real function ϕ(t) = 1+2tzkCkk satisfies
ϕ(0)ϕ(1) = 1 + 2zkCkk ≤ 0, hence ϕ(τ) = 0 for τ = (−1)/(2zkCkk) ∈ [0, 1] and

det(A + B(Tz − 2τzkeke
T
k )) = 0.

2We prefer to write the condition as log2 pk > n − k instead of pk > 2n−k to avoid a possibly
large number 2n−k.
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function [x, flag, As] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b or states
% singularity of [A− |B|, A + |B| ].
x = [ ]; flag = ′singular′; As = [ ];
if A is singular, As = A; return, end
p = 0 ∈ Rn;
x = A−1b;
z = sgn x;
if A + BTz is singular, As = A + BTz; return, end
x = (A + BTz)

−1b;
C = −(A + BTz)

−1B;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
if 1 + 2zkCkk ≤ 0

τ = (−1)/(2zkCkk);
As = A + B(Tz − 2τzkeke

T
k );

x = [ ];
return

end
pk = pk + 1;
zk = −zk;
if log2 pk > n− k, x = [ ]; return, end
α = 2zk/(1− 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution found′;

Figure 2.2: The sign accord algorithm.

48



Because of τ ∈ [0, 1] we have |Tz − 2τzkeke
T
k | ≤ I, so that the matrix A + B(Tz −

2τzkeke
T
k ) belongs to [A − |B|, A + |B| ] and is singular. This is the case of the first

if statement in the while loop. In this case the algorithm terminates with a singular
matrix As = A + B(Tz − 2τzkeke

T
k ) ∈ [A− |B|, A + |B| ].

2.2. The case of 1+2zkCkk > 0. Here the first if statement of the while loop is not
in effect and provided this is also the case of the second one, the algorithm constructs
the updated values z̃, x̃ and C̃ along the formulae

z̃k = −zk,

α = 2z̃k/(1− 2z̃kCkk) = −2zk/(1 + 2zkCkk),

x̃ = x + αxkC•k,

C̃ = C + αC•kCk•.

Then the matrix

A + BTz̃ = A + B(Tz − 2zkeke
T
k ) = A + BTz − (2zkBek)e

T
k

is nonsingular due to (2.19) (with t = 1), hence by the Sherman-Morrison formula
there holds

(A + BTz̃)
−1 = (A + BTz)

−1 +
(A + BTz)

−12zkBeke
T
k (A + BTz)

−1

1 + 2zkCkk

= (A + BTz)
−1 + αC•keT

k (A + BTz)
−1.

Then we have

(A + BTz̃)
−1b = (A + BTz)

−1b + αC•keT
k (A + BTz)

−1b = x + αxkC•k = x̃

and

−(A + BTz̃)
−1B = −(A + BTz)

−1B − αC•keT
k (A + BTz)

−1B = C + αC•kCk• = C̃,

which proves (2.17), (2.18) by induction. Hence we can see that the matrix C plays a
purely auxiliary role, helping to avoid an explicit computation of x = (A + BTz)

−1b
at each step.

3. Termination. If the condition of the while loop is not satisfied at some step,
then zjxj ≥ 0 for each j, hence Tzx ≥ 0, so that Tzx = |x|. Because x = (A+BTz)

−1b
by (2.17), we have that Ax + B|x| = (A + BTz)x = b, so that x solves the equation
(2.16). Next there are four possible terminations in the four if statements. In the first
three of them singularity is clearly detected (this is obvious with the first two of them,
and the fact that the matrix As constructed in the third if statement is singular has
been proved in part 2.1). Thus it remains to be shown that if the condition of the
fourth if statement is satisfied, i.e., if log2 pk > n−k for some k, then [A−|B|, A+ |B| ]
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is singular. This will be proved if we demonstrate that if [A− |B|, A + |B| ] is regular,
then

pk ≤ 2n−k (2.20)

holds throughout the algorithm for each k, which will exclude the possibility of log2 pk >
n− k. Thus let [A− |B|, A + |B| ] be regular, and consider the sequence of k’s gener-
ated in the while loop of the algorithm. We shall prove by induction that each k can
appear there at most 2n−k times (k = n, . . . , 1).

3.1. Case k = n. Assume that n appears at least twice in the sequence, and let
z′, x′ and z′′, x′′ correspond to any two nearest occurrences of it (i.e., there is no other
occurrence of n between them). Then z′jx

′
j ≥ 0, z′′j x

′′
j ≥ 0 for j = 1, . . . , n − 1, and

z′nx
′
n < 0, z′′nx

′′
n < 0, z′nz

′′
n = −1, which implies z′nx′nz

′′
nx

′′
n > 0 and x′nx

′′
n < 0. Hence,

z′jx
′
jz
′′
j x

′′
j ≥ 0 for each j. But since

(A + BTz′)x
′ = b = (A + BTz′′)x

′′ (2.21)

holds due to (2.17) and x′ 6= x′′ (because x′nx′′n < 0), it follows from Lemma 29 that
there exists a j with z′jz

′′
j = −1 and x′jx

′′
j > 0, implying z′jx

′
jz
′′
j x

′′
j < 0, a contradiction;

hence n occurs at most once in the sequence.

3.2. Case k < n. Again, let z′, x′ and z′′, x′′ correspond to any two nearest occur-
rences of k, so that z′jx

′
j ≥ 0, z′′j x

′′
j ≥ 0 for j = 1, . . . , k − 1, z′kx

′
k < 0, z′′kx

′′
k < 0 and

z′kz
′′
k = −1. This implies that z′jx

′
jz
′′
j x

′′
j ≥ 0 for j = 1, . . . , k − 1, z′kx

′
kz
′′
kx

′′
k > 0 and

x′kx
′′
k < 0. Since (2.21) holds due to (2.17), and x′ 6= x′′ because of x′kx

′′
k < 0, Lemma

29 implies existence of a j with z′jz
′′
j = −1 and x′jx

′′
j > 0, hence z′jx

′
jz
′′
j x

′′
j < 0, so that

j > k. Since z′jz
′′
j = −1, j must have entered the sequence between the two occur-

rences of k. Hence between any two nearest occurrences of k there is an occurrence of
some j > k in the sequence; this means by induction hypothesis that k cannot occur
there more than (2n−k−1 + . . . + 2 + 1) + 1 = 2n−k times.

3.3. Conclusion. We have proved that in case of regularity (2.20) holds for each k,
hence a situation of log2 pk > n − k indicates singularity of [A − |B|, A + |B| ]. This
justifies the last possible termination, and thereby also the whole algorithm. 2

Theorem 31. If the interval matrix [A− |B|, A + |B| ] is regular, then for each right-
hand side b the unique solution (Theorem 26) of the equation

Ax + B|x| = b

can be found by the sign accord algorithm (Fig. 2.2) in a finite number of steps.

Proof: Let b ∈ Rn. Since [A − |B|, A + |B| ] is regular, the sign accord algorithm
cannot state singularity, hence according to Theorem 30 it finds in a finite number
of steps a solution of the equation (2.10). To prove uniqueness, assume to the con-
trary that (2.10) has solutions x′ and x′′, x′ 6= x′′. Put z′ = sgn x′, z′′ = sgn x′′, then
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Tz′x
′ ≥ 0, Tz′′x

′′ ≥ 0 and (A + BTz′)x
′ = b = (A + BTz′′)x

′′ holds, hence by Lemma
29 there exists a j with z′jz

′′
j = −1 and x′jx

′′
j > 0, implying z′jx

′
jz
′′
j x

′′
j < 0 contrary to

z′jx
′
j ≥ 0 and z′′j x

′′
j ≥ 0, a contradiction. Hence the solution of (2.10) is unique. 2
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Chapter 3

Interval matrices
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3.1 Introduction
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3.2 Interval matrices
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3.2.1 Basic notations for interval matrices

There are several ways how to express inexactness of the data. One of them, which
has particularly nice properties from the point of view of a user, employs the so-called
interval matrices which we are going to define in this section.

If A, A are two matrices in Rm×n, A ≤ A, then the set of matrices

A = [A,A] = {A; A ≤ A ≤ A}

is called an interval matrix, and the matrices A, A are called its bounds. Hence, if
A = (aij) and A = (aij), then A is the set of all matrices A = (aij) satisfying

aij ≤ aij ≤ aij (3.1)

for i = 1, . . . , m, j = 1, . . . , n. It is worth noting that each coefficient may attain any
value in its interval (3.1) independently of the values taken on by other coefficients.
Introducing additional relations among different coefficients makes interval problems
much more difficult to solve and we shall not follow this line in this chapter.

As it will be seen later, in many cases it is more advantageous to express the data
in terms of the center matrix

Ac = 1
2
(A + A) (3.2)

and of the radius matrix

∆ = 1
2
(A− A), (3.3)

which is always nonnegative. From (3.2), (3.3) we easily obtain that

A = Ac −∆,

A = Ac + ∆,

so that A can be given either as [A,A], or as [Ac −∆, Ac + ∆], and consequently we
can also write

A = {A; |A− Ac| ≤ ∆}.
In the sequel we shall employ both forms and we shall switch freely between them
according to which one will be more useful in the current context. The following
proposition is the first example of usefulness of the center-radius notation:

Proposition 32 Let Ã = [Ãc − ∆̃, Ãc + ∆̃] and A = [Ac − ∆, Ac + ∆] be interval
matrices of the same size. Then Ã ⊆ A if and only if

|Ac − Ãc| ≤ ∆− ∆̃

holds.
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Proof: If Ã ⊆ A, then from

Ac −∆ ≤ Ãc − ∆̃ ≤ Ãc + ∆̃ ≤ Ac + ∆ (3.4)

we obtain
− (∆− ∆̃) ≤ Ac − Ãc ≤ ∆− ∆̃, (3.5)

which gives
|Ac − Ãc| ≤ ∆− ∆̃. (3.6)

Conversely, (3.6) implies (3.5) and (3.4), hence Ã ⊆ A. 2

For an interval matrix A = [A,A] = [Ac − ∆, Ac + ∆], its transpose is defined by

AT = {AT ; A ∈ A}. Obviously, AT = [AT , A
T
] = [AT

c −∆T , AT
c + ∆T ].

A special case of an interval matrix is an interval vector which is a one-column
interval matrix

b = {b; b ≤ b ≤ b},
where b, b ∈ Rm. We shall again use the center vector

bc = 1
2
(b + b)

and the nonnegative radius vector

δ = 1
2
(b− b),

and we shall employ both forms b = [b, b] = [bc − δ, bc + δ]. Notice that interval
matrices and vectors are typeset in boldface letters.
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3.2.2 The matrices Ayz

Given an m× n interval matrix A = [Ac −∆, Ac + ∆], we define matrices

Ayz = Ac − Ty∆Tz (3.7)

for each y ∈ Ym and z ∈ Yn (Ty is given by (1.1)). The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =

{
aij if yizj = −1,
aij if yizj = 1

(i = 1, . . . , m, j = 1, . . . , n), so that Ayz ∈ A for each y ∈ Ym, z ∈ Yn. This finite set of
matrices from A (of cardinality at most 2m+n−1 because Ayz = A−y,−z for each y ∈ Ym,
z ∈ Yn), introduced in [81], plays an important role because it turns out that many
problems with interval-valued data can be characterized in terms of these matrices,
thereby obtaining finite characterizations of problems involving infinitely many sets of
data. In theorems to follow we shall see several examples of this approach, the most
striking one being Theorem 209. We shall write A−yz instead of A−y,z. In particular,
we have Aye = Ac − Ty∆, Aez = Ac −∆Tz, Aee = A and A−ee = A.

Theorem 33. For an m × n interval matrix A, there are at most 2m+n−1 mutually
different matrices Ayz, and this upper bound is attained if ∆ > 0.

For an m-dimensional interval vector b = [bc − δ, bc + δ], in analogy with matrices
Ayz we define vectors

by = bc + Tyδ

for each y ∈ Ym. Then for each such a y we have

(by)i = (bc)i + yiδi =

{
bi if yi = −1,

bi if yi = 1

(i = 1, . . . , m), so that by ∈ b for each y ∈ Ym. In particular, b−e = b and be = b.
Together with matrices Ayz, vectors by are used in finite characterizations of interval
problems having right-hand sides.
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3.3 Regularity
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3.3.1 Definition

Definition. A square interval matrix A is called regular if each A ∈ A is nonsingular,
and it is said to be singular otherwise (i.e., if it contains a singular matrix).
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3.3.2 Necessary and sufficient conditions

Theorem 34. For a square interval matrix A, the following assertions are equivalent:

(i) A is regular,
(ii) the inequality

|Acx| ≤ ∆|x|
has only the trivial solution x = 0,

(iii) (det Ac)(det Ayz) > 0 for each y, z ∈ Yn,

(iv) (det Ayz)(det Ay′z′) > 0 for each y, z, y′, z′ ∈ Yn,
(v) (det Ayz)(det Ayz′) > 0 for each y, z, z′ ∈ Yn such that z and z′ differ in exactly

one entry,

(vi) Ac is nonsingular and
max
y,z∈Yn

%0(A
−1
c Ty∆Tz) < 1

holds,
(vii) for each y ∈ Yn the system

Ayex1 − A−yex2 = y,

x1 ≥ 0, x2 ≥ 0

has a solution,

(viii) for each y ∈ Yn the equation

Acx− Ty∆|x| = y

has a solution,

(ix) for each y ∈ Yn the equation

Acx− Ty∆|x| = y

has a unique solution,

(x) for each z ∈ Yn the matrix equation

QAc − |Q|∆Tz = I

has a solution,

(xi) for each z ∈ Yn the matrix equation

QAc − |Q|∆Tz = I

has a unique solution,
(xii) for each y ∈ Yn the equation

|Acx| = ∆|x|+ e

has a solution xy satisfying Acxy ∈ Rn
y ,
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(xiii) for each y ∈ Yn the equation

|Acx| = ∆|x|+ e

has a unique solution xy satisfying Acxy ∈ Rn
y ,

(xiv) for each y ∈ Yn the inequality

∆|x| < |Acx|
has a solution satisfying Acx ∈ Rn

y ,

(xv) Ac is nonsingular and the equation

|x| = ∆|A−1
c x|+ e

has a solution in each orthant,

(xvi) Ac is nonsingular and the equation

|x| = ∆|A−1
c x|+ e

has a unique solution in each orthant,
(xvii) Ac is nonsingular and the inequality

∆|A−1
c x| < |x|

has a solution in each orthant,
(xviii) there exists an R ∈ Rn×n such that the inequality

|(I − AcR)x|+ ∆|Rx| < |x|
has a solution in each orthant,

(xix) for each y ∈ Yn, Aye is nonsingular and A−1
ye A−ye is a P -matrix,

(xx) for each y ∈ Yn, Aye is nonsingular and the system

A−1
ye A−yex > 0, x > 0

has a solution,

(xxi) for each y ∈ Yn, Aye and A−ye are nonsingular and the system

A−1
ye x > 0, A−1

−yex > 0

has a solution,

(xxii) for each y ∈ Yn, Aye is nonsingular and the system

|A−1
c Ty∆x| < x

has a solution,
(xxiii) for each y, z ∈ Yn, Ayz is nonsingular and

(AcA
−1
yz )ii > 1

2

holds for each i ∈ {1, . . . , n}.
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3.3.3 Nontrivial consequences of regularity

Lemma 35. (Regularity lemma) Let A be regular and let A′x′ = A′′x′′ hold for
some A′, A′′ ∈ A and x′ 6= x′′. Then there exists a j such that A′

.j 6= A′′
.j and x′jx

′′
j > 0.

Proof: Assume to the contrary that A′x′ = A′′x′′ holds for some A′, A′′ ∈ A and
x′ 6= x′′ such that for each j, either A′

.j = A′′
.j, or x′jx

′′
j ≤ 0. Put J = {j; x′jx

′′
j ≤ 0},

then for each j ∈ J we have |x′j|+ |x′′j | = |x′j − x′′j |, and

Ac(x
′ − x′′) = (Ac − A′)x′ + (A′′ − Ac)x

′′ =
∑

j /∈J

(Ac − A′).j(x
′
j − x′′j )

+
∑
j∈J

(Ac − A′).jx
′
j +

∑
j∈J

(A′′ − Ac).jx
′′
j ,

which implies

|Ac(x
′ − x′′)| ≤

∑

j /∈J

∆.j|x′j − x′′j |+
∑
j∈J

∆.j(|x′j|+ |x′′j |)

=
∑

j /∈J

∆.j|x′j − x′′j |+
∑
j∈J

∆.j|x′j − x′′j |

= ∆|x′ − x′′|,

hence A is singular due to the Oettli-Prager theorem, which is a contradiction. 2

Corollary 36 Let A be regular and let

Ayz′x
′ = Ayz′′x

′′

hold for some y, z′, z′′ ∈ Y and x′ 6= x′′. Then there exists a j satisfying

z′jz
′′
j = −1

and
x′jx

′′
j > 0.

Proof: Under the assumptions it follows from Lemma 35 that there exists a j with
(Ayz′).j 6= (Ayz′′).j and x′jx

′′
j > 0. Since (Ayz′).j − (Ayz′′).j = (z′′j − z′j)Ty∆.j 6= 0, it

must be z′j 6= z′′j , hence z′jz
′′
j = −1. 2

Theorem 37. Let A be regular. Then:

(i) A−1
1 A2 and A1A

−1
2 are P -matrices for each A1, A2 ∈ A,
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(ii) for each A1, A2 ∈ A and for each y ∈ Yn there exist vectors x1, x2 satisfying
A1x1 = A2x2, Tyx1 > 0 and Tyx2 > 0,

(iii) (AcA
−1)ii > 1

2
for each A ∈ A and each i ∈ {1, . . . , n},

(iv) Ax1 * Ax2 for each x1 6= x2,

(v) for each a > 0 the equation

|x| = ∆|A−1
c x|+ a

has a unique solution in each orthant.

Comment. In (iv), Ax = {Ax ; A ∈ A}.
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3.3.4 Special case: Rank one radius matrix

Theorem 38. Let Ac ∈ Rn×n be nonsingular and let p, q be nonnegative vectors in Rn.
Then the interval matrix

[Ac − pqT , Ac + pqT ]

is regular if and only if
‖TqA

−1
c Tp‖∞,1 < 1

holds.

Theorem 39. Let A = [Ac − pqT , Ac + pqT ], where Ac is nonsingular, p ≥ 0 and
q ≥ 0. If A is singular, then for each z, y ∈ Yn satisfying

zT TqA
−1
c Tpy ≥ 1 (3.8)

(which exist due to Theorem 38 and the formula (1.3)) the matrix

A = Ac − Typq
T Tz

zT TqA−1
c Tpy

is a singular matrix in A.

Proof: Because of (3.8) we have

|A− Ac| ≤ |Typq
T Tz| = pqT ,

so that A ∈ A. Next,

A(A−1
c Typ) = Typ− Typ(qT TzA

−1
c Typ)

zT TqA−1
c Tpy

= Typ− Typ = 0,

hence A is singular since A−1
c Typ 6= 0 in view of p 6= 0. 2
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3.3.5 Co-NP-completeness

Proposition 40. If a rational interval matrix A is singular, then it contains a rational
singular matrix.

Theorem 41. The following problem is co-NP-complete:
Instance. A nonnegative symmetric positive definite rational matrix Ac.
Question. Is [Ac − E, Ac + E] regular?

Proof: [92], pp. 9-10. 2
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3.3.6 Sufficient regularity conditions I: Strong regularity

Theorem 42. If Ac is nonsingular and

%(|A−1
c |∆) < 1 (3.9)

holds, then A is regular.

Definition. An interval matrix A having nonsingular Ac and satisfying the condition
(3.9) is called strongly regular.

Proof: For each A ∈ A we have

%(A−1
c (Ac − A)) ≤ %(|A−1

c (Ac − A)|) ≤ %(|A−1
c |∆) < 1.

Hence by Theorem 5 the matrix

I − A−1
c (Ac − A) = A−1

c A

is invertible and thus nonsingular. Then A is nonsingular, and A is regular. 2

The condition (3.9) can be verified in polynomial time since it is equivalent to

(I − |A−1
c |∆)−1 ≥ 0.

In his recent papers [103], [102], Rump proved that each regular n × n interval
matrix [Ac −∆, Ac + ∆] satisfies

%(|A−1
c |∆) < (3 + 2

√
2)n,

and that for each n ≥ 1 there exists a regular n× n interval matrix such that

%(|A−1
c |∆) > n− 1.

These facts help to clarify the strength of the sufficient condition (3.9).

Theorem 43. For an interval matrix A, the following assertions are equivalent:

(i) A is strongly regular,
(ii) (I − |A−1

c |∆)−1 ≥ I,

(iii) there exists a matrix R satisfying

%(|I −RAc|+ |R|∆) < 1, (3.10)

(iv) there exist matrices M ≥ 0 and R satisfying

M(I − |I −RAc| − |R|∆) ≥ I. (3.11)
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Moreover, in cases (ii), (iii) R is nonsingular and in case (iii) we have

A−1 ∈ [R− (M − I)|R|, R + (M − I)|R|]
for each A ∈ A.

Proof: We shall prove (i)⇒(ii)⇒(iii)⇒(ii)⇒(i), and in the frame of the proof we shall
utilize several times the properties of interval matrices with spectral radius less than
one stated in Theorems ?? and ??. Denote G = |I −RAc|+ |R|∆, so that G ≥ 0.

(i)⇒(ii): If (3.33) holds, then (3.34) is satisfied with R = A−1
c .

(ii)⇒(iii): If (3.34) holds, then %(G) < 1, hence M = (I − G)−1 ≥ 0 and with this
M , (5.76) is satisfied as equation.

(iii)⇒(ii): Let (5.76) hold. Then M(I −G) ≥ I, which can be written as

I + MG ≤ M.

Postmultiplying this inequality by G and adding I to both sides, we obtain

I + G + MG2 ≤ I + MG ≤ M

and by induction
k∑

j=0

Gj + MGk+1 ≤ M

for k = 0, 1, . . .. This shows that the nonnegative matrix series
∑∞

j=0 Gj satisfies

∞∑
j=0

Gj ≤ M, (3.12)

hence it is convergent and consequently %(G) < 1, which is (3.34).

(ii)⇒(i): Let (3.34) hold for some R. Then we have

I −RAc ≤ |I −RAc| ≤ G,

hence
%(I −RAc) ≤ %(|I −RAc|) ≤ %(G) < 1. (3.13)

Since %(I −RAc) < 1, the matrix

RAc = I − (I −RAc) (3.14)

is nonsingular, which gives that both Ac and R are nonsingular. Moreover, (5.78)
implies that

A−1
c R−1 = (RAc)

−1 =
∞∑

j=0

(I −RAc)
j,
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hence

A−1
c =

∞∑
j=0

(I −RAc)
jR,

and thus also

|A−1
c | ≤

∞∑
j=0

|I −RAc|j|R| = (I − |I −RAc|)−1|R|

(because
∑∞

j=0 |I −RAc|j is again convergent by (5.77)), and

|A−1
c |∆ ≤ (I − |I −RAc|)−1|R|∆. (3.15)

Since %(G) < 1, Theorem ?? implies existence of an x > 0 satisfying Gx < x, i.e.,

|I −RAc|x + |R|∆x < x,

hence
|R|∆x < (I − |I −RAc|)x

and
(I − |I −RAc|)−1|R|∆x < x (3.16)

in view of (5.77). Now, from (5.79) and (3.38) we finally obtain

|A−1
c |∆x ≤ (I − |I −RAc|)−1|R|∆x < x,

where x > 0, hence %(|A−1
c |∆) < 1 by Theorem ??, which completes the proof of

(ii)⇒(i), and thus also of the mutual equivalence of (i), (ii) and (iii).

To prove the remaining two assertions, take an A ∈ A. Then it satisfies the identity

RA = I − (I −RAc + R(Ac − A)) (3.17)

and since
I −RAc + R(Ac − A) ≤ |I −RAc|+ |R|∆ = G,

there holds
%(I −RAc + R(Ac − A)) < 1,

so that (3.17) shows that RA is nonsingular, hence A is nonsingular. This proves that
A is regular. Moreover, from (3.17) it follows

A−1R−1 =
∞∑

j=0

(I −RAc + R(Ac − A))j,

hence

A−1 =
∞∑

j=0

(I −RAc + R(Ac − A))jR
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and

|A−1 −R| ≤
∞∑

j=1

(|I −RAc|+ |R|∆)j|R| = (
∞∑

j=0

Gj − I)|R| ≤ (M − I)|R|

by (3.12), which proves (??). 2

Theorem 44. If A is strongly regular and Ã ⊆ A, then Ã is strongly regular as well.

Proposition 45 Let TzA
−1
c Ty ≥ 0 for some z, y ∈ Yn. Then A is regular if and only

if (3.9) holds.

Corollary 46. If A−1
c ≥ 0, then A is regular if and only if %(A−1

c ∆) < 1.
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3.3.7 How strong is strong regularity?

|A−1
c Ty∆x| < x (3.18)

Theorem 47. Let A = [Ac −∆, Ac + ∆] be a square interval matrix with Ac nonsin-
gular. Then A is

• regular if and only if for each y ∈ Yn, Aye is nonsingular and the inequality
(3.18) has a solution,

• strongly regular if and only if all the inequalities (3.18), y ∈ Yn, have a solution
in common.
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3.3.8 Sufficient regularity conditions II: Other conditions

Theorem 48. If the matrix
AT

c Ac − σmax(∆)I

is positive definite, then A is regular.

Theorem 49. If an interval matrix A satisfies

σmax(∆) < σmin(Ac),

then it is regular.
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3.3.9 Sufficient singularity conditions

Theorem 50. If
max

j
(|A−1

c |∆)jj ≥ 1,

then A is singular.

Theorem 51. Let
(I + |I −RAc|)i· ≤ (|R|∆)i·

hold for some R and some i ∈ {1, . . . , n}. Then A is singular.

Theorem 52. If the matrix
∆T ∆− AT

c Ac

is positive semidefinite, then A is singular.

Theorem 53. If an interval matrix A satisfies

σmax(Ac) ≤ σmin(∆),

then it is singular.
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3.3.10 Normal forms of a singular matrix

Theorem 54. Let A be singular. Then there exist y, z ∈ Yn and x 6= 0, p 6= 0 such
that

(Ac − dTy∆Tz)x = 0,

(Ac − dTy∆Tz)
T p = 0,

Tzx ≥ 0,

Typ ≥ 0

hold, where

d = min{ε ≥ 0; [Ac − ε∆, Ac + ε∆] is singular} ∈ [0, 1].

Corollary 55. If A is singular, then it contains a singular matrix of the form

Ac − dTy∆Tz

for some d ∈ [0, 1] and y, z ∈ Yn.

Theorem 56. If A is singular, then it contains a singular matrix A of the form

Aij ∈
{ {Aij, Aij} if (i, j) 6= (k, `),

[Aij, Aij] if (i, j) = (k, `)

for some k, `.
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3.3.11 The matrices Qz

Theorem 57. Let A be regular. Then for each z ∈ Yn the equation

QAc − |Q|∆Tz = I

has a unique matrix solution Qz.

function [Qz, f lag] = qzmatrix (A, z)
for i = 1 : n

[x, flag] = signaccord (AT
c ,−Tz∆

T , ei);
if flag = ′singular′, Qz = [ ]; return
end
(Qz)i• = xT ;

end
flag = ′Qz computed′;

Figure 3.1: An algorithm for computing Qz.

Proof: If A = [Ac−∆, Ac +∆] is regular, then it transpose AT = [AT
c −∆T , AT

c +∆T ]
is also regular, hence the sign accord algorithm when applied to it is finite and the
procedure described in the theorem yields for each z ∈ Yn a matrix Qz satisfying

AT
c (QT

z )·i − Tz∆
T |(QT

z )·i| = ei (3.19)

for each i, hence
AT

c QT
z − Tz∆

T |QT
z | = I

and
QzAc − |Qz|∆Tz = I.

Uniqueness of Qz follows from the uniqueness of solution of the equation (4.38) stated
in Theorem 154. 2
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3.3.12 An iterative method for computing Qz

Theorem 58. Let M ≥ 0 and R satisfy the strong regularity condition

M(I − |I −RAc| − |R|∆) ≥ I.

Then for each z ∈ Yn the sequence generated by Q0 = R and

Qi+1 = Qi(I − AcR) + |Qi|∆TzR + R

(i = 0, 1, 2, . . .) converges to Qz and for each i ≥ 0 we have

...

|xz − (Qibc + |Qi|δ)| ≤ |Qi+1 −Qi|q,
where ⇒

q = M(|bc|+ δ).

75



3.3.13 An explicit formula for Qz for the case Ac = I

Theorem 59. An interval matrix [I −∆, I + ∆] is regular if and only if %(∆) < 1.

Theorem 60. Let Ac = I and %(∆) < 1. Then for each z ∈ Yn the matrix Qz is given
by

Qz = TzMTz + (I − Tz)Tλ(M − I)Tz,

where
M = (I −∆)−1 = (mij)

and
λi =

mii

2mii − 1
(i = 1, . . . , n),

or componentwise

(Qz)ij =
(zj + (1− zj)Iij)mij

zi + (1− zi)mii

=





mijzj if zi = 1,
(2λi − 1)mijzj if zi = −1 and j 6= i,
λi if zi = −1 and j = i.

(i, j = 1, . . . , n).

Proposition 61. Under the assumptions and notations of the previous theorem, we
have for each z ∈ Yn,

|Qz| = (Tz + (I − Tz)Tλ)M,

or componentwise

|Qz|ij = (zi + (1− zi)λi)mij =

{
mij if zi = 1,
(2λi − 1)mij if zi = −1

(i, j = 1, . . . , n).
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3.3.14 A general algorithm for checking regularity

function flag = regularity (A)
if Ac is singular, flag = ′singular′; return, end
R = A−1

c ;
if %(|R|∆) < 1, flag = ′regular′; return, end
if maxj(∆|R|)jj ≥ 1, flag = ′singular′; return, end
b = e; γ = mink |Rb|k;
for i = 1 : n

for j = 1 : n
b′ = b; b′j = −b′j;
if mink |Rb′|k > γ, γ = mink |Rb′|k; b = b′; end

end
end
[x, x, flag] = hull (A, [b, b]);
if flag = ′hull computed′, flag = ′regular′; return
end

Figure 3.2: An algorithm for checking regularity.
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3.3.15 Inverse matrix representation

Theorem 62. Let A be regular. Then for each A ∈ A there exist nonnegative diagonal
matrices Lyz, y, z ∈ Yn satisfying

∑
y,z∈Yn

Lyz = I such that

A−1 =
∑

y,z∈Yn

LyzA
−1
yz

holds.

Proof: [69], p. 47; [87], p. 865 (there the result is given as
∑

y,z∈Yn
A−1

yz Lyz; the present

order1 is obtained by applying the result to AT ). 2

Theorem 63. Let A be regular. Then for each A ∈ A there exist nonnegative diagonal
matrices Lz, z ∈ Yn satisfying

∑
z∈Yn

Lz = I such that

A−1 =
∑

y,z∈Yn

LzQz

holds.

Proof: Unpublished, but proved in a similar way as Theorem 62 using the matrices
Qz instead of A−1

yz . 2

1Which seems more proper to me, indicating a kind of a convex combination.
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3.3.16 Inverse stability

Definition. A regular interval matrix A is called inverse stable2 if |A−1| > 0 for each
A ∈ A.

Due the continuity of the determinant, this means that for each ij, either (A−1)ij < 0
for each A ∈ A, or (A−1)ij > 0 for each A ∈ A. Thus we can also say that inverse
stability is equivalent to existence of a matrix Z, |Z| = E, such that Z ◦ A−1 > 0 for
each A ∈ A.

Theorem 64. A is inverse stable if and only if there exists a matrix Z, |Z| = E, such
that Z ◦ A−1

yz > 0 for each y, z ∈ Yn.

Proof: [87], pp. 866-867. 2

Theorem 65. A is inverse stable if and only if there exists a matrix Z, |Z| = E, such
that Z ◦Qz > 0 for each z ∈ Yn.

Proof: Unpublished, but proved in a similar manner as Theorem 64. 2

2Meant: inverse sign stable.
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3.3.17 Inverse interval matrix

Definition. For a regular A we define A−1 = [B,B], where

Bij = min{(A−1)ij ; A ∈ A},

Bij = max{(A−1)ij ; A ∈ A}
(i, j = 1, . . . , n).

Theorem 66. Let A be regular. Then for its inverse A−1 = [B,B] we have

B = min
z∈Yn

Qz = min
y,z∈Yn

A−1
yz ,

B = max
z∈Yn

Qz = max
y,z∈Yn

A−1
yz .

Theorem 67. Computing the inverse interval matrix is NP-hard in the class of sym-
metric strongly regular interval matrices with rational bounds.
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3.3.18 Explicit formulae for the special case of inverse stability

Definition. A regular interval matrix A is called inverse stable if for each i, j ∈
{1, . . . , n}, either (A−1)ij > 0 for each A ∈ A, or (A−1)ij < 0 for each A ∈ A.

Theorem 68. Let A be inverse stable. Then the coefficients of its inverse A−1 =
[B,B] are given by the explicit formulae

Bij = (A−1
−y(i),z(j))ij

Bij = (A−1
y(i)z(j))ij

(i, j = 1, . . . , n), where y(i) = sgn (A−1
c )i· and z(j) = sgn (A−1

c )·j for each i, j.

Proof: [70], p. 28; [87], p. 868. 2
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3.3.19 Explicit formulae for the special case Ac = I

Theorem 69. Let A = [I−∆, I +∆] with %(∆) < 1. Then the inverse interval matrix
(A)−1 = [B,B] is given by

B = −M + 2Tκ, (3.20)

B = M, (3.21)

where

κj =
m2

jj

2mjj − 1

(j = 1, . . . , n), or componentwise

Bij =

{ −mij if i 6= j,
µj if i = j

(3.22)

Bij = mij (3.23)

(i, j = 1, . . . , n),

µj =
mjj

2mjj − 1
.
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3.3.20 Inverse sign pattern

Definition. A is said to be of inverse sign pattern (z, y) if there exist z, y ∈ Yn such
that TzA

−1Ty ≥ 0 holds for each A ∈ A. If A is of inverse sign pattern (e, e), then it
is called inverse nonnegative.

Theorem 70. A is of inverse sign pattern (z, y) if and only if

TzA
−1
yz Ty ≥ 0, (3.24)

TzA
−1
−yzTy ≥ 0 (3.25)

hold.
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3.3.21 Nonnegative invertibility and M -matrices

Theorem 71. For an interval matrix A, the following assertions are equivalent:

(i) A is nonnegative invertible,

(ii) A−1 ≥ 0 and A
−1 ≥ 0,

(iii) A
−1 ≥ 0 and %(A

−1
(A− A)) < 1,

(iv) A
−1 ≥ 0 and A is regular.

Proposition 72. If A is inverse nonnegative, then for each A ∈ A we have

A−1 =
( ∞∑

j=0

(A
−1

(A− A))j
)
A
−1

.
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3.3.22 The Hansen-Bliek-Rohn-type enclosure for inverse interval matrix

Theorem 73. Let M ≥ 0 and R be arbitrary matrices satisfying the strong regularity
condition

M(I − |I −RAc| − |R|∆) ≥ I.

Then for each A ∈ A we have

min{B
˜

, TνB˜
} ≤ A−1 ≤ max{B̃, TνB̃},

where M , µ and Tν are as in Theorem 189 and

B
˜

= −M |R|+ Tµ(R + |R|),

B̃ = M |R|+ Tµ(R− |R|).

Theorem 74. Let A be strongly regular. Then for each A ∈ A we have

min{B
˜

, TνB˜
} ≤ A−1 ≤ max{B̃, TνB̃},

where M , µ and Tν are as in Theorem 190 and

B
˜

= −M |A−1
c |+ Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c |+ Tµ(A−1

c − |A−1
c |).

Proof: Since (A−1)·j is the solution of the system Ax = ej, we obtain the result simply
by applying Theorem 190 to interval linear systems Ax = [ej, ej] for j = 1, . . . , n. 2
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3.3.23 P -property

Theorem 75. If A is regular, then A−1
1 A2 is a P–matrix for each A1, A2 ∈ A.

Proof: Assume to the contrary that A−1
1 A2 is not a P -matrix for some A1, A2 ∈

A. Then according to the Fiedler-Pták theorem there exists an x 6= 0 such that
xi(A

−1
1 A2x)i ≤ 0 for each i. Take x′ = A−1

1 A2x, then xix
′
i ≤ 0 holds for each i, which

implies that
|x′|+ |x| = |x′ − x|. (3.26)

Now we have

|Ac(x
′ − x)| = |(Ac − A1)x

′ + (A2 − Ac)x| ≤ ∆|x′|+ ∆|x| = ∆|x′ − x|

due to (3.26) which also gives that x′ 6= x since x′ = x would imply x = 0 contrary to
x 6= 0. Hence by the Oettli-Prager theorem there exists an A ∈ A with A(x′ − x) = 0
which means that A is singular, a contradiction. 2

An interval matrix A is called a P–matrix if each A ∈ A is a P–matrix. In this
section we show that due to a close relationship between P–property and positive
definiteness, the problem of checking P–property of interval matrices is NP–hard even
in the symmetric case.

Theorem 76. A is a P -matrix if and only if each Azz, z ∈ Z, is a P–matrix.

Proof: If A is a P–matrix, then each Azz ∈ A is obviously also a P–matrix. Con-
versely, let each Azz, z ∈ Z, be a P–matrix. Let A ∈ A, x ∈ Rn, x 6= 0, and let
z = sgn x. Since Azz is a P–matrix, there exists an i with xi(Azzx)i > 0, then we have
xi(Ax)i ≥ xi(Azzx)i > 0 so that A is a P -matrix by the Fiedler-Pták theorem, hence
A is a P–matrix. 2

As quoted above, a symmetric matrix A is a P–matrix if and only if it is positive
definite. The following result, although it sounds verbally alike, is not a trivial conse-
quence of the previous statement since here nonsymmetric matrices may be involved.

Proposition 77. A symmetric interval matrix A is a P–matrix if and only if it is
positive definite.

Proof: All the matrices Azz, z ∈ Z defined by (??) are symmetric for a symmetric
interval matrix A. Hence, A is a P–matrix if and only if each Azz, z ∈ Z is a P–
matrix, which is the case if and only if each Azz, z ∈ Z is positive definite, and this is
equivalent to positive definiteness of A (Theorem ??). 2
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In the introduction to this section we explained that checking a symmetric matrix
for P–property can be performed in polynomial time. Unless P 6=NP, this is not more
true for symmetric interval matrices):

Theorem 78. The following problem is NP–hard:
Instance. A nonnegative symmetric rational P–matrix A.
Question. Is [A− E,A + E] a P–matrix?

Proof: [92], p. 20. 2

Proof: Since A is symmetric positive definite, [A−E,A+E] is a P–matrix if and only
if it is positive definite (Proposition 77). Checking positive definiteness of this class of
interval matrices was proved to be NP–hard in Theorem 107. 2
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3.3.24 Radius of nonsingularity: Definition and basic formulae

Definition. d(Ac, ∆) = inf{ε ≥ 0; [Ac − ε∆, Ac + ε∆] is singular}.
Convention 0

0
= 0, a

0
= ∞ for a > 0.

Theorem 79. For each square Ac, ∆ ≥ 0 we have

d(Ac, ∆) = inf
x 6=0

max
i

|Acx|i
(∆|x|)i

=
1

max
y,z∈Yn

%0(A−1
c Ty∆Tz)

, (3.27)

the second formula assuming nonsingularity of Ac.

d(A) = d(A,E)

Proposition 80. The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is d(A) ≤ 1?

Proof: [92], p. 14. 2

Theorem 81. Computing the radius of nonsingularity is NP-hard (even in the special
case ∆ = E).

Proof: [92], p. 14. 2

Theorem 82. Suppose there exists a polynomial–time algorithm which for each non-
negative symmetric positive definite rational matrix A computes a rational approxima-
tion d′(A) of d(A) satisfying

∣∣∣∣
d′(A)− d(A)

d(A)

∣∣∣∣ ≤
1

4n2
,

where n is the size of A. Then P=NP.
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3.3.25 Radius of nonsingularity: Properties

Theorem 83. The radius of nonsingularity has the following properties:

(i) 0 ≤ d(Ac, ∆) ≤ ∞,

d(Ac, ∆) = 0 if and only if Ac is singular,
(ii) d(Ac, ∆) > 0 if ∆e > 0,

d(Ac, ∆) < ∞ if ∆e > 0,

(iii) d(Ac, ∆) = ∞ if Ac is nonsingular and ∆ = 0,
(iv) d(Ac + Bc, ∆) ≤ d(Ac, ∆) + d(Bc, ∆),

(v) 0 ≤ ∆ ≤ ∆′ implies d(Ac, ∆
′) ≤ d(Ac, ∆),

(vi) d(αAc, β∆) = |α|
β

d(Ac, ∆) for α ∈ R and β > 0,

(vii) d(Ac, ∆) = 1/%(|A−1
c |∆) if Ac is nonsingular and A is of some inverse sign

pattern (z, y),
(viii) d(Ac, pq

T ) = 1/‖TqA
−1
c Tp‖∞,1 if Ac is nonsingular and p ≥ 0, p 6= 0, q ≥ 0, q 6= 0,

[Ac −∆, Ac + ∆] is regular if and only if d(Ac, ∆) > 1.

Theorem 84. If A is nonsingular, then

1

%(|A−1
c |∆)

≤ d(Ac, ∆) ≤ 1

max
j

(|A−1
c |∆)jj

.
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3.3.26
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3.3.27 Rump’s results

91



3.4 Eigenvalues

92



3.4.1 Real eigenvalues

Theorem 85. Let Ac have n simple real eigenvalues

λ1(Ac) < λ2(Ac) < . . . < λn(Ac)

and let there exist real numbers µ0, . . . , µn satisfying

µ0 < λ1(Ac) < µ1 < λ2(Ac) < µ2 < . . . < λn(Ac) < µn (3.28)

such that the interval matrix

[(Ac − µjI)−∆, (Ac − µjI) + ∆] (3.29)

is regular for j = 0, . . . , n. Then each A ∈ A has n simple real eigenvalues satisfying

µ0 < λ1(A) < µ1 < λ2(A) < µ2 < . . . < λn(A) < µn. (3.30)

Proof: For an A ∈ A, let
p(λ) = det(A− λI)

denote its characteristic polynomial and let

pc(λ) = det(Ac − λI)

be the characteristic polynomial of Ac. Then for each j ∈ {0, . . . , n} we have |(A −
µjI)− (Ac − µjI)| = |A− Ac| ≤ ∆, hence

A− µjI ∈ [Ac − µjI −∆, Ac − µjI + ∆],

and regularity of (3.29) implies

p(µj)pc(µj) > 0 (3.31)

since p(µj)pc(µj) ≤ 0 would imply, by continuity of the determinant, existence of a
singular matrix in (3.29), a contradiction. Now, since all eigenvalues of Ac are real
and simple, (3.28) gives

pc(µj)pc(µj+1) < 0 (3.32)

for j = 0, . . . , n− 1. For each such j we have from (3.31)

p(µj)pc(µj)p(µj+1)pc(µj+1) > 0,

which in view of (3.32) implies

p(µj)p(µj+1) < 0,

hence the characteristic polynomial of A has a root in each of the open intervals
(µj, µj+1), j = 0, . . . , n − 1. This proves that A has exactly n simple real eigenvalues
satisfying (3.30). 2

Assumptions
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(A1) Each A ∈ A has exactly m real eigenvalues λ1(A) < . . . < λm(A), where 1 ≤
m ≤ n. Hence we can define the sets Li = {λi(A); A ∈ A}, i = 1, . . . ,m.

(A2) Li ∩ Lj = ∅ for i 6= j, i, j ∈ {1, . . . , m}.
(A3) For each i ∈ {1, . . . , m} there exist vectors yi, zi ∈ Yn such that each eigenvector

x (left eigenvector p) pertaining to the ith real eigenvalue of some A ∈ A satisfies
either Tzi

x > 0 or Tzi
x < 0 (Tyi

p > 0 or Tyi
p < 0, respectively).

Theorem 86. Let an interval matrix A satisfy Assumptions (A1)-(A3). Then for
each i ∈ {1, . . . ,m} we have

Li = [λi, λi],

where
λi = min{λi(Ayizi

), λi(A−yizi
)},

λi = max{λi(Ayizi
), λi(A−yizi

)}.

Theorem 87. Let A satisfy Assumptions (A1)-(A3) and let i ∈ {1, . . . , n}. Then each
λ ∈ Li is the ith real eigenvalue of some matrix belonging to the segment connecting
Ayizi

with A−yizi
.

Theorem 88. Let a symmetric A satisfy Assumptions (A1)-(A3). Then each λ ∈
m⋃

i=1

Li is an eigenvalue of some symmetric matrix in A.

Theorem 89. A nonzero real vector x is an eigenvector of some matrix in A if and
only if it satisfies

TzAzzxxT Tz ≤ (TzA−zzxxT Tz)
T ,

where z = sgn x.
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3.4.2 Real eigenvectors
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3.4.3 Real eigenpairs

96



3.4.4 Perron vectors

In this paper we consider only square n×n interval matrices. Such a matrix A is called
nonnegative if all its coefficients are nonnegative. A nonnegative matrix A ∈ Rn×n is
said to be reducible if there exists a permutation matrix P such that

P T AP =

(
B C
0 D

)
,

where B and D are square matrices (i.e., at least of size 1 × 1), and it is called irre-
ducible if it is not reducible. The basic eigenvalue properties of irreducible nonnegative
matrices are summed up in the Perron-Frobenius theorem (see Horn and Johnson [22],
p. 508). We formulate here only a portion of it relevant to the scope of this paper;
%(A) denotes the spectral radius of A, e = (1, 1, . . . , 1)T ∈ Rn, and x > 0 means that
all entries of x are positive.

Theorem 90. For each irreducible nonnegative matrix A there exists a unique vector
x satisfying

Ax = %(A)x, (3.33)

eT x = 1, (3.34)

x > 0, (3.35)

and no eigenvalue λ 6= %(A) has a positive eigenvector.

The positive eigenvector determined uniquely by (3.33)–(5.76) is called the Perron
vector of A; we shall denote it by x(A).

Given A, A ∈ Rn×n with A ≤ A, the set

A = [A,A] = {A | A ≤ A ≤ A }
is called an interval matrix with the bounds A and A. A is said to be nonnegative
if A ≥ 0, which is the same as to say that all matrices in A are nonnegative. A
nonnegative interval matrix A is called irreducible if each A ∈ A is irreducible. It
turns out that checking irreducibility of A = [A,A] reduces to checking this property
for A only.

Proposition 91. A nonnegative interval matrix [A,A] is irreducible if and only if A
is irreducible.

Proof: If each A ∈ [A,A] is irreducible, then so is A. Conversely, assume that A is
irreducible and that some A ∈ [A,A] is reducible, so that there exists a permutation
matrix P such that

P T AP =

(
B C
0 D

)
,
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where 0 is of size at least 1× 1. Then from 0 ≤ A ≤ A it follows

(
0 0
0 0

)
≤ P T AP =

(
B1 C1

E1 D1

)
≤ P T AP =

(
B C
0 D

)
,

which implies that E1 = 0, hence A is reducible. This contradiction shows that each
A ∈ [A,A] is irreducible, and the proof is complete. 2

The set of spectral radii of all the matrices contained in an irreducible nonnegative
interval matrix A = [A,A] is easy to describe:

{ %(A) | A ∈ A } = [%(A), %(A)],

because the spectral radius is a continuous function of A (Horn and Johnson [22], p.
313), hence the real function ψ(t) = %(A + t(A − A)) is continuous in [0, 1], so that
it attains all the intermediate values between the endpoint values %(A) and %(A), and
no spectral radius can exceed this interval because 0 ≤ A ≤ A ≤ A implies that
%(A) ≤ %(A) ≤ %(A) (Horn and Johnson [22], p. 491).

The following main result of this paper presents a description of the set { x(A) | A ∈
A } of the Perron vectors of all matrices contained in a given irreducible nonnegative
interval matrix A.

Theorem 92. Let A = [A,A] be an irreducible nonnegative interval matrix. Then a
vector x ∈ Rn is the Perron vector of some matrix A ∈ A if and only if it satisfies

AxxT ≤ xxT A
T
, (3.36)

eT x = 1, (3.37)

x > 0. (3.38)

Proof: Let x be the Perron vector of some matrix A ∈ [A,A], so that (3.33)–(5.76)
hold. Then from A ≤ A ≤ A in view of positivity of x we obtain

Ax ≤ Ax = %(A)x ≤ Ax,

hence for each i, j = 1, . . . , n we have

(Ax)i

xi

≤ %(A) ≤ (Ax)j

xj

and thus also

(AxxT )ij = (Ax)ixj ≤ xi(Ax)j = (xxT A
T
)ij,

which proves (5.78); (5.79) and (3.38) are given by (3.34), (5.76).
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Conversely, let x satisfy (5.78)–(3.38). Then for each i, j we have

(Ax)ixj = (AxxT )ij ≤ (xxT A
T
)ij = xi(Ax)j,

hence
(Ax)i

xi

≤ (Ax)j

xj

,

which implies that

max
i

(Ax)i

xi

≤ min
j

(Ax)j

xj

.

Let us choose any λ satisfying

max
i

(Ax)i

xi

≤ λ ≤ min
j

(Ax)j

xj

.

Then from the first inequality it follows that Ax ≤ λx, whereas the second one gives
λx ≤ Ax, together

Ax ≤ λx ≤ Ax. (3.39)

For each i = 1, . . . , n define a real function of one real variable t by

ϕi(t) = ((A + t(A− A))x− λx)i.

Then ϕi(0) = (Ax−λx)i ≤ 0 and ϕi(1) = (Ax−λx)i ≥ 0 by (3.39), hence by continuity
of ϕi there exists a ti ∈ [0, 1] such that ϕi(ti) = 0. Now put

A = A + diag (t1, . . . , tn)(A− A)

(where diag (t1, . . . , tn) denotes the diagonal matrix with diagonal entries t1, . . . , tn),
then A ∈ [A,A] because ti ∈ [0, 1] for each i, and we have (Ax− λx)i = ϕi(ti) = 0 for
each i, hence

Ax = λx.

Since eT x = 1 and x > 0 by (5.79), (3.38), Theorem 90 gives that λ = %(A) and
x = x(A), hence x is the Perron vector of A, which proves the second implication. 2

The inequality (5.78) could also be written in a more “symmetric” form

AxxT ≤ (AxxT )T ,

but we prefer the form (5.78) which, as we have seen, arises naturally in the proof.

The construction given in the second part of the proof is worth summarizing as a
separate assertion.
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Theorem 93. Let x satisfy (5.78)–(3.38). Then

max
i

(Ax)i

xi

≤ min
j

(Ax)j

xj

(3.40)

and for each λ with

max
i

(Ax)i

xi

≤ λ ≤ min
j

(Ax)j

xj

(3.41)

there holds λ = %(A) and x = x(A), where the matrix A ∈ [A,A] is given by

A = A + diag (t1, . . . , tn)(A− A), (3.42)

with

ti =

{ (λx− Ax)i/((A− A)x)i if ((A− A)x)i > 0,

1 if ((A− A)x)i = 0

(i = 1, . . . , n). (3.43)

Proof: As everything else has been stated in the proof of Theorem 92, it remains
to explain the formula (3.43) for ti only. This value is a solution of the equation
ϕi(ti) = 0, i.e., it satisfies

ti((A− A)x)i = (λx− Ax)i. (3.44)

If ((A− A)x)i > 0, then this equation has the unique solution

ti =
(λx− Ax)i

((A− A)x)i

.

If ((A−A)x)i = 0, then, since we know from the proof of Theorem 92 that the equation
(3.44) has a solution, it must be (λx − Ax)i = 0, hence the equation is satisfied for
any ti ∈ R, thus also for our choice ti = 1. 2

In accordance with the construction made in (3.42), denote

A∗ = {A + T (A− A) | 0 ≤ T ≤ I },

so that A∗ is a subset of A. Let us compare it with the description of A which can
also be written as

A = {A + T (A− A) | 0 ≤ T ≤ eeT}.
We can see that the description of A∗ involves n “parameters” tii ∈ [0, 1] (i = 1, . . . , n),
whereas that of A contains n2 “parameters” tij ∈ [0, 1] (i, j = 1, . . . , n). Nevertheless,
the following consequence of Theorem 93 shows that all the spectral radii and Perron
vectors of A are attained over its subset A∗.
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Theorem 94. Let A be an irreducible nonnegative interval matrix. Then for each
A ∈ A there exists an A′ ∈ A∗ such that %(A) = %(A′) and x(A) = x(A′).

Proof: Let A ∈ A. Then x = x(A) satisfies (5.78)–(3.38) by Theorem 92 and there
holds

%(A) =
(Ax)k

xk

for each k, so that from A ≤ A ≤ A it follows

(Ax)k

xk

≤ %(A) ≤ (Ax)k

xk

for each k, hence λ = %(A) satisfies (3.41) and a direct application of Theorem 93
gives that %(A) = %(A′) and x(A) = x(A′), where A′ is given by (3.42), (3.43) and
thus belongs to A∗. 2
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3.4.5 Symmetric matrices

Definition. An interval matrix A is called symmetric if AT = A.

Proposition 95. For an interval matrix A, the following assertions are equivalent:

(i) A is symmetric,

(ii) both A and A are symmetric,
(iii) both Ac and ∆ are symmetric.

Proof: Unpublished, but evident. 2

Theorem 96. Let A be symmetric. Then for each symmetric A ∈ A there holds

λi(A) ∈ [λi(Ac)− %(∆), λi(Ac) + %(∆)] (i = 1, . . . , n).

Proof: From the Wielandt-Hoffman theorem, see [15], pp. 395-396 (the proof of it
reveals that the norm can be replaced by the spectral radius). 2

Definition. For a symmetric interval matrix A, define

λmin(A) = min{λ ; λ is an eigenvalue of some symmetric A ∈ A},

λmax(A) = max{λ ; λ is an eigenvalue of some symmetric A ∈ A}.

Theorem 97. For a symmetric interval matrix A there holds

λmin(A) = min
‖x‖2=1

(xT Acx− |x|T ∆|x|) = min
y∈Yn

λmin(Ayy),

λmax(A) = max
‖x‖2=1

(xT Acx + |x|T ∆|x|) = max
y∈Yn

λmax(Ayy).

Proof: [95], p. S1049; [91], pp. 5-6. 2

Proposition 98. For a symmetric interval matrix A, the set

{λmax(A) ; A symmetric, A ∈ A}

is a compact interval; the same holds for the minimal eigenvalue.
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Proof: [92], p. 25-26. 2

Proof: Let

λ(AI) = min{λmax(A); A symmetric, A ∈ A},
λ(AI) = max{λmax(A); A symmetric, A ∈ A}.

By continuity argument, both bounds are achieved, hence

λ(AI) = λmax(A1),

λ(AI) = λmax(A2)

for some symmetric A1, A2 ∈ A. Define a real function ϕ of one real variable by

ϕ(t) = f(A1 + t(A2 − A1)), t ∈ [0, 1],

where
f(A) = max

‖x‖2=1
xT Ax.

ϕ is continuous since f(A) is continuous [?], and ϕ(0) = f(A1) = λmax(A1) =
λ(AI), ϕ(1) = f(A2) = λmax(A2) = λ(AI), hence for each λ ∈ [λ(AI), λ(AI)] there
exists a tλ ∈ [0, 1] such that

λ = ϕ(tλ) = f(A1 + tλ(A2 − A1)) = λmax(A1 + tλ(A2 − A1)).

Hence each λ ∈ [λ(AI), λ(AI)] is the maximal eigenvalue of some symmetric matrix in
A, and we have

λI
max(A) = [λ(AI), λ(AI)].

2

Proposition 99. If A is symmetric, then

|Im λ| ≤ λmax

(
0 ∆
∆ 0

)

for each eigenvalue λ of each A ∈ A.

Proof: [91], p. 10. 2
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3.4.6 NP-hardness results for eigenvalues

Theorem 100. The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matrix A and a ratio-

nal number λ.
Question. Is λ an eigenvalue of some symmetric matrix in [A− E, A + E]?

Proof: [92], p. 24. 2

Proof: [A − E, A + E] is singular if and only if 0 is an eigenvalue of some symmetric
matrix in [A−E, A+E] (Proposition ??). Hence the NP–hard problem of Theorem ??
can be reduced in polynomial time to the current problem, which is thereby NP–hard.
2

Theorem 101. Suppose there exists a polynomial-time algorithm which for each in-
terval matrix of the form A = [A−E, A+E], A rational nonpositive symmetric stable,
computes a rational number λ̃(A) satisfying

∣∣∣∣∣
λ̃(A)− λmax(A)

λmax(A)

∣∣∣∣∣ < 1

if λmax(A) 6= 0 and λ̃(A) ≥ 0 otherwise. Then P=NP.

Proof: [92], p. 25. 2

Proof: Under the assumptions, λ̃(A) < 0 if and only if λ(AI) < 0, and this is equiv-
alent to stability of A. Hence we have a polynomial–time algorithm for solving the
NP–hard problem of Theorem 109, which implies P=NP. 2

Theorem 102. The following problem is NP-hard:
Instance. A nonpositive symmetric stable rational matrix A, and rational numbers

a, b, a < b.
Question. Is {λmax(A

′) ; A′ symmetric, A′ ∈ [A− E, A + E]} ⊆ (a, b)?

Proof: [92], p. 26. 2

Proof: For each symmetric A′ ∈ [A− E,A + E] we have

|λmax(A
′)| ≤ %(A′) ≤ ‖A′‖1 ≤ ‖A‖1 + ‖E‖1 = ‖A‖1 + n < α := ‖A‖1 + n + 1.
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Hence due to Theorem ??, [A− E,A + E] is stable if and only if

λI
max([A− E, A + E]) ⊂ (−α, 0)

holds. This shows that the NP–hard problem of checking stability of [A − E, A + E]
(Theorem 109) can be reduced in polynomial time to the current problem, which is
thus NP–hard. 2
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3.4.7 A Gerschgorin-disc-type theorem
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3.5 Positive (semi)definiteness
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3.5.1 Definition

Notation As = [1
2
(A + AT ), 1

2
(A + A

T
)].

Notation As = [(A + AT )/2, (A + A
T
)/2].
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3.5.2 Positive semidefiniteness

Theorem 103. For a square interval matrix A, the following assertions are equiva-
lent:

(i) A is positive semidefinite,

(ii) As is positive semidefinite,

(iii) xT Acx ≥ |x|T ∆|x| for each x,
(iv) Ayy is positive semidefinite for each y ∈ Yn.

Corollary 104. A is positive semidefinite if

%(∆ + ∆T ) ≤ λmin(Ac + AT
c )

holds.
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3.5.3 Positive definiteness

Theorem 105. For a square interval matrix A, the following assertions are equiva-
lent:

(i) A is positive definite,

(ii) As is positive definite,

(iii) xT Acx > |x|T ∆|x| for each x 6= 0,
(iv) Ayy is positive definite for each y ∈ Yn,

(v) As is regular and Ac is positive definite.

Corollary 106. A is positive definite if

%(∆ + ∆T ) < λmin(Ac + AT
c )

holds.
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3.5.4 NP-hardness

Theorem 107. The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E,A + E] positive definite?

Proof: [92], p. 18. 2
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3.5.5 Sufficient condition
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3.5.6 An algorithm for checking positive definiteness

function flag = posdefness (A)
A′

c = (Ac + AT
c )/2; ∆′ = (∆ + ∆T )/2;

if A′
c is not positive definite

flag = ′not positive definite′; return
end
if λmin(A

′
c) > %(∆′)

flag = ′positive definite′; return
end
flag = regularity ([A′

c −∆′, A′
c + ∆′]);

if flag = ′regular′, flag = ′positive definite′; return
else flag = ′not positive definite′; return
end

Figure 3.3: An algorithm for checking positive definiteness.
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3.6 Hurwitz stability
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3.6.1 Definition

Definition. A is called Hurwitz stable if Re λ < 0 for each eigenvalue λ of A. A is
called Hurwitz stable if each A ∈ A is Hurwitz stable.
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3.6.2 A negative result
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3.6.3 The symmetric case

Theorem 108. For a symmetric interval matrix A, the following assertions are equiv-
alent:

(i) A is Hurwitz stable,

(ii) A−yy is Hurwitz stable for each y ∈ Yn,

(iii) A is regular and Ac is Hurwitz stable.
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3.6.4 NP-hardness

Theorem 109. The following problem is NP-hard:
Instance. A nonpositive symmetric Hurwitz stable rational matrix A.
Question. Is [A− E,A + E] Hurwitz stable?

Proof: [92], p. 22. 2

Proof: By Proposition ??, [A − E, A + E] is stable if and only if [−A − E,−A + E]
is positive definite, where −A is a nonnegative symmetric positive definite rational
matrix. Hence the result follows from Theorem 107. 2

Nemirovskii [53] proved NP–hardness of checking stability for general (nonsymmetric)
interval matrices.
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3.6.5 Sufficient condition for the general case

Theorem 110. If As is stable, then A is stable.

For practical purposes we may use the following sufficient condition valid for the
nonsymmetric case [63], [25]:

Theorem 111. An interval matrix [Ac −∆, Ac + ∆] is stable if

λmax(A
′
c) + %(∆′) < 0 (3.45)

holds, where A′
c = 1

2
(Ac + AT

c ) and ∆′ = 1
2
(∆ + ∆T ).

Proof: If (3.45) holds, then %(∆′) < λmin(−A′
c), hence [−A′

c−∆′,−A′
c +∆′] is positive

definite by Theorem ?? and [A′
c−∆′, A′

c +∆′] is stable by Proposition ??. Stability of
[Ac −∆, Ac + ∆] then follows by using Bendixson’s theorem as in the proof of Propo-
sition ??. 2
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3.6.6 An algorithm for checking Hurwitz stability

function flag = hurwitzstab (A)
A′

c = (Ac + AT
c )/2; ∆′ = (∆ + ∆T )/2;

flag = posdefness ([−A′
c −∆′,−A′

c + ∆′]);
if flag = ′positive definite′

flag = ′Hurwitz stable′; return
else

if (A′
c = Ac and ∆′ = ∆)

flag = ′not Hurwitz stable′; return
else

flag = ′Hurwitz stability not verified′; return
end

end

Figure 3.4: An algorithm for checking Hurwitz stability.
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3.6.7 Many other results
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3.7 Schur stability
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3.7.1 Definition

Definition. A is called Schur stable if %(A) < 1. A symmetric A is called Schur
stable if each symmetric A ∈ A is Schur stable.
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3.7.2 The symmetric case

Theorem 112. For a symmetric interval matrix A, the following assertions are equiv-
alent:

(i) A is Schur stable,

(ii) the interval matrices [A− I, A− I] and [−A− I,−A− I] are Hurwitz stable,

(iii) A is regular and Ac is Schur stable.
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3.7.3 NP-hardness

Theorem 113. The following problem is NP-hard:
Instance. A symmetric Schur stable rational matrix A with A ≤ I, and a rational

number α ∈ [0, 1].
Question. Is [A− αE, A + αE] Schur stable?

Proof: [92], p. 23. 2

Proof: For a nonpositive symmetric stable rational matrix A, the symmetric interval
matrix [A−E, A + E] is stable if and only if [(I + αA)−αE, (I + αA) + αE] is Schur
stable, where α is given by (??). Here I + αA is a symmetric Schur stable rational
matrix with I + αA ≤ I, and α ∈ [0, 1]. Hence we have a polynomial–time reduction
of the NP–hard problem of Theorem 109 to the current problem, which shows that it
is NP–hard as well. 2

This result differs from those of previous sections where NP–hardness was established
for the class of interval matrices of the form [A−E,A+E]. This is explained by the fact
that regularity, positive definiteness and stability are invariant under multiplication
by a positive parameter whereas Schur stability is not.
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3.7.4 An algorithm for checking Schur stability

function flag = schurstab (A)
if (AT

c 6= Ac or ∆T 6= ∆)
flag = ′Schur stability not verified′; return

end
flag = hurwitzstab ([Ac − I −∆, Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = hurwitzstab ([−Ac − I −∆,−Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = ′Schur stable′;

Figure 3.5: An algorithm for checking Schur stability.
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3.8 Summary: Regularity preserves some properties

Theorem 114. Let A be regular. Then there holds:

(i) A is inverse nonnegative if and only if A
−1 ≥ 0,

(ii) A is inverse positive if and only if A
−1

> 0,

(iii) A is an M-matrix if and only if A is an M-matrix,
(iv) A is of inverse sign pattern (z, y) if and only if A−yz is of inverse sign pattern

(z, y),
(v) A is of strict inverse sign pattern (z, y) if and only if A−yz is of strict inverse

sign pattern (z, y).

Moreover, if A is symmetric, then

(vi) A is positive definite if and only if Ac is positive definite,
(vii) A is Hurwitz stable if and only if Ac is Hurwitz stable

Proof: [89], p. T688. 2
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3.9 Determinants

Theorem 115. Let A = [A, A] be an interval matrix. Then for each A ∈ A there
exists an A′ ∈ A of the form

A′
ij ∈

{ {Aij, Aij} if (i, j) 6= (k, m),

[Aij, Aij] if (i, j) = (k, m)
(3.46)

for some (k, m) such that
det A = det A′.

Proof: [92], p. 27. 2

Proof: For each Ã ∈ A denote by h(Ã) the number of entries with Ãij /∈ {Aij, Aij},
i, j = 1, . . . , n. Given an A ∈ A, let A′ be a matrix satisfying A′ ∈ A, det A′ = det A
and

h(A′) = min{h(Ã); Ã ∈ A, det Ã = det A}. (3.47)

If h(A′) ≥ 2, then there exist indices (p, q), (r, s), (p, q) 6= (r, s) such that A′
pq ∈

(Apq, Apq), A
′
rs ∈ (Ars, Ars). Then we can move these two entries within their inter-

vals in such a way that at least one achieves its bound, and the determinant is kept
unchanged. Then the resulting matrix A′′ satisfies h(A′′) < h(A′), which is a contra-
diction. Hence A′ defined by (3.47) satisfies h(A′) ≤ 1, which shows that it is of the
form (3.46), and det A = det A′ holds. 2

A matrix of the form (3.46) belongs to an edge of the interval matrix AI considered
a hyperrectangle in Rn2

. Hence the theorem says that the range of the determinant
over A is equal to its range over the edges of A. In particular, for zero values of the
determinant we have this “normal form” theorem [81].

Theorem 116. If A is singular, then it contains a singular matrix of the form (3.46).

As a consequence we obtain that real eigenvalues of matrices in A are attained at the
edge matrices of A.

Theorem 117. If a real number λ is an eigenvalue of some A ∈ A, then it is also an
eigenvalue of some matrix of the form (3.46).

Proof: [92], p. 27. 2

Proof: If λ is a real eigenvalue of some A ∈ A = [A,A], then A − λI is a singular
matrix belonging to [A − λI, A − λI], which is thus singular, hence by Theorem 116
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it contains a singular matrix A′ − λI, where A′ is of the form (3.46). Then λ is an
eigenvalue of A′. 2

A general “edge theorem” for complex eigenvalues was proved by Hollot and Bartlett
in [21].

For an interval matrix A, consider the extremal values of the determinant over A
given by

det(A) = max{det A ; A ∈ A},
det(A) = min{det A ; A ∈ A}.

Since the determinant is linear in each entry, Theorem 115 implies that the extremal
values are attained at some of the 2n2

vertex matrices, i.e. matrices of the form

Aij ∈ {Aij, Aij}, i, j = 1, . . . , n.

We have this result:

Theorem 118. Computing det(A), det(A) is NP–hard for the class of interval ma-
trices of the form A = [A− E, A + E], A rational nonnegative.

Proof: [92], p. 28. 2

Proof: For an interval matrix of the form A = [A−E, A+E], where A is a nonnegative
symmetric positive definite rational matrix, singularity of A is equivalent to

det(AI
0) ≥ 0, (3.48)

where AI
0 = A if det A ≤ 0 and AI

0 is constructed by swapping the first two rows of A
otherwise (which changes the sign of the determinant). Here AI

0 = [A0 − E, A0 + E],
where A0 is a nonnegative rational matrix. Hence the NP–hard problem of checking
regularity (Theorem ??) can be reduced in polynomial time to the decision problem
(3.48) which shows that computing det(A) is NP–hard in this class of interval matri-
ces. The proof for det(A) is analogous. 2

Theorem 119. Let A be inverse stable. Then | det(A)| attains its unique local mini-
mum over A at the matrix A∗ given by

(A∗)jk =

{
Ajk if (A−1

c )kj > 0,

Ajk if (A−1
c )kj < 0

(j, k = 1, . . . , n).

Proof: [73], p. 114. 2
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3.10 Rectangular interval matrices
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3.10.1 Full rank

As is well known, a real matrix A ∈ Rm×n has full column rank if its columns are
linearly independent, i.e., if Ax = 0 implies x = 0.

Definition. An interval matrix A is said to have full column rank if each A ∈ A
has full column rank, and it is said to have full row rank if AT has full column rank.

We have this characterization:

Theorem 120. An interval matrix A has full column rank if and only if the inequality

|Acx| ≤ ∆|x| (3.49)

has only the trivial solution x = 0.

Proof: A does not have full column rank if and only if Ax = 0 holds for some A ∈ A
and x 6= 0, i.e., if and only if this x 6= 0 is a weak solution of the interval linear
system Ax = [0, 0], which by the Oettli-Prager theorem is equivalent to existence of a
nontrivial solution to (3.49). 2

The inequality (3.49) looks simple at the first glance; but unfortunately the right-
hand side absolute value turns out to be the source of big computational difficulties as
evidenced not only in the following theorem, but also at many places in the subsequent
chapters.

Theorem 121. The following problem is NP-hard:
Instance. A nonnegative rational matrix A ∈ Rm×n.
Question. Does [A− E, A + E] have full column rank?

Since checking full column rank is NP-hard, in practice we must resort to some
sufficient conditions (that are not necessary). The following theorem shows a way to
this goal.

Theorem 122. Let for an m × n interval matrix A there exist a matrix R ∈ Rn×m

such that
%(|I −RAc|+ |R|∆) < 1. (3.50)

Then A has full column rank.

Proof: [93]. 2

Comment. Notice that since Ac, ∆ ∈ Rm×n and R ∈ Rn×m, the matrix |I−RAc|+
|R|∆ is square n× n, so that we can speak of its spectral radius.
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Proof: For each A ∈ A we have

RA = I − (I −RA) = I − (I −RAc + R(Ac − A)),

where
%(I −RAc + R(Ac − A)) ≤ %(|I −RAc|+ |R|∆) < 1

by (3.50), hence by a well-known theorem (Horn and Johnson [22], p. 301) the matrix
RA is invertible and thus nonsingular. Now, if Ax = 0, then RAx = 0, and nonsin-
gularity of RA implies x = 0. In this way we have proved that each A ∈ A has full
column rank, hence A has full column rank. 2

Theorem 122 does not specify the choice of R. But fortunately, such a choice is at
hand:

Theorem 123. Let Ac have full column rank and let

%(|(AT
c Ac)

−1AT
c |∆) < 1. (3.51)

Then A has full column rank.

Proof: This is a consequence of Theorem 122 for R = A+
c . 2

Proof: If Ac has full column rank, then (AT
c Ac)

−1 exists and direct substitution shows
that the matrix R = (AT

c Ac)
−1AT

c satisfies (3.50), hence A has full column rank by
Theorem 122. 2

Under our assumption, the matrix (AT
c Ac)

−1AT
c is equal to the Moore-Penrose in-

verse A+
c of Ac (see e.g. Stewart and Sun [114]), hence the condition (3.51) can also

be written as
%(|A+

c |∆) < 1.

For practical purposes, Theorem 122 offers the advantage of possibility of setting R
equal to the computed (i.e., not necessarily exact) value of (AT

c Ac)
−1AT

c .

The following theorem gives a sufficient full column rank condition in terms of
singular values:

Theorem 124. If
σmax(∆) < σmin(Ac), (3.52)

then A has full column rank.

Proof: [102] (for square case; valid for the rectangular case as well). 2
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Proof: Assume to the contrary that A does not have full column rank, so that by
Theorem 120 there exists an x0 6= 0, which may be normalized to achieve ‖x0‖2 = 1,
such that

|Acx0| ≤ ∆|x0|
holds. Then we have

|Acx0|T |Acx0| ≤ (∆|x0|)T (∆|x0|),
which implies

σ2
min(Ac) = λmin(A

T
c Ac) = min

‖x‖2=1
xT AT

c Acx ≤ (Acx0)
T (Acx0)

≤ |Acx0|T |Acx0| ≤ (∆|x0|)T (∆|x0|) = |x0|T ∆T ∆|x0|
≤ max

‖x‖2=1
xT ∆T ∆x = λmax(∆

T ∆) = σ2
max(∆),

hence
σmin(Ac) ≤ σmax(∆),

which is a contradiction. 2
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3.10.2 Singular values
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3.11 Appendices
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3.11.1 Appendix 3A: Theorems of the alternatives

Theorem 125. Let A,D ∈ Rn×n, D ≥ 0. Then exactly one of the following alterna-
tives holds:

(i) for each B ∈ Rn×n with |B| ≤ D and for each b ∈ Rn the equation

Ax + B|x| = b (3.53)

has a unique solution,

(ii) there exist d ∈ [0, 1] and a vector y ∈ Rn such that the equation

Ax + dTyD|x| = 0 (3.54)

has a nontrivial solution.

Proof: Given A,D ∈ Rn×n, D ≥ 0, consider the set

A = {A′ ; |A′ − A| ≤ ∆} = {A′ ; A−D ≤ A′ ≤ A + D},

which is called an interval matrix [81]. A is said to be regular if each A′ ∈ A is
nonsingular, and it is called singular otherwise (i.e., if it contains a singular matrix).
We shall prove that (a) regularity of A implies (i), (b) singularity of A implies (ii),
and (c) both (i) and (ii) cannot hold simultaneously. This will prove that exactly one
of the alternatives (i), (ii) holds.

(a) Let A be regular and let |B| ≤ D and b ∈ Rn. Then using nonnegative vectors
x+ = (|x|+ x)/2 and x− = (|x| − x)/2, we have that x = x+ − x− and |x| = x+ + x−,
and we may rewrite the equation (3.53) into the equivalent form

x+ = (A + B)−1(A−B)x− + (A + B)−1b. (3.55)

Since |B| ≤ D, both matrices A + B and A−B belong to A, hence (A + B)−1 exists
and, moreover, (A + B)−1(A − B) is a P -matrix by Theorem 1.2 in [81]. Hence the
linear complementarity problem (3.55) has a unique solution (Murty [51]), and the
equivalent equation (3.53) has a unique solution as well.

(b) Let A be singular. Then the value

λ = min{ε ≥ 0 ; the interval matrix [A− εD, A + εD] is singular}

belongs to [0, 1] because A = [A − D, A + D] is singular, and Theorem 2.2 in [86]
asserts that there exist ±1-vectors y, z and an x 6= 0 such that

(A− λ diag (y)D diag (z))x = 0, (3.56)

diag (z) x ≥ 0 (3.57)
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hold. Then (3.57) implies that diag (z) x = |x|, and substituting this quantity into
(3.56) we obtain

Ax− λ diag (y)D|x| = 0,

so that it suffices to put y := −y to conclude that the equation (3.54) has a nontrivial
solution.

(c) Finally we show that (i) and (ii) cannot hold simultaneously. For, if (3.54)
has a nontrivial solution x for some λ ∈ [0, 1] and some ±1-vector y, and if we put
B = λ diag (y)D, then |B| = λD ≤ D, hence (3.54) is of the form (3.53) for some B,
but (3.54) has at least two solutions x and 0, which contradicts (i). 2 2

Theorem 126. Let A, B ∈ Rn×n and let the inequality

|Ax| ≤ |B||x|
have the trivial solution only. Then the equation

Ax + B|x| = b

has a unique solution for each b ∈ Rn.

Proof: Put D = |B|. Then the assertion (γ) of Theorem ?? does not hold, hence
neither does (α), which is the assertion (ii) of Theorem 125. Hence (i) holds, which
gives that the equation Ax + C|x| = b has a unique solution for each b ∈ Rn and each
C satisfying |C| ≤ D = |B|, thus in particular also for C = B. 2 2

Theorem 127. Let A,B ∈ Rn×n. Then exactly one of the following alternatives holds:

(a) for each y ∈ Yn the inequality

|Ax| > |B||x|
has a solution xy satisfying Axy ∈ Rn

y ,

(b) the inequality
|Ax| ≤ |B||x|

has a nontrivial solution.

Theorem 128. Let A,B ∈ Rn×n, A nonsingular. Then exactly one of the following
alternatives holds:

(a) the inequality
|x| > |B||Ax|

has a solution in each orthant,

(b) the inequality
|x| ≤ |B||Ax|

has a nontrivial solution.
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3.11.2 Appendix 3B: Matrix properties under fixed-point rounding

For a real number a and a nonnegative integer d define

a(d) =

{ b10da + 0.5c10−d if a ≥ 0,

−(−a)(d) if a < 0,
(3.58)

where
bbc = max{ c | c ≤ b, c integer }.

It is obvious that a(d) is the result of rounding a to d decimal places. The following two
properties are almost straightforward, but we include them for the sake of completeness
because of their repeated use in the sequel. Throughout the paper we denote

δ = 0.5 · 10−d. (3.59)

Proposition 129. If a ∈ R and d is a nonnegative integer, then

a(d) − δ ≤ a ≤ a(d) + δ. (3.60)

Proof: Let a ≥ 0. Then (3.58) implies that

10da(d) = b10da + 0.5c,

thus 10da(d) is the integer part of 10da + 0.5, hence

10da(d) ≤ 10da + 0.5 < 10da(d) + 1,

which gives
a(d) − 0.5 · 10−d ≤ a < a(d) + 0.5 · 10−d,

and this in view of (3.59) means that

a(d) − δ ≤ a < a(d) + δ. (3.61)

If a < 0, then the inequality (3.61) holds for −a, hence

(−a)(d) − δ ≤ −a < (−a)(d) + δ

and in the light of (3.58) we obtain

a(d) − δ < a ≤ a(d) + δ. (3.62)

Hence in both cases (3.61), (3.62) we have (3.60). 2
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Proposition 130. If a ∈ R and d is a nonnegative integer, then each b with

a(d) − δ < b < a(d) + δ (3.63)

satisfies
b(d) = a(d).

Proof: From (3.63) it follows

10da(d) < 10db + 0.5 < 10da(d) + 1,

and since 10da(d) is integer due to (3.58), this implies that

10da(d) = b10db + 0.5c
and

a(d) = b10db + 0.5c10−d.

Hence, if b ≥ 0, then a(d) = b(d) due to (3.58). If b < 0, then the result just proved
gives (−a)(d) = (−b)(d), hence again a(d) = b(d) by (3.58). 2

Now, let A = (aij) be a square matrix (we shall consider only square matrices in
the sequel). We define

A(d) = ((aij)(d)),

hence the matrix A(d) arises from A by rounding off all its coefficients to d decimal
places. The main question handled in this paper is the following: assume a real matrix
A is not exactly known and we have only its rounded value A(d) at our disposal; if
A(d) has some property, under what additional condition(s) can we be sure that the
original matrix A possesses this property as well? We shall give answers for the cases
of three common properties, namely, nonsingularity, positive definiteness, and positive
invertibility. In case of nonsingularity we shall show in Theorem 131 that there exists
a real number α computed from A−1

(d) such that if d > α, then nonsingularity of A(d)

implies nonsingularity of A, and if d < α, then there exists a singular matrix A′

satisfying A′
(d) = A(d); hence, in the former case we are done, whereas in the latter one

we learn that the original matrix cannot be distinguished, by means of rounding to d
decimal places, from a singular matrix. In Theorem 134 we shall show that literally the
same result (with the same α) holds for positive definiteness. Both theorems handle
the cases d > α and d < α only, but the remaining case d = α occurs with probability 0
because d is integer whereas α is a real number.

Theorem 131. Let A be square and let A(d) be nonsingular for some integer d ≥ 0.
Then we have:

(i) if
d > log10(0.5 · ‖A−1

(d)‖∞,1), (3.64)

then A is nonsingular,
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(ii) if
d < log10(0.5 · ‖A−1

(d)‖∞,1), (3.65)

then there exists a singular matrix A′ satisfying A′
(d) = A(d).

Proof: (i) If (3.64) holds, then

0.5 · 10−d‖A−1
(d)‖∞,1 = δ‖A−1

(d)‖∞,1 < 1,

hence, by virtue of Proposition ??, the interval matrix [A(d)−δeeT , A(d)+δeeT ] consists
of nonsingular matrices only. Since A belongs to this interval matrix by (??), it follows
that A is nonsingular.

(ii) If (3.65) holds, then
δ‖A−1

(d)‖∞,1 > 1.

Let us choose a δ′ ∈ (0, δ) such that δ′‖A−1
(d)‖∞,1 > 1. Then by Proposition ?? there

exists a singular matrix A′ ∈ [A(d) − δ′eeT , A(d) + δ′eeT ]. Since δ′ < δ, this singular
matrix satisfies

A(d) − δeeT < A′ < A(d) + δeeT ,

and Proposition 130 gives that A′
(d) = A(d), which was to be proved. 2

In case (ii) a singular matrix can be given explicitly:

Proposition 132. Let (3.65) hold and let z, y ∈ Y be any two vectors satisfying

d < log10(0.5(zT A−1
(d)y)). (3.66)

Then the matrix

A′ = A(d) − yzT

zT A−1
(d)y

(3.67)

is singular and satisfies A′
(d) = A(d).

Proof: In fact,

A′(A−1
(d)y) = y −

y(zT A−1
(d)y)

zT A−1
(d)y

= 0,

hence A′ is singular. From (3.66) we have

1

zT A−1
(d)y

< δ,

which implies |A′ − A(d)| < δeeT , so that

A(d) − δeeT < A′ < A(d) + δeeT

and A′
(d) = A(d) by Proposition 130. 2
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Corollary 133. Let A be square and let A(d) be nonsingular for some nonnegative
integer d satisfying

d > log10(0.5 · ‖|A−1
(d)|e‖1). (3.68)

Then A is nonsingular.

Proof: For each z, y ∈ Y we have

zT A−1
(d)y ≤ |zT A−1

(d)y| ≤ eT |A−1
(d)|e = ‖|A−1

(d)|e‖1,

hence ‖A−1
(d)‖∞,1 ≤ ‖|A−1

(d)|e‖1 and from (3.68) we obtain

d > log10(0.5 · ‖|A−1
(d)|e‖1) ≥ log10(0.5 · ‖A−1

(d)‖∞,1),

which is the condition (3.64), and nonsingularity of A is verified. 2

Theorem 134. Let A be symmetric and let A(d) be positive definite for some integer
d ≥ 0. Then we have:

(i) if
d > log10(0.5 · ‖A−1

(d)‖∞,1), (3.69)

then A is positive definite,
(ii) if

d < log10(0.5 · ‖A−1
(d)‖∞,1), (3.70)

then there exists a symmetric matrix A′ satisfying A′
(d) = A(d) which is not

positive definite.

Proof: (i) Since A(d) is positive definite by assumption and since (3.69) guarantees
nonsingularity of all matrices contained in [A(d) − δeeT , A(d) + δeeT ] (proof of Theo-
rem 131), Proposition ?? gives that each symmetric matrix in [A(d)−δeeT , A(d) +δeeT ]
is positive definite, thus also A is positive definite.

(ii) If (3.70) holds, then we know from the proof of Theorem 131 that there exists
a singular matrix A′′ satisfying

A(d) − δeeT < A′′ < A(d) + δeeT , (3.71)

i.e., A′′x = 0 for some x 6= 0. Because both matrices A(d) − δeeT and A(d) + δeeT are
symmetric (symmetry of A implies symmetry of A(d)), from (3.71) we have

A(d) − δeeT < 0.5(A′′ + A′′T ) < A(d) + δeeT .

Then the matrix
A′ = 0.5(A′′ + A′′T )
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is symmetric, satisfies A′
(d) = A(d) by Proposition 130, and

xT A′x = xT A′′x = 0,

so that A′ is not positive definite. 2

Corollary 135. Let A be symmetric and let A(d) be positive definite for some nonneg-
ative integer d satisfying

d > log10(0.5 · ‖|A−1
(d)|e‖1). (3.72)

Then A is positive definite.

Proof: As we have seen in the proof of Corollary 133, (3.72) implies (3.69), hence A is
positive definite. 2

Theorem 136. Let A be square and let

(A(d) + 0.5 · 10−deeT )−1 > 0 (3.73)

hold for some integer d ≥ 0. Then we have:

(i) if
d > log10 ‖(A(d) + 0.5 · 10−deeT )−1e‖1, (3.74)

then A is positive invertible,

(ii) if
d < log10 ‖(A(d) + 0.5 · 10−deeT )−1e‖1, (3.75)

then there exists a matrix A′ satisfying A′
(d) = A(d) which is not positive invert-

ible.

Proof: Consider again the interval matrix [A,A] = [A(d) − δeeT , A(d) + δeeT ], where

δ = 0.5 · 10−d as before. Then A
−1

> 0 by the assumption (3.73), and

%(A
−1

(A− A)) = %(2δA
−1

eeT ) = 2δeT A
−1

e = 10−d‖A−1
e‖1.

Hence, %(A
−1

(A− A)) < 1 if and only if

d > log10 ‖A
−1

e‖1

holds. This means that if this condition is met, then, by Proposition ??, all matrices
contained in [A, A] are positive invertible and thus also A is positive invertible, which
proves (i). If (3.75) holds, then

2δ‖(A(d) + δeeT )−1e‖1 > 1.
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Because of continuity there exists a δ′ ∈ (0, δ) such that (A(d) + δ′eeT )−1 > 0 and

2δ′‖(A(d) + δ′eeT )−1e‖1 > 1.

Then, by Proposition ??, the interval matrix [A(d) − δ′eeT , A(d) + δ′eeT ] contains a
matrix A′ which is not positive invertible. Since

A(d) − δeeT < A(d) − δ′eeT ≤ A′ ≤ A(d) + δ′eeT < A(d) + δeeT ,

there holds A′
(d) = A(d) by Proposition 130, which concludes the proof of (ii). 2
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3.11.3 Appendix 3C: Componentwise condition number

cα
ij(A) = max

{∣∣∣∣
B−1

ij − A−1
ij

A−1
ij

∣∣∣∣ ; |B − A| ≤ α|A|
}

cij(A) = lim
α→0+

cα
ij(A)

α

Theorem 137. For a nonsingular matrix A we have

cij(A) =
(|A−1| · |A| · |A−1|)ij

|A−1|ij
for each i, j with A−1

ij 6= 0.

Proof: [79], p. 168. 2
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3.11.4 Appendix 3D: Absolute eigenvalues

Theorem 138. For each real square matrix Ac there exists a real number d ≥ 0 and
real vectors x 6= 0, p 6= 0 satisfying

|Acx| = d|x|,
|AT

c p| = d|p|.
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3.12 Notes and references

Section 3.10.1. The topic of this section in its full generality (i.e., for rectangular
interval matrices) seems to have escaped attention of interval researchers. The only
reference known to the author is [93], where Theorems 122 and 123 were proved in
equivalent, but less direct formulations. Theorem 124 was proved for the square case
by Rump in [102], but his proof goes through without any change for the rectangular
case as well. The full column rank problem for the square case (i.e., regularity) has
been studied in considerable detail, as evidenced in previous sections.
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Chapter 4

Systems of interval linear equations (square case)
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4.1 Introduction
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4.2 Solution set
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4.2.1 Definition
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4.2.2 Description: The Oettli-Prager theorem

Theorem 139. (Oettli-Prager) We have

X = {x ; |Acx− bc| ≤ ∆|x|+ δ}. (4.1)

Proof: If x ∈ X, then Ax = b for some A ∈ A, b ∈ b, which gives |Acx − bc| =
|(Ac − A)x + b − bc| ≤ ∆|x| + δ. Conversely, let |Acx − bc| ≤ ∆|x| + δ hold for some
x. Define y ∈ Rn by

yi =

{
(Acx−bc)i

(∆|x|+δ)i
if (∆|x|+ δ)i > 0,

1 if
(i = 1, . . . , n), (4.2)

then |y| ≤ e and
Acx− bc = Ty(∆|x|+ δ). (4.3)

Put z = sgn x, then |x| = Tzx and from (4.3) we get Ayzx = (Ac − Ty∆Tz)x =
bc + Tyδ = by. Since |y| ≤ e and z ∈ Yn, we have |Ty∆Tz| ≤ ∆ and |Tyδ| ≤ δ, so that
Ayz ∈ A and b ∈ b, implying x ∈ X. 2

Theorem 140. We have X = {x ; Ax+ − Ax− ≤ b, Ax+ − Ax− ≥ b}.

Proof: [69], p. 35. 2

Theorem 141. Let A be regular and let δ > 0. Then the mapping x 7→ t defined by

ti =
(Ax− b)i

(∆|x|+ δ)i

(i = 1, . . . , n),

is a continuous one-to-one mapping of the solution set X onto the interval vector
[−e, e].

Proof: [69], p. 36. 2

In the proof of the main result we shall employ the fact that the Oettli-Prager
description (5.27) can be reformulated as

X = {x ; Ax+ − Ax− ≤ b, Ax+ − Ax− ≥ b}, (4.4)

where x+ = (|x|+ x)/2 and x− = (|x| − x)/2 ([69], Corollary 1.4). It can be obtained
from (5.27) directly by substituting x = x+ − x−, |x| = x+ + x−. Notice that the
definition of x+, x− implies that x+

i = max{xi, 0} and x−i = max{−xi, 0} for i =
1, . . . , n, i.e., it conforms with the standard notation.
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Proposition 142. For each z ∈ Y we have

X ∩ Rn
z = {x ; Aez ≤ b, A−ezx ≥ b, Tzx ≥ 0}, (4.5)

i.e., X ∩ Rn
z is a convex polyhedron. Henceforth, X is a union of at most 2n convex

polyhedra.

Proposition 143. Let A be regular and let b 6= 0. Then the solution set X of Ax =
[b, b] satisfies

X ∩ Rn
z ∩ Rn

−z = ∅
for each z ∈ Yn, i.e., X cannot simultaneously intersect two opposite orthants.

Proof: [69], p. 44. 2

Theorem 144. If A is regular, then every two points in X can be connected by a
piecewise linear curve lying entirely in X and consisting of at most n segments.
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4.2.3 Normal forms

Proposition 145. If x solves (4.1), then it satisfies

(Ac − Ty∆Tz)x = bc + Tyδ,

where y is given by

yi =

{
(Acx− bc)i/(∆|x|+ δ)i if (∆|x|+ δ)i > 0,

1 if (∆|x|+ δ)i = 0
(i = 1, . . . , m),

and z = sgn x.

The following result shows that a system Ax = b to be satisfied by a given x ∈ X
can always be chosen in a certain normal form:

Theorem 146 Let x ∈ X. Then there holds Ax = b for some A and b of the following
form: for each i = 1, . . . ,m there exists a ki ∈ {1, . . . , n + 1} such that

Aij





= Aij if (ki − j)xj < 0 or xj = 0,

= Aij if (ki − j)xj > 0,
∈ [Aij, Aij] if j = ki and xj 6= 0,

(j = 1, . . . , n), (4.6)

bi

{
= bi if ki ≤ n,

∈ [bi, bi] if ki = n + 1.
(4.7)

Proof: Let x ∈ X, so that x satisfies

Ax+ − Ax− ≤ b, (4.8)

Ax+ − Ax− ≥ b (4.9)

(see (4.4)). We shall construct a system Ax = b with properties listed equation by
equation. Let i ∈ {1, . . . , m}. To construct the ith equation, define a function f of
n + 1 real variables by

f(t1, . . . , tn+1) =
n∑

j=1

(
(Aij + tj(Aij − Aij))x

+
j (4.10)

−(Aij + tj(Aij − Aij))x
−
j

)

−(bi + tn+1(bi − bi)).

Then

f(0, . . . , 0)f(1, . . . , 1) = (Ax+ − Ax− − b)i(Ax+ − Ax− − b)i ≤ 0 (4.11)
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due to (4.8), (4.9). For k = 1, . . . , n + 1 put

ϕk = f(1, . . . , 1, 0, 0, . . . , 0)f(1, . . . , 1, 1, 0, . . . , 0),

where the two argument vectors differ in the kth position only. Then we have

n+1∏

k=1

ϕk = f(0, . . . , 0)f(1, . . . , 1)
n∏

k=1

f 2(1, . . . , 1, 0, . . . , 0) ≤ 0

because of (4.11), hence there exists a k for which ϕk ≤ 0. Since this k depends on i,
let us denote it by ki. Then

f(1, . . . , 1, 0, 0, . . . , 0)f(1, . . . , 1, 1, 0, . . . , 0) = ϕki
≤ 0,

hence by continuity of f there exists a τi ∈ [0, 1] such that

f(1, . . . , 1, τi, 0, . . . , 0) = 0, (4.12)

where τi stands at the kith position. Now, using the vector

t = (1, . . . , 1, τi, 0, . . . , 0),

define

Aij =

{
Aij + tj(Aij − Aij) if x+

j > 0,

Aij + tj(Aij − Aij) if x+
j = 0,

(j = 1, . . . , n), (4.13)

and
bi = bi + tn+1(bi − bi). (4.14)

Then, since x = x+ − x− and x+
i x−i = 0 for each i, it follows from (4.10) and (4.13),

(4.14) that
n∑

j=1

Aijxj = bi (4.15)

holds. If xj = 0 for some j, then (4.15) will remain in force if we change Aij to Aij.
After this change Aij is given by

Aij =





Aij + tj(Aij − Aij) if x+
j > 0,

Aij + tj(Aij − Aij) if x−j > 0,
Aij if xj = 0.

We shall verify that the quantities Aij, bi given by (4.16), (4.14) satisfy (4.6), (4.7).
If (ki − j)xj < 0, then either j > ki and xj > 0, in which case tj = 0, x+

j > 0, and
(4.16) gives Aij = Aij; or j < ki and xj < 0, in which case tj = 1, x−j > 0, and (4.16)
again gives Aij = Aij. If xj = 0, then Aij = Aij in accordance with (4.6). Similarly,
if (ki − j)xj > 0, then either j < ki and xj > 0, hence tj = 1 and x+

j > 0, implying

Aij = Aij; or j > ki and xj < 0, hence tj = 0 and x−j > 0, again implying Aij = Aij.
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If j = ki and xj 6= 0, then tj = τi ∈ [0, 1] and (4.16) shows that Aij is a convex
combination of Aij and Aij, hence Aij ∈ [Aij, Aij]. This proves (4.6). If ki ≤ n, then

tn+1 = 0 and bi = bi by (4.14); if ki = n + 1, then tn+1 = τi ∈ [0, 1] and, again by
(4.14), bi ∈ [bi, bi]. Hence (4.7) holds. We have constructed Aij (j = 1, . . . , n) and
bi satisfying (4.15), (4.6) and (4.7). Performing the construction for i = 1, . . . , m, we
obtain a matrix A satisfying (4.6) and a vector b satisfying (4.7) such that Ax = b
holds. This concludes the proof. 2

It is worth pointing out that the matrix A given by (4.6) has a very specific pattern:

Corollary 147 The matrix A constructed in Theorem 146 has the following proper-
ties. Given i1, i2 ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, there holds:

(a) if (ki1 − j)(ki2 − j) > 0, then Ai1j, Ai2j are attained either both at the lower
bound, or both at the upper bound,

(b) if (ki1− j)(ki2− j) < 0 and xj 6= 0, then one of Ai1j, Ai2j is attained at the lower
bound, whereas the other one at the upper bound.

Proof: We use the formula (4.6). (a) If xj = 0, then Ai1j = Ai1j and Ai2j = Ai2j. If
xj 6= 0, then (ki1 − j)xj(ki2 − j)xj = (ki1 − j)(ki2 − j)x2

j > 0, hence (ki1 − j)xj and

(ki2 − j)xj are of the same sign. If both of them are positive, then Ai1j = Ai1j and
Ai2j = Ai2j; if both of them are negative, then Ai1j = Ai1j and Ai2j = Ai2j.

(b) If (ki1 − j)(ki2 − j) < 0 and xj 6= 0, then (ki1 − j)xj(ki2 − j)xj < 0, so that
(ki1 − j)xj and (ki2 − j)xj are of opposite signs, hence one of Ai1j, Ai2j is attained at
its lower bound whereas the other one at its upper bound. 2 2

Finally, avoiding the complicated formulae, we can extract the essence of our result
in the following simplified statement:

Corollary 148 Let x ∈ X. Then there holds Ax = b for some A ∈ A, b ∈ b such
that for each i = 1, . . . , m we have Aij ∈ {Aij, Aij} (j = 1, . . . , n), bi ∈ {bi, bi} for all
but at most one entry.

Proof: The result follows immediately from Theorem 146; it is the kith entry of the
ith row of (A b) which makes the exception (i = 1, . . . ,m). 2 2

Finally, it should be noted that the normal form of A and b in Theorem 146 can be
made unique (for a given x) if for each i first ki ∈ {1, . . . , n + 1}, then τi ∈ [0, 1] are
chosen minimal possible (this can be done because f(1, . . . , 1, tki

, 0, . . . , 0) is linear in
tki

and therefore it has a minimum root τi).
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4.2.4 (Un)boundedness: The Beeck-Jansson theorem

Theorem 149. (Beeck-Jansson) Let A be square and let X be the solution set of
Ax = b. Then we have:

(i) if A is regular, then X is compact and connected,
(ii) if A is singular, then each component of X is unbounded.

Proof: (i) If A is regular, then X, as the range of the continuous mapping (A, b) 7→
A−1b of a compact convex set A× b, is compact and connected.

(ii) Let A be singular and let C be a component of X. Since C 6= ∅ by definition,
there exists an x0 ∈ C satisfying A0x0 = b0 for some A0 ∈ A and b0 ∈ b. If A0 is
singular, then A0x̂ = 0 for some x̂ 6= 0 and C contains the unbounded set {x0+λx̂; λ ∈
R1}, hence C is unbounded. Thus let A0 be nonsingular. Since A is singular, it
contains a singular matrix A1. For each t ∈ [0, 1] denote

At = A0 + t(A1 − A0), (4.16)

and let

τ = inf{t ∈ [0, 1]; At is singular}.
In view of continuity of the determinant, the infimum is attained as minimum, hence
Aτ is singular and τ ∈ (0, 1]. For each t ∈ [0, τ), At is nonsingular, hence

xt = A−1
t b0

is well defined and the mapping s 7→ xs, s ∈ [0, t], defines a curve in X connecting x0

with xt, hence xt ∈ C for each t ∈ [0, τ). Consider now the sequence of points {xtm}
with

tm = (1− 1
m

)τ, (4.17)

m = 1, 2, . . .. If {xtm} is unbounded, then C is unbounded; if it is bounded, then it
contains a convergent subsequence {xtmk

}, xtmk
→ x∗, and x∗ ∈ C since C is closed.

As

Atmk
xtmk

= b0

holds for each k, taking k →∞ we obtain in view of (4.16), (4.17) that

Aτx
∗ = b0.

But since Aτ is singular, there exists an x̃ 6= 0 with Aτ x̃ = 0, hence Aτ (x
∗ + λx̃) = b0

for each λ ∈ R1, which shows that C contains the unbounded set {x∗ + λx̃; λ ∈ R1};
this concludes the second part of the proof. 2
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Theorem 150. Given a system Ax = b, A square, the following algorithm either
detects singularity of A, or constructs a subset D ⊆ Yn such that

X ⊂
⋃
z∈D

Rn
z

(in which case A is regular):

z := sgn (A−1
c bc); Z := {z}; D := ∅;

while Z 6= ∅
select z ∈ Z; Z := Z − {z}; D := D ∪ {z};
if X ∩ Rn

z is unbounded
terminate: A is singular

end
for j = 1 : n

if xj = 0 for some x ∈ X ∩ Rn
z and z − 2zjej /∈ Z ∪D

Z := Z ∪ {z − 2zjej};
end

end
end

sing:=false;
if Ac is singular then sing:=true
else

L := ∅; K := ∅;
select b; solve Acx = b;
z := sgn x; insert z into L;
repeat

remove an item z from L;
insert z into K;
if (...) is unbounded then sing:=true
else if (...) is feasible then L := L ∪ (N(z)− (K ∪ L))

until (sing or L = ∅);
if sing then {A is singular} else {A is regular}.

In order to simplify the proof of the main theorem, we first formulate an auxiliary
result concerning the case when singularity was not detected during the algorithm.
Denote by C0 the component of X(AI , b) containing the point xc = A−1

c b and let Y0 be
the set of ±1-vectors that were inserted into L in the course of the algorithm. Then
Y0 has this property:

Lemma 151 If x ∈ C0 and Tz0x ≥ 0 for some z0 ∈ Y0, then each z ∈ Z with Tzx ≥ 0
belongs to Y0.
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Proof: For the purpose of the proof, denote the linear programming problem

max{zT x; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0} (4.18)

by P (z). Then x is a feasible solution of some P (z). Since Tz0x = |x| = Tzx, we can
see from the form of (4.18) that x is a feasible solution of P (z0). Let Tzx ≥ 0, z 6= z0.
Denote

J = {j; zj 6= (z0)j} = {j1, . . . , jm}.
Since Tz0x ≥ 0 and Tzx ≥ 0, it must be xj = 0 for each j ∈ J . Set z0 = z0 and define
vectors zk ∈ Z, k = 1, . . . , m, in the following way:

(zk)j =

{
(zk−1)j if j 6= jk,

−(zk−1)j if j = jk
(4.19)

(k = 1, . . . ,m, j = 1, . . . , n). We shall prove by induction on k = 0, . . . ,m that zk ∈ Y0

and x is a feasible solution of P (zk). This is obvious for k = 0. If the assumption is
true for some k−1 ≥ 0, then zk−1 ∈ Y0 and P (zk−1) is feasible, hence N(zk−1)−(K∪L)
was added to L in the respective step. Since zk ∈ N(zk−1) by (4.19), zk was either
already present in K ∪ L, or newly added to L, in both cases zk ∈ Y0. Furthermore,
since x is a feasible solution of P (zk−1) and Tzk−1x = Tzkx holds as xjk

= 0, it is also
a feasible solution of P (zk). This concludes the proof by induction; since zm = z, we
have z ∈ Y0. 2

As it can be seen, this detailed proof is a formalization of the following idea: if
we take a path from xc to x ∈ C0, then the only change of signs occurs when the
path passes through a point with one or more zero components; all the respective sign
vectors are added to L in the course of the algorithm, hence they belong to Y0.

Now we finally prove that the algorithm really performs the task for which it was
designed:

Theorem 152. For each n× n interval matrix A and each b ∈ Rn, the algorithm in
a finite number of steps checks regularity or singularity of A.

Proof: First, only elements of the finite set Z are being inserted into L and no element
may be reinserted, hence the algorithm terminates in a finite number of steps. If some
problem (4.18) is proved unbounded, then A is singular by Theorem 149. Hence, we
only have to prove that if A has not been found singular and if the list L becomes
empty, then A is regular.

The component C0 may be written in the form

C0 =
⋃
z∈Y

Xz(A
I , b),
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where Y may be chosen so that Xz(A
I , b) 6= ∅ for each z ∈ Y . We shall prove that

Y ⊆ Y0 (4.20)

holds. Since L = ∅, this will imply that all Xz(A
I , b), z ∈ Y have been checked to be

bounded, hence A is regular by Theorem 149.

To prove (4.20), take a z ∈ Y . Choose an x ∈ Xz(A, b), so that Tzx ≥ 0. Since
C0 is connected and contains xc = A−1

c b, there exists a path from xc to x, contained
entirely in C0. In view of convexity of the sets Xz(A

I , b), z ∈ Z, the path may be
chosen in a piecewise linear form x0x1 . . . xm, where x0 = xc, xm = x and the segment
with endpoints xi, xi+1 is always a part of a single orthant (i = 0, . . . , m − 1). We
shall prove by induction on i that for each i = 0, . . . , m, if Tzx

i ≥ 0 for some z ∈ Z,
then z ∈ Y0. Since zc = sgn xc is inserted into L at the beginning of the main loop
and Tzcxc ≥ 0, the assertion for x0 = xc follows from Lemma 151. Let the assertion
be true for xi, i ≥ 0. Since the whole segment with endpoints xi and xi+1 is a part
of a single orthant, there exists a z̃ ∈ Z such that Tz̃x

i ≥ 0 and Tz̃x
i+1 ≥ 0. Then

z̃ ∈ Y0 by assumption concerning xi, hence from Tz̃x
i+1 ≥ 0, z̃ ∈ Y0 we obtain from

Lemma 151 that each z ∈ Z with Tzx
i+1 ≥ 0 belongs to Y0. This concludes the proof

by induction. Hence, since Tzx
m = Tzx ≥ 0, we have z ∈ Y0. This proves (4.20). 2
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4.2.5 Examples

Example. Consider the example by Hansen [19]: A = [A, A], b = [b, b], where

A =

(
2 0
1 2

)
, A =

(
3 1
2 3

)
, b =

(
0
60

)
, b =

(
120
240

)
.

Since for each z ∈ Y2 the intersection of the set of weak solutions X with the orthant
{x ∈ R2; Tzx ≥ 0} is described by (4.5), considering separately all four orthants we
arrive at this picture of the set X:

-

6

-120 90

-60

240
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6

-5 5

5

-5

Figure 4.1: The example by Barth and Nuding
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6

-3 11

-3

11

Figure 4.2: The example by Nickel
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4.3 The points xy
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4.3.1 Existence and uniqueness

Lemma 153. Let A be regular and let

Ayz′x
′ = Ayz′′x

′′ (4.21)

hold for some y, z′, z′′ ∈ Yn and x′ 6= x′′. Then there exists a j satisfying z′jz
′′
j = −1

and x′jx
′′
j > 0.

Proof: Assume to the contrary that for each j, z′jz
′′
j = −1 implies x′jx

′′
j ≤ 0 and hence

also |x′j − x′′j | = |x′j|+ |x′′j |. We shall prove that in this case

|Tz′x
′ − Tz′′x

′′| ≤ |x′ − x′′|, (4.22)

i.e. that
|z′jx′j − z′′j x

′′
j | ≤ |x′j − x′′j |

holds for each j. In fact, this is obvious for z′jz
′′
j = 1. If z′jz

′′
j = −1, then

|z′jx′j − z′′j x
′′
j | = |x′j + x′′j | ≤ |x′j|+ |x′′j | = |x′j − x′′j |,

which proves (4.22). Now, from (4.21) we have

(Ac − Ty∆Tz′)x
′ = (Ac − Ty∆Tz′′)x

′′

which implies

|Ac(x
′ − x′′)| = |Ty∆(Tz′x

′ − Tz′′x
′′)| ≤ ∆|Tz′x

′ − Tz′′x
′′| ≤ ∆|x′ − x′′|,

hence A is singular, a contradiction. 2

Theorem 154. Let A be regular. Then for each y ∈ Yn the equation

Acx− Ty∆|x| = by (4.23)

has a unique solution xy ∈ X and there holds

Conv X = Conv {xy ; y ∈ Yn}.

Proof: We shall first simplify the description of the algorithm by proving by induction
that after each updating of C, the current values of z, x and C satisfy

x = A−1
yz by, (4.24)

C = A−1
yz Ty∆. (4.25)
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This is obviously so for the initial values of z, x and C. Thus let (4.24), (4.25) hold
true at some step and let z̃, x̃ and C̃ be the updated values, i.e.

z̃k = −zk,

α = 2z̃k/(1− 2z̃kCkk) = −2zk/(1 + 2zkCkk),

x̃ = x + αxkC·k,

C̃ = C + αC·kCk·

Since the matrix

Ayz̃ = Ac − Ty∆(Tz − 2zkeke
T
k ) = Ayz + (2zkTy∆ek)e

T
k ∈ A

is nonsingular, it follows from the Sherman-Morrison theorem that

0 6= 1 + eT
k A−1

yz 2zkTy∆ek = 1 + 2zkCkk,

hence α is well defined and

A−1
yz̃ = A−1

yz −
A−1

yz 2zkTy∆eke
T
k A−1

yz

1 + 2zkCkk

= A−1
yz + αC·keT

k A−1
yz .

Then we have

A−1
yz̃ by = A−1

yz by + αC·keT
k A−1

yz by = x + αxkC·k = x̃

and
A−1

yz̃ Ty∆ = A−1
yz Ty∆ + αC·keT

k A−1
yz Ty∆ = C + αC·kCk· = C̃,

which proves (4.24), (4.25) by induction.

Hence we can see that the matrix C plays a purely auxiliary role, helping to avoid
explicit computation of x = A−1

yz by at each step, and its elimination brings the algo-
rithm to a more transparent (but computationally less efficient) form:
z := sgn (A−1

c by);
x := A−1

yz by;
while zjxj < 0 for some j do

k := min{j; zjxj < 0};
zk := −zk;
x := A−1

yz by;
xy := x.

Using this form, we shall now prove finiteness of the sequence of k’s generated in
the loop of the algorithm by induction, showing that each k can occur there at most
2n−k times (k = n, . . . , 1).

Case k = n: Assume that n appears at least twice in the sequence, and let z′, x′

and z′′, x′′ correspond to any two nearest occurrences of it (i.e., there is no other
occurrence of n between them). Then z′jx

′
j ≥ 0, z′′j x

′′
j ≥ 0 for j = 1, . . . , n − 1, and
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z′nx
′
n < 0, z′′nx

′′
n < 0, z′nz

′′
n = −1, which implies z′nx′nz

′′
nx

′′
n > 0 and x′nx

′′
n < 0. Hence,

z′jx
′
jz
′′
j x

′′
j ≥ 0 for each j. But since

Ayz′x
′ = by = Ayz′′x

′′ (4.26)

holds and x′ 6= x′′ (since x′nx
′′
n < 0), it follows from Lemma 153 that there exists a j

with z′jz
′′
j = −1 and x′jx

′′
j > 0 implying z′jx

′
jz
′′
j x

′′
j < 0, a contradiction; hence n occurs

at most once in the sequence.

Case k < n: Again, let z′, x′ and z′′, x′′ correspond to any two nearest occurrences
of k, so that z′jx

′
jz
′′
j x

′′
j ≥ 0 for j = 1, . . . , k − 1, z′kx

′
k < 0, z′′kx

′′
k < 0 and z′kz

′′
k = −1,

which implies z′kx
′
kz
′′
kx

′′
k > 0 and x′kx

′′
k < 0. Since (4.26) holds, and x′ 6= x′′ because of

x′kx
′′
k < 0, Lemma 153 implies existence of a j with z′jz

′′
j = −1 and x′jx

′′
j > 0, hence

z′jx
′
jz
′′
j x

′′
j < 0, so that j > k; since z′jz

′′
j = −1, j must have entered the sequence

between the two occurrences of k. Hence between any two nearest occurrences of k
there is an occurrence of some j > k in the sequence; this means by induction that k
cannot occur there more than (2n−k−1 + . . . + 2 + 1) + 1 = 2n−k times.

Hence the algorithm terminates in a finite number of steps with an x satisfying
Ayzx = by and Tzx ≥ 0 for some z ∈ Y . Then x ∈ X and Tzx = |x|, so that
Acx − Ty∆|x| = Ayzx = by and x is a solution to (4.23). To prove uniqueness,
assume to the contrary that (4.23) has solutions x′ and x′′, x′ 6= x′′. Put z′ = sgn x′,
z′′ = sgn x′′, then Tz′x

′ ≥ 0, Tz′′x
′′ ≥ 0 and (4.26) holds, hence by Lemma 153 there

is a j with z′jz
′′
j = −1 and x′jx

′′
j > 0, implying z′jx

′
jz
′′
j x

′′
j < 0 contrary to z′jx

′
j ≥ 0 and

z′′j x
′′
j ≥ 0, a contradiction.

Hence the equation (4.23) has a unique solution xy which can be computed by the
algorithm in a finite number of steps. 2

function [xy, f lag] = xyvector (A,b, y)
[xy, f lag] = signaccord (Ac,−Ty∆, by);
if flag = ′singular′, return
else flag = ′xy computed′;
end

Figure 4.3: An algorithm for computing xy.
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4.3.2 Properties of the sign-accord algorithm
dodat p

Theorem 155. If A is singular and δ > 0, then there exists a y ∈ Yn for which the
sign accord algorithm detects singularity.

Theorem 156. If δ > 0 and if for each y ∈ Yn the sign accord algorithm produces a
vector xy (i.e., it does not fail), then A is regular.

Theorem 157. If A is regular and δ > 0, then all the points xy, y ∈ Yn, are mutually
different.

Proof: [69], p. 37. 2

Proposition 158. Let
|A−1

c |∆|xy| < |xy|
hold for some y ∈ Yn. Then the sign accord algorithm finds xy in the first iteration
(i.e., it circumvents the “while” loop).

Proof: [75], p. 40. 2

Theorem on explicit formulae for the bounds in case ∆ = pqT (including λ, µ etc.):

Proof: [76], pp. 4-6. 2
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4.3.3 An iterative method for computing the xy’s

Theorem 159. Let M ≥ 0 and R satisfy

M(I − |I −RAc| − |R|∆) ≥ I. (4.27)

Then for each Yn the sequence {xi}∞i=0 given by x0 = Rby and

xi+1 = (I −RAc)x
i + RTy∆|xi|+ Rby (4.28)

(i = 0, 1, . . .) converges to xy and for each i ≥ 1 there holds

|xy − xi| ≤ (M − I)|xi − xi−1|. (4.29)

Proof: Denote G = |I − RAc| + |R|∆. By Theorem 43, (4.27) implies that A is
strongly regular, %(G) < 1, Gi → 0 for i → ∞,

∑∞
i=0 Gi = (I − G)−1 ≤ M , and R is

nonsingular. Let i ≥ 1. Subtracting the equations

xi+1 = (I −RAc)x
i + RTy∆|xi|+ Rby,

xi = (I −RAc)x
i−1 + RTy∆|xi−1|+ Rby,

we get

|xi+1 − xi| ≤ |I −RAc| · |xi − xi−1|+ |R|∆||xi| − |xi−1|| ≤ G|xi − xi−1|
and for each m ≥ 1 by induction

|xi+m − xi| = |
m−1∑
j=0

(xi+j+1 − xi+j)| ≤
m−1∑
j=0

|xi+j+1 − xi+j| ≤
m−1∑
j=0

Gj+1|xi − xi−1|

≤ (
∞∑

j=0

Gj+1)|xi − xi−1| ≤ (M − I)|xi − xi−1| ≤ (M − I)Gi−1|x1 − x0|.

From the final inequality

|xi+m − xi| ≤ (M − I)Gi−1|x1 − x0|,
in view of the fact that Gi−1 → 0 as i → ∞, we can see that the sequence {xi}
is Cauchian, thus convergent, xi → x∗. Taking the limit in (4.28) and employing
nonsingularity of R, we obtain that x∗ satisfies

Acx
∗ − Ty∆|x∗| = by,

and from the uniqueness of the solution of this equation (Theorem 154) we conclude
that x∗ = xy. The estimation (4.29) follows from the above-established inequality

|xi+m − xi| ≤ (M − I)|xi − xi−1|
by taking m →∞. 2
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4.3.4 Computing xy in the special case ∆ = pqT

Theorem 160. Let A = [Ac − pqT , Ac + pqT ] be regular. Then for each y ∈ Yn there
holds

xy = αyA
−1
c Typ + A−1

c by,

where αy is the unique solution of the scalar equation

α = qT |αA−1
c Typ + A−1

c by|.

Furthermore, if qT |A−1
c |p < 1, then αy = lim

i→∞
αi, where the sequence {αi}∞i=0 is given

by

α0 = 0,

αi+1 = qT |αiA
−1
c Typ + A−1

c by| (i = 0, 1, . . .).

Proof: Unpublished, but may be inferred from the proof of Theorem 3.4 in [81], p. 54.
2
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4.3.5 The convex hull theorem

Theorem 161. (Convex hull theorem) Let A be regular. Then

Conv X = Conv {xy ; y ∈ Yn}.

Proof: By Theorem 154, xy ∈ X for each y ∈ Ym, hence also Conv {xy; y ∈ Ym} ⊆
Conv X. To prove the converse inclusion, take A ∈ A and b ∈ b. Let y ∈ Ym. Since

|Ty((A− Ac)xy + bc − b)| ≤ ∆|xy|+ δ,

we have

Ty(Axy − b) = Ty(Acxy − bc) + Ty((A− Ac)xy + bc − b)

≥ Ty(Acxy − bc)−∆|xy| − δ

= Ty(Acxy − Ty∆|xy| − by) = 0

(since xy solves (4.23)), hence
TyAxy ≥ Tyb.

Then existence lemma ... implies that the solution x of the equation Ax = b (which
is unique because of regularity of A) belongs to Conv {xy; y ∈ Ym}. Since A and
b were arbitrary in A, b, this gives X ⊆ Conv {xy; y ∈ Ym}, and thereby also
Conv X ⊆ Conv {xy; y ∈ Ym}, which concludes the proof. 2
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4.3.6 (Non)convexity of the solution set

Theorem 162. Let A be regular. Then the solution set X of the system Ax = b is
nonconvex if and only if there exist y, z ∈ Y and i, j ∈ {1, . . . , n} such that yi = zi,
(xy)j(xz)j < 0 and ∆ij > 0. Moreover, if this is the case, then no point of the segment
connecting xy with xz, except the endpoints, belongs to X.

Proof: We shall first prove the “if” part. Assuming that y, z, i and j with the
properties listed exist, take real numbers λ > 0 and µ > 0 with λ + µ = 1 and put
x = λxy + µxz. Then |x|j < λ|xy|j + µ|xz|j, whereas |x|k ≤ λ|xy|k + µ|xz|k for each
k 6= j. Since xy and xz satisfy

(Acxy − bc)i = yi(∆|xy|+ δ)i,

(Acxz − bc)i = zi(∆|xz|+ δ)i = yi(∆|xz|+ δ)i

due to (4.23), we obtain, using the positivity of ∆ij, that

|Acx− bc|i = |λ(Acxy − bc) + µ(Acxz − bc)|i = (∆(λ|xy|+ µ|xz|) + δ)i > (∆|x|+ δ)i,

which in view of the Oettli-Prager theorem means that x /∈ X. Since x was an arbitrary
interior point of the segment connecting xy with xz, we can see that no such point
belongs to X, and X is nonconvex.

To prove the “only if” part of the theorem, assume on the contrary that for each
y, z ∈ Y and each i, j ∈ {1, . . . , n}, yi = zi and ∆ij > 0 imply (xy)j(xz)j ≥ 0. We shall
prove that in this case each convex combination of vectors xy belongs to X. This, in
the light of the Convex hull theorem 161, will imply that Conv X ⊆ X, proving that
X is convex. So let x =

∑
y∈Ym

λyxy, where λy, y ∈ Ym, are nonnegative real numbers
satisfying

∑
y∈Ym

λy = 1. Then from (4.23) we have

(Acx− bc)i =
∑
y∈Ym

λy(Acxy − bc)i =
∑
y∈Ym

λyyi(∆|xy|+ δ)i

=
n∑

j=1

∆ij(
∑
y∈Ym

λyyi|xy|j) +
∑
y∈Ym

λyyiδi

and using our assumption that yi = zi and ∆ij > 0 imply (xy)j(xz)j ≥ 0, we obtain

(Acx− bc)i =
n∑

j=1

∆ij(
∣∣∣

∑
y∈Ym, yi=1

λyxy

∣∣∣
j
−

∣∣∣
∑

y∈Ym, yi=−1

λyxy

∣∣∣
j
) +

∑
y∈Ym

λyyiδi.

Taking absolute values we have

|Acx− bc|i ≤
n∑

j=1

∆ij

∣∣∣
∑
y∈Ym

λyxy

∣∣∣
j
+ δi = (∆|x|+ δ)i

for each i ∈ {1, . . . , n} and hence |Acx − bc| ≤ ∆|x| + δ. This implies x ∈ X in view
of the Oettli-Prager theorem, and hence Conv X ⊆ X. 2
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Corollary 163. Let A be regular and let ∆ > 0. The X is nonconvex if and only if
there exist y, z ∈ Yn, y 6= −z, such that (xy)j(xz)j < 0 for some j.

The reason for the assumption y 6= −z is explained in the next theorem:

Theorem 164. Let A be regular. Then for each y ∈ Y the whole segment connecting
xy with x−y belongs to X.
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4.4 Interval hull
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4.4.1 Definition and basic formulae

Theorem 165. Let A be regular. Then we have

x = min
y∈Yn

xy = min
y,z∈Yn

A−1
yz by,

x = max
y∈Yn

xy = max
y,z∈Yn

A−1
yz by.
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4.4.2 NP-hardness of computing the hull

Given a nonsingular matrix A ∈ R(n−1)×(n−1) and a real number ε > 0, consider a
linear interval system

Ax = b, (4.30)

where

A =

(
ε2 [−εeT , εeT ]
0 A

)
(4.31)

and

b =

(
0

[−εe, εe]

)
(4.32)

with e = (1, 1, . . . , 1)T ∈ Rn−1. This means that the centers and radii are given by

Ac =

(
ε2 0T

0 A

)
, ∆ =

(
0 εeT

0 0

)
,

bc =

(
0
0

)
, δ =

(
0
εe

)
,

which implies that

|A−1
c |∆ =

(
1
ε2 0T

0 |A−1|
)(

0 εeT

0 0

)
=

(
0 1

ε
eT

0 0

)
,

so that
%(|A−1

c |∆) = 0,

hence not only the interval matrix A is strongly regular, but also the spectral radius
of |A−1

c |∆ attains the lowest possible value independently of ε. Next, A−1
c bc = 0 and

|A−1
c |δ =

(
0

ε|A−1|e
)

.

Now we can state the basic result concerning the system (4.30)-(4.32):

Theorem 166. Let A be nonsingular and let ε > 0. Then for the interval hull [x, x]
of the system (4.30)-(4.32) we have

x = −x =

( ‖A−1‖∞,1

ε|A−1|e
)

. (4.33)

Proof: (a) Since b is symmetric about 0, the same holds for the solution set X of
(4.30)-(4.32) (because if x ∈ X, then A′x = b′ for some A′ ∈ A and b′ ∈ b, hence
A′(−x) = −b′ ∈ b and −x ∈ X), which implies that x = −x. Thus we are confined to
evaluate x only. According to Theorem 165, we have

x = max
y∈Ym

xy,
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where for each y ∈ Ym, xy is the unique solution of the equation (4.23). Let us
write y = (y1, y

′T )T , where y′ = (y2, . . . , yn)T , and let us decompose xy accordingly as
xy = (x1, x

′T )T . Then the equation (4.23) for the system (4.30)-(4.32) has the form

(
ε2 0T

0 A

)(
x1

x′

)
= T(

y1
y′

)
((

0 εeT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +

(
0
εe

))

or equivalently

ε2x1 = y1εe
T |x′|,

Ax′ = Ty′εe = εy′,

which gives

x′ = εA−1y′,

x1 = y1e
T |A−1y′| = y1‖A−1y′‖1,

hence

xy =

(
y1‖A−1y′‖1

εA−1y′

)
,

and from Theorem 165 in view of (4.56) we obtain

x = max
y∈Ym

xy =

( ‖A−1‖∞,1

ε|A−1|e
)

=

( ‖A−1‖∞,1

εd

)
.

(b) Since the right-hand side of the preconditioned system (4.55) is again symmetric
about 0, we again have x = −x. The equation (4.23) for the preconditioned system
(4.55), (4.31), (4.32) has the form

(
x1

x′

)
= T(

y1
y′

)
((

0 1
ε
eT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +

(
0

ε|A−1|e
))

,

which gives

x′ = Ty′ε|A−1|e = εTy′d,

x1 = y1
1
ε
eT |x′| = y1e

T |A−1|e = y1‖d‖1,

hence

xy =

(
y1‖d‖1

εTy′d

)

and

x = max
y∈Ym

xy =

( ‖d‖1

εd

)
,

which concludes the proof. 2
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Theorem 167. Computing the interval hull of the solution set X is NP-hard even for
systems with rational interval matrices satisfying

%(|A−1
c |∆) = 0.

Proof: Given a rational n×n matrix A, construct the (n+1)× (n+1) interval matrix
A = [Ac −∆, Ac + ∆] with

Ac =

(
1 0T

0 A

)
, ∆ =

(
0 eT

0 0

)
,

and the (n + 1)-dimensional interval vector b = [bc − δ, bc + δ] with

bc =

(
0
0

)
, δ =

(
0
e

)

(e ∈ Rn). We have

|A−1
c |∆ =

(
0 eT

0 0

)
,

hence
%(|A−1

c |∆) = 0.

Then each system Ax = b with A ∈ A, b ∈ b has the form

x1 + cT x′ = 0,

Ax′ = d

for some c ∈ [−e, e] and d ∈ [−e, e], where x′ = (x2, . . . , xn+1)
T . If [x, x] is the interval

hull of the solution set of Ax = b, then for x1 we have

x1 = max{cT x′; c ∈ [−e, e], −e ≤ Ax′ ≤ e} = max{eT |x′|; −e ≤ Ax′ ≤ e},

hence
x1 ≥ 1

holds if and only if the system
−e ≤ Ax′ ≤ e,

eT |x′| ≥ 1

has a solution. Since the latter problem is NP-complete (Theorem 22), x1 is NP-hard
to compute and the same holds for [x, x]. 2
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4.4.3 Special case: Rank one radius

Theorem 168. Let A = [Ac − pqT , Ac + pqT ] be regular. Then we have

x = min
y,z∈Yn

(
I +

A−1
c TpyzT Tq

1− zT TqA−1
c Tpy

)
A−1

c by,

x = max
y,z∈Yn

(
I +

A−1
c TpyzT Tq

1− zT TqA−1
c Tpy

)
A−1

c by.

Theorem 169. Let
|A−1

c |pqT + α|A−1
c | < |A−1

c |
and

(1− α)|A−1
c |δ + α|xc|+ qT (|xc|+ |A−1

c |δ)|A−1
c |p < |xc|

hold, where
α = qT |A−1

c |p
and

xc = A−1
c bc.

Then [Ac − pqT , Ac + pqT ] is regular and for each i we have

xi = (xc − |A−1
c |δ)i − qT |xc| − µi

1 + λi

(|A−1
c |p)i,

xi = (xc + |A−1
c |δ)i +

qT |xc|+ µi

1− λi

(|A−1
c |p)i,

where

λi = zT TqA
−1
c Tpy(i),

µi = zT TqA
−1
c Tδy(i),

z = sgn xc,

y(i) = sgn (A−1
c )i·.
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4.4.4 Primal approach

function[x,x,flag]=xyhull (A,b)
% For illustrative purposes (computes all the xy’s).
% Recommended for small-size examples only.
z := 0 ∈ Rn; y = e ∈ Rn;
[xy, f lag] = signaccord (Ac,−Ty∆, by);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x = xy; x = xy;
while z 6= e

k := min{i ; zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;
[xy, f lag] = signaccord (Ac,−Ty∆, by);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x = min{x, xy};
x = max{x, xy};

end
flag = ′hull computed′;

Figure 4.4: An algorithm for computing the hull using the points xy.

Theorem 170. Let A be regular and let Ax = b hold for some A ∈ A, b ∈ b. Let
i ∈ {1, . . . , n}. Then for each y ∈ Yn satisfying

(A−1)ijyj ≥ 0 (j = 1, . . . , n)

there holds
(x−y)i ≤ xi ≤ (xy)i.

Proof: Let Ax = b for some A ∈ A, b ∈ b, and let y ∈ Yn be arbitrary. Put
h = TyA(xy − x). We shall prove that h ≥ 0. To this end, first take into account
that |Ty(A− Ac)xy| ≤ ∆|xy| and |Ty(bc − b)| ≤ δ, hence Ty(A− Ac)xy ≥ −∆|xy| and
Ty(bc − b) ≥ −δ. Then we have

h = TyA(xy − x) = Ty(Acxy − bc) + Ty(A− Ac)xy + Ty(bc − b)

≥ Ty(Acxy − bc)−∆|xy| − δ = Ty(Acxy − Ty∆|xy| − by) = 0

because xy solves the equation Acx−Ty∆|x| = by. Hence we have TyA(xy−x) = h ≥ 0,
which implies

xy − x = A−1Tyh. (4.34)
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Now, if i ∈ {1, . . . , n} and if y is chosen so that (A−1)ijyj ≥ 0 for each j, then from
(4.34) and from the nonnegativity of h we obtain

(xy)i − xi =
n∑

j=1

(A−1)ijyjhj ≥ 0

and

(x−y)i − xi = −
n∑

j=1

(A−1)ijyjhj ≤ 0,

which gives
(x−y)i ≤ xi ≤ (xy)i.

2

Theorem 171. Let M ≥ 0 and R satisfy the condition

M(I − |I −RAc| − |R|∆) ≥ I,

and let

B
˜

= R− (M − I)|R|,

B̃ = R + (M − I)|R|.

Then for each i ∈ {1, . . . , n} we have

xi = min
y∈Y (i)

(x−y)i,

xi = max
y∈Y (i)

(xy)i,

where
Y (i) = {y ∈ Yn ; yj = 1 if B

˜ ij > 0, yj = −1 if B̃ij < 0}.
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4.4.5 The hull under inverse stability

Let us remind that a regular interval matrix A is called inverse stable (Subsection
3.3.18) if for each i, j ∈ {1, . . . , n}, either (A−1)ij > 0 for each A ∈ A, or (A−1)ij < 0
for each A ∈ A.

Theorem 172. If A is inverse stable, then for each i we have

xi = (x−y(i))i,

xi = (xy(i))i,

where y(i) = sgn (A−1
c )i·.

Theorem 173. Let
M(I − |I −RAc| − |R|∆) ≥ I,

(M − I)|R| < |R|
hold for some M ≥ 0 and R. Then then for each i we have

xi = (x−y(i))i,

xi = (xy(i))i,

where y(i) = sgn Ri•.

Theorem 174. Let A be inverse stable and let Z = sgn (A−1
c )T . Then the matrix

equations

AcX + (Z ◦∆)|X| = bce
T − Z ◦ (δeT ),

AcX − (Z ◦∆)|X| = bce
T + Z ◦ (δeT )

have unique matrix solutions X and X, respectively, and there holds

x = diag X,

x = diag X.

Proof: [82], p. 138. 2

Theorem 175. Let A be strongly regular and inverse stable and let the solution set
X be a part of a single orthant Rn

z . Then we have

x = xc − diag
(
A−1

c

∞∑
j=0

(−1)jMj

)
,

x = xc + diag
(
A−1

c

∞∑
j=0

Mj

)
,
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where the matrices Mj are given by

M0 = Z ◦ ((∆|xc|+ δ)eT ),

Mj = Z ◦ (BMj−1) (j = 1, 2, . . .),

and xc = A−1
c bc, Z = sgn (A−1

c )T , B = ∆TzA
−1
c .

Proof: [77], p. 373. 2

Denote
β = max

{
max

ij
∆ij, max

i
δi

}
.

Then we can easily prove by induction that

A−1
c Mj = O(βj+1)

for each j ≥ 0. In particular,

x = xc − |A−1
c |(∆|xc|+ δ) + diag (A−1

c M1) + O(β3),

x = xc + |A−1
c |(∆|xc|+ δ) + diag (A−1

c M1) + O(β3), (4.35)

so that
1
2
(x− x) = |A−1

c |(∆|xc|+ δ) + O(β3).

This improves Miller’s estimate in [44] where the error was given by O(β2).
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4.4.6 Special case: Inverse sign pattern

Definition. A is said to be of inverse sign pattern (z, y) if there exist z, y ∈ Yn such
that TzA

−1Ty ≥ 0 holds for each A ∈ A. If A is of inverse sign pattern (e, e), then it
is called inverse nonnegative.

Theorem 176. A is of inverse sign pattern (z, y) if and only if

TzA
−1
yz Ty ≥ 0,

TzA
−1
−yzTy ≥ 0

hold.

Proof: If A is of inverse sign pattern (z, y), then TzA
−1
yz Ty ≥ 0 and TzA

−1
−yzTy ≥ 0. To

prove the converse statement, assume that (3.24), (3.25) hold and consider an auxiliary
interval matrix

[A
˜

, Ã] = [TyAcTz −∆, TyAcTz + ∆].

Then A
˜

= TyAyzTz and Ã = TyA−yzTz, hence A
˜
−1

= TzA
−1
yz Ty ≥ 0 and Ã−1 =

TzA
−1
−yzTy ≥ 0, so that the matrix D0 = Ã−1(Ã− A

˜
) is nonnegative and satisfies

(I −D0)
−1 = (Ã−1A

˜
)−1 = A

˜
−1

Ã = I + A
˜
−1

(Ã− A
˜

) ≥ I,

which gives that %(D0) < 1. Now let A ∈ A; then we have

TyATz = Ã(I − Ã−1(Ã− TyATz)). (4.36)

Since |TyATz − TyAcTz| ≤ ∆, we have that TyATz ∈ [A
˜

, Ã] and %(Ã−1(Ã− TyATz)) ≤
%(Ã−1(Ã − A

˜
)) = %(D0) < 1, hence the right-hand side in (4.36) is invertible and we

obtain

TzA
−1Ty = (TyATz)

−1 =
∞∑

j=0

(Ã−1(Ã− TyATz))
jÃ−1 ≥ 0, (4.37)

which shows that A is of inverse sign pattern (z, y). 2

Theorem 177. If A is of inverse sign pattern (z, y), then

x = min{x−y, xy},

x = max{x−y, xy}.
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Proof: If A is of inverse sign pattern (z, y), then we have

zi(A
−1)ijyj ≥ 0 (i, j = 1, . . . , n).

Thus for zi = 1 there holds

(A−1)ijyj ≥ 0 (j = 1, . . . , n)

and for zi = −1 there holds

(A−1)ij(−y)j ≥ 0. (j = 1, . . . , n).

Hence by Theorem 170 we have

min{(x−y)i, (xy)i} ≤ xi ≤ max{(x−y)i, (xy)i}

for each i, which means that
x = min{x−y, xy},
x = max{x−y, xy}.

2

Theorem 178. Let A be inverse nonnegative and let A
−1

b ≥ 0. Then we have

x = A
−1

b,

x = A−1b.
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4.4.7 Dual approach

Theorem 179. Let A be regular. Then for each z ∈ Yn the equation

QAc − |Q|∆Tz = I

has a unique matrix solution Qz which can be computed by the following finite algo-
rithm:
for i := 1 to n do

y := sgn (AT
c )−1ei;

x := (AT
yz)

−1ei;
while yjxj < 0 for some j do

k := min{j; yjxj < 0};
yk := −yk;
x := (AT

yz)
−1ei;

(Qz)i· := xT .

Proof: If A = [Ac−∆, Ac +∆] is regular, then it transpose AT = [AT
c −∆T , AT

c +∆T ]
is also regular, hence the sign accord algorithm when applied to it is finite and the
procedure described in the theorem yields for each z ∈ Yn a matrix Qz satisfying

AT
c (QT

z )·i − Tz∆
T |(QT

z )·i| = ei (4.38)

for each i, hence

AT
c QT

z − Tz∆
T |QT

z | = I

and

QzAc − |Qz|∆Tz = I.

Uniqueness of Qz follows from the uniqueness of solution of the equation (4.38) stated
in Theorem 154. 2

Notations For each z ∈ Yn define

xz = Q−zbc − |Q−z|δ,
xz = Qzbc + |Qz|δ.

Theorem 180. Let A be regular. Then for each z ∈ Yn there holds

X ∩ Rn
z ⊆ [xz, xz],

and both the right-hand side bounds are componentwise attained over X (although
possibly not over X ∩ Rn

z ).
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Proposition 181 For each z ∈ Yn and each i ∈ {1, . . . , n} we have

(xz)i = (A−1
yz by)i,

where
yT = −sgn (Q−z)i·,

and
(xz)i = (A−1

yz by)i,

where
yT = sgn (Qz)i·.

Theorem 182. Let A be regular and let Z be any subset of Yn such that

X ⊆
⋃
z∈Z

Rn
z .

Then we have
x = min

z∈Z
xz,

x = max
z∈Z

xz.
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4.4.8 A general algorithm for computing the hull

function [x, x, flag] = hull (A,b)
% Recommended for the general case.
if Ac is singular

x = [ ]; x = [ ]; flag = ′singular′; return
end
x = A−1

c bc; x = x;
z = sgn x; Z = {z}; D = ∅;
while Z 6= ∅

select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
[Q−z, f lag] = qzmatrix(A,−z);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x
˜

= Q−zbc − |Q−z|δ;
[Qz, f lag] = qzmatrix(A, z);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x̃ = Qzbc + |Qz|δ;
if x

˜
≤ x̃

x = min{x, x
˜
};

x = max{x, x̃};
for j = 1 : n

z′ = z; z′j = −z′j;
if (x

˜
jx̃j ≤ 0 and z′ /∈ Z ∪D), Z = Z ∪ {z′}; end

end
end

end
flag = ′hull computed′;

Figure 4.5: A general algorithm for computing the hull.
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4.4.9 An iterative algorithm for computing the hull

Theorem 183. Let M ≥ 0 and R satisfy the strong regularity condition. Then for
each z ∈ Yn the sequence generated by Q0 = R and

Qi+1 = Qi(I − AcR) + |Qi|∆TzR + R

(i = 0, 1, 2, . . .) converges to Qz and for each i ≥ 0 we have

|xz − (Qibc + |Qi|δ)| ≤ |Qi+1 −Qi|q,
where

q = M(|bc|+ δ).

Iterative algorithm (as implemented in the ’optimal’ part of intlinst.m)

At the start: R, M ≥ 0 satisfying

(I −G)M ≥ I, (4.39)

where
G = |I − AcR|+ ∆|R|, (4.40)

and ε > 0.

if Ac is singular then terminate: A is singular
else

q := M(|bc|+ δ);
x
˜

:= A−1
c bc; x̃ := x

˜
; z := sgn x̃;

Z := {z}; Zd := ∅;
while Z 6= ∅ do

select z ∈ Z; Z := Z − {z}; Zd := Zd ∪ {z};
Q := R; Q′ := Q(I − AcR)− |Q|∆TzR + R;
while not |Q′ −Q|q < εe do

Q := Q′;
Q′ := Q(I − AcR)− |Q|∆TzR + R;

x
˜

z := Qbc − |Q|δ − |Q′ −Q|q;
Q := R; Q′ := Q(I − AcR) + |Q|∆TzR + R;
while not |Q′ −Q|q < εe do

Q := Q′;
Q′ := Q(I − AcR) + |Q|∆TzR + R;

x̃z := Qbc + |Q|δ + |Q′ −Q|q;
x
˜

:= min{x
˜
, x
˜

z};
x̃ := max{x̃, x̃z};
for j := 1 to n do

if (x
˜

z)j(x̃z)j ≤ 0 and z − 2zjej /∈ Z ∪ Zd

then Z := Z ∪ {z − 2zjej}.

188



Theorem 184. If R and M ≥ 0 satisfy (4.39), (4.40), then for each ε > 0 the
algorithm in a finite number of steps computes an enclosure [x

˜
, x̃] of X satisfying

[x
˜

+ 2εe, x̃− 2εe] ⊂ [x, x] ⊂ [x
˜
, x̃].
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4.4.10 Special case: Solution set lying in a single orthant

Theorem 185. Let X ∩ (Rn
z )◦ 6= ∅ for some z ∈ Yn. Then the solution set satisfies

X ⊆ (Rn
z )◦

if and only if
Tzxz > 0

and
Tzxz > 0

hold.
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4.5 Enclosures
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4.5.1 Definition
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4.5.2 Theoretical characterization of enclosures

Theorem 186. Let A be regular and ∆ 6= 0. Then for each y ∈ Yn, the set

Xy = {x; TyAcx−∆|x| ≥ Tybc + δ}
= {x; TyAcx−∆t ≥ Tybc + δ, −t ≤ x ≤ t}

is an unbounded convex polyhedron and xy is a vertex of it.

Theorem 187. Let A be regular. Then an interval vector x is an enclosure of the
solution set of Ax = b if and only if it intersects all the sets Xy, y ∈ Yn.

Theorem 188. Let A be regular. Then an interval vector [x, x] is an enclosure of the
solution set of Ax = b if and only if for each y ∈ Yn the inequality

|Acx− bc| ≥ ∆|x|+ δ

has a solution xy ∈ [x, x] satisfying Ty(Acxy − bc) ≥ 0.
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4.5.3 The Hansen-Bliek-Rohn enclosure: General form

Theorem 189. Let M ≥ 0 and R satisfy the strong regularity condition

M(I − |I −RAc| − |R|∆) ≥ I. (4.41)

Then we have
X ⊆ [min{T−1

α x
˜
, T−1

β x
˜
}, max{T−1

α x̃, T−1
β x̃}], (4.42)

where

µ = diag (M),

r = diag (I −RAc),

h = diag (M(I − |I −RAc| − |R|∆)− I),

α = e + Tµ(|r| − r) + h,

β = 2µ− e− Tµ(|r|+ r)− h,

xc = Rbc,

x∗ = M(|xc|+ |Rδ|),
x
˜

= −x∗ + Tµ(xc + |xc|),
x̃ = x∗ + Tµ(xc − |xc|).

Proof: 1) First we prove that each matrix A with |A − Ac| ≤ ∆ is nonsingular.
Premultiplying the inequality (4.41) by the nonnegative matrix G yields MG2 + G +
I ≤ MG + I ≤ M and by induction

∑k
j=0 Gj ≤ MGk+1 +

∑k
j=0 Gj ≤ M for each

k ≥ 0, hence
∑∞

0 Gj is convergent which, as well known, implies that %(G) < 1. Since
|I−RA| = |I−RAc+R(Ac−A)| ≤ |I−RAc|+|R|∆ = G, we have %(I−RA) ≤ %(G) < 1
which means that the matrix RA = I−(I−RA) is nonsingular, hence A is nonsingular.

2) Next we prove that βi ≥ αi ≥ 1 for each i. From the definition of hi we
have mi = (MG)ii + 1 + hi ≥ mi|ri| + 1 + hi which can be easily rearranged to
2mi−1− (|ri|+ri)mi−hi ≥ 1+(|ri|−ri)mi +hi, giving βi ≥ αi; the inequality αi ≥ 1
follows from nonnegativity of mi and hi.

3) Let x solve Ax = b for some A, b with |A − Ac| ≤ ∆ and |b − bc| ≤ δ. Then
we have

x = (I −RA)x + Rb = (I −RAc)x + R(Ac − A)x + Rbc + R(b− bc) (4.43)

and taking absolute values we get

|x| ≤ G|x|+ |Rbc|+ |R|δ. (4.44)

Let i ∈ {1, . . . , n}. Then from the ith equation in (4.43) we have

xi ≤ ((I −RAc)x)i + (|R|∆|x|)i + (Rbc)i + (|R|δ)i

= (G|x|+ |Rbc|+ |R|δ)i + ((I −RAc)x− |I −RAc||x|+ Rbc − |Rbc|)i.(4.45)
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Put x′ = (|x1|, . . . , |xi−1|, xi, |xi+1|, . . . , |xn|)T . Then from (4.44) and (4.45) we have
x′ ≤ G|x|+ |Rbc|+ |R|δ + ((I −RAc)x− |I −RAc||x|+ Rbc− |Rbc|)iei, where ei is the
ith column of I. Premultiplying this inequality by the nonnegative vector eT

i M and
using the matrix H := M −MG − I ≥ 0, we obtain (Mx′)i ≤ ((M − H − I)|x|)i +
((I −RAc)x− |I −RAc||x|)imi + x̃i and consequently

(M(x′ − |x|))i + (H|x|)i + |xi|+ (|I −RAc||x| − (I −RAc)x)imi ≤ x̃i. (4.46)

Since (M(x′−|x|))i = mi(xi−|xi|), (H|x|)i ≥ hi|xi| and (|I−RAc||x|−(I−RAc)x)i ≥
|ri||xi| − rixi, from (4.46) we finally obtain an inequality containing variable xi only:

mi(xi − |xi|) + hi|xi|+ |xi|+ (|ri||xi| − rixi)mi ≤ x̃i. (4.47)

If xi ≥ 0, then this inequality becomes αixi ≤ x̃i, implying xi ≤ x̃i/αi, and if xi < 0,
then (4.47) turns into βixi ≤ x̃i, giving xi ≤ x̃i/βi, which together yields

xi ≤ max{x̃i/αi, x̃i/βi}. (4.48)

In this way we have obtained the upper bound in (4.42). To prove the lower one, notice
that −x satisfies A(−x) = −b, where |A−Ac| ≤ ∆ and |(−b)− (−bc)| ≤ δ. Hence we
can use the previously obtained result if we set bc := −bc, which affects x̃i only. Then
from (4.48) we get −xi ≤ max{−x

˜
i/αi, −x

˜
i/βi} which, after premultiplying by −1,

gives the lower bound in (4.42).
4) Finally, to prove the optimality result for the case Ac = I and %(∆) < 1, take

R = I and M = (I −∆)−1, then M ≥ 0, G = ∆ and (4.41) is satisfied as an equation;
moreover, for each i we have ri = hi = 0, αi = 1, βi = 2mi − 1, hence (4.42) has the
form

min{x
˜

i, x
˜

i/βi} ≤ xi ≤ max{x̃i, x̃i/βi}. (4.49)

To prove that the upper bound is really attained, let us fix an i ∈ {1, . . . , n} and
define a diagonal matrix D by Djj = 1 if j 6= i and (bc)j ≥ 0, Djj = −1 if j 6= i
and (bc)j < 0, and Djj = 1 if j = i, and let b̃ = Dbc + δ. Then it can be easily
verified that x̃i = (Mb̃)i holds. First, define x′ = DMb̃. Since M = (I − ∆)−1 im-
plies ∆M = M∆ = M − I, we have (I − D∆D)x′ = DMb̃ − D(M − I)b̃ = Db̃ =
bc + Dδ, which means that x′ solves the system (I − D∆D)x′ = bc + Dδ where
|(I −D∆D)− I| = ∆, |(bc + Dδ)− bc| = δ and x′i = eT

i DMb̃ = eT
i Mb̃ = (Mb̃)i = x̃i,

which shows that x̃i is attained. Second, let x′′ = DM(b̃− 2(x̃i/βi)∆ei) and define a
diagonal matrix D′ by D′

ii = −1 and D′
jj = Djj otherwise. Then (I −D∆D′)DM =

DM −D∆(I − 2eie
T
i )M = DM −D(M − I) + 2D∆eie

T
i M = D + 2D∆eie

T
i M , hence

(I −D∆D′)x′′ = (D + 2D∆eie
T
i M)(b̃− 2(x̃i/βi)∆ei) = Db̃ + 2x̃iD∆ei(−(1/βi) + 1−

(2/βi)(mi − 1)) = Db̃ = bc + Dδ, which shows that x′′ is a solution to the system
(I − D∆D′)x′′ = bc + Dδ where |(I − D∆D′) − I| = ∆, |(bc + Dδ) − bc| = δ and
x′′i = eT

i DM(b̃− 2(x̃i/βi)∆ei) = x̃i − 2(x̃i/βi)(mi − 1) = x̃i/βi. This proves that x̃i/βi

is attained, hence also the upper bound max{x̃i, x̃i/βi} in (4.49) is attained. The
proof for the lower bound follows from the result just obtained by applying it to the
case bc := −bc as in the part 3). 2
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4.5.4 HBR enclosure: Original form using exact inverses

Theorem 190. Let A be strongly regular. Then we have

X ⊆ [x, x], (4.50)

where

M = (I − |A−1
c |∆)−1,

µ = diag (M),

Tν = (2Tµ − I)−1,

xc = A−1
c bc,

x∗ = M(|xc|+ |A−1
c δ|),

x
˜

= −x∗ + Tµ(xc + |xc|),
x̃ = x∗ + Tµ(xc − |xc|),
x = min{x

˜
, Tνx

˜
},

x = max{x̃, Tν x̃}.

Proof: First we note that because of strong regularity we have

M =
∞∑

j=0

(|A−1
c |∆)j ≥ I ≥ 0,

thus also 2Tµ − I ≥ I, so that the diagonal matrix Tν = (2Tµ − I)−1 exists and
νi = 1/(2Mii − 1) for each i.

To prove (4.50), take an x ∈ X, then by the Oettli-Prager theorem it satisfies

|Acx− bc| ≤ ∆|x|+ δ,

hence

x− xc ≤ |x− xc| = |A−1
c (Acx− bc)| ≤ |A−1

c ||Acx− bc| ≤ |A−1
c |(∆|x|+ δ) (4.51)

and similarly

|x| − |xc| ≤ ||x| − |xc|| ≤ |x− xc| ≤ |A−1
c |(∆|x|+ δ). (4.52)

Now, let us fix an i ∈ {1, . . . , n}. Then from (4.51) we have

xi ≤ (xc)i + (|A−1
c |(∆|x|+ δ))i (4.53)

and (4.52) gives
|xj| ≤ |xc|j + (|A−1

c |(∆|x|+ δ))j (4.54)
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for each j 6= i. Since xi = |xi| + (xi − |xi|) and the same holds for (xc)i, we can put
(4.53) and (4.54) together as

|x|+ (xi − |xi|)ei ≤ |xc|+ ((xc)i − |xc|i)ei + |A−1
c |(∆|x|+ δ),

which implies

(I − |A−1
c |∆)|x|+ (xi − |xi|)ei ≤ |xc|+ |A−1

c |δ + ((xc)i − |xc|i)ei.

Premultiplying this inequality by the nonnegative vector eT
i M , we finally obtain an

inequality containing variable xi only:

|xi|+ (xi − |xi|)Mii ≤ x∗i + ((xc)i − |xc|i)Mii = x̃i.

If xi ≥ 0, then this inequality becomes

xi ≤ x̃i,

and if xi < 0, then it turns into

xi ≤ x̃i/(2Mii − 1) = νix̃i,

in both cases
xi ≤ max{x̃i, νix̃i}.

Since i was arbitrary, we conclude that

x ≤ max{x̃, Tν x̃},

which is the upper bound in (4.50). To prove the lower bound, notice that if Ax = b
for some A ∈ A and b ∈ b, then A(−x) = −b, hence −x belongs to the solution set
of the system Ax = [−bc − δ,−bc + δ], and we can apply the previous result to this
system by setting bc := −bc. In this way we obtain

−x ≤ max{x∗ + Tµ(−xc − |xc|), Tν(x
∗ + Tµ(−xc − |xc|))},

hence

x ≥ min{−x∗ + Tµ(xc + |xc|), Tν(−x∗ + Tµ(xc + |xc|))} = min{x
˜
, Tνx

˜
},

which is the lower bound in (4.50). The theorem is proved. 2
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4.5.5 Overestimation of the HBR enclosure

Theorem 191. Let A be strongly regular and let M = (I−|A−1
c |∆)−1. Then for each

i ∈ {1, . . . , n} we have

x
i
≤ xi ≤ x

i
+ di,

xi − di ≤ xi ≤ xi,

where

di = eT
i M |(TzA

−1
c Tz − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|,

di = eT
i M |(TzA

−1
c Tz − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|,
ξ

i
= (|x|+ x− xc − |xc|)i,

ξi = (|x| − x + xc − |xc|)i

and z, z are given by

zj =

{
sgn (xc)j if j 6= i,
−1 if j = i,

zj =

{
sgn (xc)j if j 6= i,
1 if j = i

(j = 1, . . . , n).

Theorem 192. Let A be strongly regular. Then we have:

(i) [x, x] = [x, x] if Ac is a diagonal matrix with positive diagonal entries,

(ii) x = x if A−1
c ≥ 0 and A−1

c bc ≤ 0,

(iii) x = x if A−1
c ≥ 0 and A−1

c bc ≥ 0.
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4.5.6 The HBR algorithm

function [x, x, d, d, f lag] = hbr (A,b)
if (Ac is singular or I − |A−1

c |∆ is singular or (I − |A−1
c |∆)−1 6≥ I)

x = [ ]; x = [ ]; d = [ ]; d = [ ]; flag = ′enclosure not computed′;
return

end
M = (I − |A−1

c |∆)−1;
µ = diag (M);
Tν = (2Tµ − I)−1;
xc = A−1

c bc;
x∗ = M(|xc|+ |A−1

c δ|);
x
˜

= −x∗ + Tµ(xc + |xc|);
x̃ = x∗ + Tµ(xc − |xc|);
x = min{x

˜
, Tνx

˜
};

x = max{x̃, Tν x̃};
flag = ′enclosure computed′;
z = sgn xc;
ξ = |x|+ x− xc − |xc|;
ξ = |x| − x + xc − |xc|;
for i = 1 : n

z′ = z; z′i = −1;
di = (M |(Tz′A

−1
c Tz′ − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|)i;

z′i = 1;

di = (M |(Tz′A
−1
c Tz′ − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|)i;
end

Figure 4.6: The Hansen-Bliek-Rohn enclosure algorithm.
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4.5.7 Preconditioning

[I − |A−1
c |∆, I + |A−1

c |∆]x = [A−1
c bc − |A−1

c |δ, A−1
c bc + |A−1

c |δ], (4.55)
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4.5.8 Example: A 100% overestimation in case n = 4

[I − |A−1
c |∆, I + |A−1

c |∆]x = [A−1
c bc − |A−1

c |δ, A−1
c bc + |A−1

c |δ],
‖A‖∞,1 = max

‖x‖∞=1
‖Ax‖1 = max

y∈Ym

‖Ay‖1 (4.56)

Given a nonsingular matrix A ∈ R(n−1)×(n−1) and a real number ε > 0, consider a
linear interval system

Ax = b,

where

A =

(
ε2 [−εeT , εeT ]
0 A

)

and

b =

(
0

[−εe, εe]

)

with e = (1, 1, . . . , 1)T ∈ Rn−1. This means that the centers and radii are given by

Ac =

(
ε2 0T

0 A

)
, ∆ =

(
0 εeT

0 0

)
,

bc =

(
0
0

)
, δ =

(
0
εe

)
,

which implies that

|A−1
c |∆ =

(
1
ε2 0T

0 |A−1|
)(

0 εeT

0 0

)
=

(
0 1

ε
eT

0 0

)
,

so that
%(|A−1

c |∆) = 0,

hence not only the interval matrix A is strongly regular, but also the spectral radius
of |A−1

c |∆ attains the lowest possible value independently of ε. Next, A−1
c bc = 0 and

|A−1
c |δ =

(
0

ε|A−1|e
)

.

Now we can state the basic result concerning the system (4.30)-(4.32):

Theorem 193. Let A be nonsingular and let ε > 0. Then for the interval hull [x, x]
and for the preconditioned interval hull [x, x] of the system (4.30)-(4.32) we have

x = −x =

( ‖A−1‖∞,1

εd

)
,

x = −x =

( ‖d‖1

εd

)
,

where d = |A−1|e.
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Proof: (a) Since b is symmetric about 0, the same holds for the solution set X of
(4.30)-(4.32) (because if x ∈ X, then A′x = b′ for some A′ ∈ A and b′ ∈ b, hence
A′(−x) = −b′ ∈ b and −x ∈ X), which implies that x = −x. Thus we are confined to
evaluate x only. According to Theorem 165, we have

x = max
y∈Ym

xy,

where for each y ∈ Ym, xy is the unique solution of the equation (4.23). Let us
write y = (y1, y

′T )T , where y′ = (y2, . . . , yn)T , and let us decompose xy accordingly as
xy = (x1, x

′T )T . Then the equation (4.23) for the system (4.30)-(4.32) has the form

(
ε2 0T

0 A

)(
x1

x′

)
= T(

y1
y′

)
((

0 εeT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +

(
0
εe

))

or equivalently
ε2x1 = y1εe

T |x′|,
Ax′ = Ty′εe = εy′,

which gives
x′ = εA−1y′,

x1 = y1e
T |A−1y′| = y1‖A−1y′‖1,

hence

xy =

(
y1‖A−1y′‖1

εA−1y′

)
,

and from Theorem 165 in view of (4.56) we obtain

x = max
y∈Ym

xy =

( ‖A−1‖∞,1

ε|A−1|e
)

=

( ‖A−1‖∞,1

εd

)
.

(b) Since the right-hand side of the preconditioned system (4.55) is again symmetric
about 0, we again have x = −x. The equation (4.23) for the preconditioned system
(4.55), (4.31), (4.32) has the form

(
x1

x′

)
= T(

y1
y′

)
((

0 1
ε
eT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +

(
0

ε|A−1|e
))

,

which gives
x′ = Ty′ε|A−1|e = εTy′d,

x1 = y1
1
ε
eT |x′| = y1e

T |A−1|e = y1‖d‖1,

hence

xy =

(
y1‖d‖1

εTy′d

)
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and

x = max
y∈Ym

xy =

( ‖d‖1

εd

)
,

which concludes the proof. 2

Now we can see the main point: the values of x1 = ‖A−1‖∞,1 and x1 = eT |A−1|e are
independent of ε. To achieve the result wanted, it remains to choose an appropriate
matrix A. But before doing so, we note that the formula (4.33) yields another proof
of the NP-hardness of computing the interval hull (proved originally in [100]): since
computing the norm ‖ · ‖∞,1 is NP-hard (as proved in [97]), by (4.33) computing x1,
and thus also [x, x], is NP-hard as well.

Consider the example (4.30)-(4.32) with

A =




1 −3 −3
−3 1 −3
−3 −3 1


 , (4.57)

or, explicitly written,




ε2 [−ε, ε] [−ε, ε] [−ε, ε]
0 1 −3 −3
0 −3 1 −3
0 −3 −3 1


 x =




0
[−ε, ε]
[−ε, ε]
[−ε, ε]


 . (4.58)

As a direct application of Theorem 166 we obtain:

Theorem 194. For each ε > 0, for the interval hull [x, x] and for the preconditioned
interval hull [x, x] of the linear interval system (4.58) we have

x = −x =




0.6
0.4ε
0.4ε
0.4ε


 , (4.59)

x = −x =




1.2
0.4ε
0.4ε
0.4ε


 . (4.60)

Proof: We are left with substituting

A−1 =




0.10 −0.15 −0.15
−0.15 0.10 −0.15
−0.15 −0.15 0.10



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into (4.33) and (??), using (4.56) for evaluation of ‖A−1‖∞,1, which yields (4.59) and
(4.60). 2

We have proved that for the system (4.58) there holds x1 = 2x1 = 1.2 independently
of ε. The matrix A in (4.57), although being of quite regular structure at a glance,
was in fact found through extensive experiencing in MATLAB involving computation
of several tens of thousands of randomly generated examples (of size 3 × 3) aimed at
maximizing the value of

eT |A−1|e
‖A−1‖∞,1

. (4.61)

For the best result found the ratio was slightly less than 2 and the coefficients of A
were close to integers; then rounding to nearest integers produced the matrix (4.57)
for which the value of (4.61) is 2. However, notice from (4.59), (4.60) that x

i
= xi,

xi = xi for i ≥ 2. Theorem 166 may yield another related results, but we have not
pursued the matter any further.
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4.5.9 Comparison with the Bauer-Skeel bounds

Theorem 195. (Bauer 1966, Skeel 1979) If

%(|A−1
c |∆) < 1,

then for each A, b such that |A− Ac| ≤ ∆ and |b− bc| ≤ δ, A is nonsingular and the
solution of

Ax = b

satisfies
−x∗ + xc + |xc| ≤ x ≤ x∗ + xc − |xc|,

where

M = (I − |A−1
c |∆)−1,

x∗ = M(|xc|+ |A−1
c |δ).

Note. Usually presented as |x − xc| ≤ x∗ − |xc|, with δ = 0 or in normwise setting.
Two inversions needed.

For comparison, denote the Bauer-Skeel bounds by

x ≤ x ≤ x

and the HBR bounds by
x ≤ x ≤ x,

i.e.

x = −x∗ + xc + |xc|,
x = x∗ + xc − |xc|,
x = min{x

˜
, Tx

˜
},

x = max{x̃, T x̃}.
It turns out that crucial for the comparison is the fact that

Mii ≥ 1 for each i.

Theorem 196. Under the common assumption %(|A−1
c |∆) < 1, for each

i we have

xi − xi ≥ min
{
(Mii − 1)(|xc|i − (xc)i),

2(Mii−1)
2Mii−1

(x∗i − |xc|i)
} ≥ 0,

x
i
− xi ≥ min

{
(Mii − 1)(|xc|i + (xc)i),

2(Mii−1)
2Mii−1

(x∗i − |xc|i)
} ≥ 0.

In particular,
x ≤ x ≤ x ≤ x,

i.e. the HBR bounds are never worse than the Bauer-Skeel bounds.
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Remark. Nonnegativity follows from the facts that M ≥ I and
x∗ = M(|xc|+ |A−1

c |δ) ≥ |xc|.

Theorem 197. Let the spectral condition hold. Then for each i such that Mii > 1 and
(xc)i 6= 0 we have

(xi − xi)− (xi − x
i
) ≥ 2(Mii − 1)2

2Mii − 1
|xc|i > 0,

hence
xi − x

i
< xi − xi,

i.e., the ith HBR bound is better than the Bauer-Skeel bound.

Remark. Recall that M = (I − |A−1
c |∆)−1 =

∑∞
j=0(|A−1

c |∆)j ≥ I.

Hence Mii > 1 e.g. if (|A−1
c |∆)ii > 0.

We can conclude that the HBR bounds are “almost always” better than the Bauer-
Skeel bounds.

Still, how good are the HBR bounds themselves?
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4.5.10 Many other enclosures
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4.5.11 Improvement of an enclosure

Conditions:
0 /∈ [B

˜
ki, B̃ki], 0 /∈ [x

˜
j, x̃j], B

˜
kix̃j < 0 (4.62)

0 /∈ [B
˜

ki, B̃ki], 0 /∈ [x
˜

j, x̃j], B
˜

kix̃j > 0 (4.63)

B
˜

ki > 0 (4.64)

B̃ki < 0 (4.65)

Theorem 198. Let [x, x] be the interval hull of the solution set of a system

Ax = b

and let [x, x] ⊆ [x
˜
, x̃], A−1 ⊆ [B

˜
, B̃]. Then for each k ∈ {1, . . . , n} we have:

(i) the interval hull [x(k), x(k)] of the solution set of the system

[A(k), A(k)]x = [b(k), b(k)]

given by

(A(k))ij =

{
Aij if (4.63) holds,
Aij otherwise

, (A(k))ij =

{
Aij if (4.62) holds,

Aij otherwise
,

(b(k))i =

{
bi if (4.65) holds,
bi otherwise

, (b(k))i =

{
bi if (4.64) holds,

bi otherwise

(i, j = 1, . . . , n) satisfies (x(k))k = xk,

(ii) the interval hull [x(k), x(k)] of the solution set of the system

[A(k), A
(k)

]x = [b(k), b
(k)

]

given by

(A(k))ij =

{
Aij if (4.62) holds,
Aij otherwise

, (A
(k)

)ij =

{
Aij if (4.63) holds,

Aij otherwise
,

(b(k))i =

{
bi if (4.64) holds,
bi otherwise

, (b
(k)

)i =

{
bi if (4.65) holds,

bi otherwise

(i, j = 1, . . . , n) satisfies (x(k))k = xk.
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4.6 Dependent data
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4.6.1 The basic problem
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4.6.2 The approach
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4.6.3 The symmetric case
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Chapter 5

Systems of interval linear equations and inequalities
(rectangular case)
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5.1 Introduction

Unless said otherwise, all the proofs of theorems contained in this chapter can be found
in [98].
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5.2 Solvability and feasibility
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5.2.1 Introduction and notations

This chapter deals with solvability and feasibility (i.e., nonnegative solvability) of
systems of interval linear equations and inequalities. After a few preliminary sections,
we delineate in Section 5.2.3 eight decision problems (weak solvability of equations
through strong feasibility of inequalities) which are then solved in eight successive
Sections 5.2.4 to 5.2.12. It turns out that four problems are solvable in polynomial
time and four are NP-hard. Some of the results are easy (Theorem 208), some difficult
to prove (Theorem 209), some are surprising (Theorem 222). Although solutions of
several of them have been already known, the complete classification of the eight
problems given here is new. Some special cases (tolerance, control, and algebraic
solutions, systems with square matrices) are treated in Sections 5.4.2 to 5.4.5. The
last Section 5.5 contains additional notes and references to the material of this chapter.
Some of the results find later applications in interval linear programming (Chapter 6).

We shall use the following notations. The ith row of a matrix A is denoted by
Ai·, the jth column by A·j. For two matrices A,B of the same size, inequalities like
A ≤ B or A < B are understood componentwise. A is called nonnegative if 0 ≤ A;
AT is the transpose of A. The absolute value of a matrix A = (aij) is defined by
|A| = (|aij|). We shall use the following easy-to-prove properties valid whenever the
respective operations and inequalities are defined:

(i) A ≤ B and 0 ≤ C imply AC ≤ BC,

(ii) A ≤ |A|,
(iii) |A| ≤ B if and only if −B ≤ A ≤ B,

(iv) |A + B| ≤ |A|+ |B|,
(v) ||A| − |B|| ≤ |A−B|,
(vi) |AB| ≤ |A||B|.

The same notations and results also apply to vectors which are always considered
one-column matrices. Hence, for a = (ai) and b = (bi), aT b =

∑
i aibi is the scalar

product whereas abT is the matrix (aibj). Maximum (or minimum) of two vectors a, b
is understood componentwise, i.e., (max{a, b})i = max{ai, bi} for each i. In particular,
for vectors a+, a− defined by a+ = max{a, 0}, a− = max{−a, 0} we have a = a+−a−,
|a| = a+ + a−, a+ ≥ 0, a− ≥ 0 and (a+)T a− = 0. I denotes the unit matrix, ej is the
jth column of I and e = (1, . . . , 1)T is the vector of all ones (in these cases we do not
designate explicitly the dimension which can always be inferred from the context). In
our descriptions to follow, important role will be played by the set Ym of all ±1 vectors
in Rm, i.e.,

Ym = {y ∈ Rm; |y| = e}.
Obviously, the cardinality of Ym is 2m. For each x ∈ Rm we define its sign vector
sgn xby

(sgn x)i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . ,m),
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so that sgn x ∈ Ym. For a given vector y ∈ Rm we denote

Ty = diag (y1, . . . , ym) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 . (5.1)

With a few exceptions (mainly in the proof of Theorem 204), we shall use the notation
Ty for vectors y ∈ Ym only, in which case we have T−y = −Ty, T−1

y = Ty and |Ty| = I.
For each x ∈ Rm we can write |x| = Tzx, where z = sgn x; we shall often use this trick
to remove the absolute value of a vector. Notice that Tzx = (zixi)

m
i=1.
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5.2.2 Solvability and feasibility

From this section on we consider systems of interval linear equations Ax = b or
systems of interval linear inequalities Ax ≤ b. Unless said otherwise, it is always
assumed that A is m × n and b is an m-dimensional interval vector, where m and n
are arbitrary positive integers.

Let us recall (Section 1.3.10) that a system of linear equations Ax = b is called solv-
able if it has a solution, and feasible if it has a nonnegative solution. Throughout this
chapter the reader is kindly asked to bear in mind that feasibility means nonnegative
solvability.

The basic result concerning feasibility of linear equations was proved by Farkas [9]
in 1902. As it will be used at some crucial points in the sequel, we give here an
elementary, but somewhat lengthy proof of it. The ideas of the proof will not be
exploited later, so that the reader may skip the proof without loss of continuity.

Theorem 199. [Farkas] A system

Ax = b (5.2)

is feasible if and only if each p with AT p ≥ 0 satisfies bT p ≥ 0.

Proof: (a) If the system (5.2) has a solution x ≥ 0 and if AT p ≥ 0 holds for some
p ∈ Rm, then bT p = (Ax)T p = xT (AT p) ≥ 0. This proves the “only if” part of the
theorem.

(b) We shall prove the “if” part by contradiction, proving that if the system (5.2)
does not possess a nonnegative solution, then there exists a p ∈ Rm satisfying AT p ≥ 0
and bT p < 0; for the purposes of the proof it is advantageous to write down this system
in the column form

pTA·j ≥ 0 (j = 1, . . . , n), (5.3)

pT b < 0. (5.4)

We shall prove this assertion by induction on n.

(b1) If n = 1, then A consists of a single column a. Let W = {αa; α ∈ R} be the
subspace spanned by a. According to the orthogonal decomposition theorem (Meyer
[43], p. 405), b can be written in the form

b = bW + bW⊥ ,

where bW ∈ W and bW⊥ ∈ W⊥, W⊥ being the orthogonal complement of W . We
shall consider two cases. If bW⊥ = 0, then b ∈ W , so that b = αa for some α ∈ R.
Since Ax = b does not possess a nonnegative solution due to the assumption, it
must be α < 0 and a 6= 0, so that if we put p = a, then pT a = ‖a‖2

2 ≥ 0 and
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pT b = α‖a‖2
2 < 0, hence p satisfies (5.3), (5.4). If bW⊥ 6= 0, put p = −bW⊥ , then

pT a = 0 and pT b = −‖bW⊥‖2
2 < 0, so that p again satisfies (5.3), (5.4).

(b2) Let the induction hypothesis hold for n− 1 ≥ 1 and let a system (5.2), where
A ∈ Rm×n, does not possess a nonnegative solution. Then neither does the system

n−1∑
j=1

A·jxj = b

(otherwise for xn = 0 we would get a nonnegative solution of (5.2)), hence according
to the induction hypothesis there exists a p ∈ Rm satisfying

pTA·j ≥ 0 (j = 1, . . . , n− 1), (5.5)

pT b < 0. (5.6)

If pTA·n ≥ 0, then p satisfies (5.3), (5.4) and we are done. Thus assume that

pTA·n < 0. (5.7)

Put

αj = pTA·j (j = 1, . . . , n),

β = pT b,

then α1 ≥ 0, . . . , αn−1 ≥ 0, αn < 0 and β < 0. Consider the system

n−1∑
j=1

(αnA·j − αjA·n)xj = αnb− βA·n. (5.8)

If it had a nonnegative solution x1, . . . , xn−1, then we could rearrange it to the form

n−1∑
j=1

A·jxj + A·nxn = b, (5.9)

where

xn =
β −∑n−1

j=1 αjxj

αn

> 0

due to (5.5), (5.6), (5.7), so that the system (5.9), and thus also (5.2), would have
a nonnegative solution x1, . . . , xn contrary to the assumption. Therefore the system
(5.8) does not possess a nonnegative solution and thus according to the induction
hypothesis there exists a p̃ such that

p̃T (αnA·j − αjA·n) ≥ 0 (j = 1, . . . , n− 1), (5.10)

p̃T (αnb− βA·n) < 0. (5.11)

219



Now we set
p = αnp̃− (p̃TA·n)p

and we shall show that p satisfies (5.3), (5.4). For j = 1, . . . , n− 1 we have according
to (5.10)

pTA·j = αnp̃TA·j − (p̃TA·n)pTA·j ≥ αj p̃
TA·n − (p̃TA·n)αj = 0, (5.12)

for j = n we get

pTA·n = αnp̃
TA·n − (p̃TA·n)pTA·n = αnp̃

TA·n − (p̃TA·n)αn = 0, (5.13)

and finally from (5.11)

pT b = αnp̃T b− (p̃TA·n)pT b < βp̃TA·n − (p̃TA·n)β = 0, (5.14)

so that (5.12), (5.13), (5.14) imply (5.3) and (5.4), hence p is a vector having the
asserted properties, which completes the proof by induction. 2

With the help of Farkas theorem we can now characterize solvability of systems of
linear equations:

Theorem 200. A system Ax = b is solvable if and only if each p with AT p = 0
satisfies bT p = 0.

Proof: If x solves Ax = b and AT p = 0 holds for some p, then bT p = pT b = pT Ax =
(AT p)T x = 0. Conversely, let the condition hold. Then for each p such that AT p ≥ 0
and AT p ≤ 0 we have bT p ≥ 0. But this, according to the Farkas theorem, is just the
sufficient condition for the system

Ax1 − Ax2 = b (5.15)

to be feasible. Hence (5.15) has a solution x1 ≥ 0, x2 ≥ 0, thus A(x1 − x2) = b and
Ax = b is solvable. 2

For systems of linear inequalities we introduce the notions of solvability and feasibil-
ity in the same way: a system Ax ≤ b is called solvable if it has a solution, and feasible
if it has a nonnegative solution. Again, we can use Farkas theorem for characterizing
solvability and feasibility:

Theorem 201. A system Ax ≤ b is solvable if and only if each p ≥ 0 with AT p = 0
satisfies bT p ≥ 0.

Proof: If x solves Ax ≤ b and AT p = 0 holds for some p ≥ 0, then bT p = pT b ≥
pT Ax = 0. Conversely, let the condition hold, so that each p ≥ 0 with AT p ≥ 0,
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AT p ≤ 0 satisfies bT p ≥ 0. This, however, in view of the Farkas theorem means that
the system

Ax1 − Ax2 + x3 = b

is feasible. Hence due to the nonnegativity of x3 we have A(x1 − x2) ≤ b, and the
system Ax ≤ b is solvable. 2

Theorem 202. A system Ax ≤ b is feasible if and only if each p ≥ 0 with AT p ≥ 0
satisfies bT p ≥ 0.

Proof: If x ≥ 0 solves Ax ≤ b and AT p ≥ 0 holds for some p ≥ 0, then bT p = pT b =
pT Ax = (AT p)T x ≥ 0. Conversely, let the condition hold; then it is exactly the Farkas
condition for the system

Ax1 + x2 = b (5.16)

to be feasible. Hence (5.16) has a solution x1 ≥ 0, x2 ≥ 0, which implies Ax1 ≤ b, so
that the system Ax ≤ b is feasible. 2

Finally, we sum up the results achieved in this section in the form of a table which
reveals similarities and differences among the four necessary and sufficient conditions:

Problem Condition

solvability of Ax = b (∀p)(AT p = 0 ⇒ bT p = 0)
feasibility of Ax = b (∀p)(AT p ≥ 0 ⇒ bT p ≥ 0)
solvability of Ax ≤ b (∀p ≥ 0)(AT p = 0 ⇒ bT p ≥ 0)
feasibility of Ax ≤ b (∀p ≥ 0)(AT p ≥ 0 ⇒ bT p ≥ 0)

An important result published by Khachiyan [34] in 1979 says that feasibility of a
system of linear equations can be checked (and a solution to it, if it exists, found)
in polynomial time. Since all three other problems, as shown in the proofs, can be
reduced to this one, it follows that all four problems can be solved in polynomial time.

Lemma 203 (existence lemma) Let A ∈ Rm×n, b ∈ Rm and let for each y ∈ Y the
inequality

TyAx ≥ Tyb (5.17)

have a solution xy. Then the equation

Ax = b

has a solution in the set
Conv{xy; y ∈ Y }. (5.18)
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Proof: We shall prove that the system of linear equations

∑
y∈Y

λyAxy = b, (5.19)

∑
y∈Y

λy = 1 (5.20)

has a solution λy ≥ 0, y ∈ Y . In view of the Farkas theorem, it suffices to show that
for each p ∈ Rm and for each p0 ∈ R,

pT Axy + p0 ≥ 0 for each y ∈ Y (5.21)

implies
pT b + p0 ≥ 0. (5.22)

Thus let p, p0 satisfy (5.21). Put y = −sgn p, then p = −Ty|p| and from (5.17), (5.21)
we have

pT b + p0 = −|p|T Tyb + p0 ≥ −|p|T TyAxy + p0 = pT Axy + p0 ≥ 0,

which proves (5.22). Hence the system (5.19), (5.20) has a solution λy ≥ 0, y ∈ Y .
Put x =

∑
y∈Y λyxy, then Ax = b by (5.19) and x belongs to the set (5.18) by (5.20). 2
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5.2.3 Weak and strong solvability/feasibility

Let A be an m× n interval matrix and b an m-dimensional interval vector. Under a
system of interval linear equations

Ax = b (5.23)

we understand the family of all systems of linear equations

Ax = b (5.24)

with data satisfying
A ∈ A, b ∈ b, (5.25)

and similarly a system of interval linear inequalities

Ax ≤ b (5.26)

is the family of all systems
Ax ≤ b

whose data satisfy
A ∈ A, b ∈ b.

We introduce the following definitions.

Definition. A system (5.23) is said to be weakly solvable (feasible) if some system
(5.24) with data (5.25) is solvable (feasible), and it is called strongly solvable (feasible)
if each system (5.24) with data (5.25) is solvable (feasible). In the same way we define
weak and strong solvability (feasibility) of a system of interval linear inequalities (5.26).

Hence, the word “weakly” refers to validity of the respective property for some
system in the family whereas the word “strongly” refers to its validity for all systems
in the family.

Introduction of weak and strong properties has an obvious motivation. Assume
we are to decide whether some system A0x = b0 is solvable, but the exact data of
this system are not directly available to us (they come from some measurements, are
afflicted with rounding errors, etc.); instead, we only know that they satisfy A0 ∈ A,
b0 ∈ b. Then we can be sure that our system A0x = b0 is solvable only if we know
that the system (5.23) is strongly solvable, and in a similar way we can be sure that
the system A0x = b0 is not solvable only if we know that the system (5.23) is not
weakly solvable. A similar reasoning also holds for feasibility and for interval linear
inequalities.

In this way, combining weak and strong solvability or feasibility of systems of interval
linear equations or inequalities, we arrive at eight decision problems:

• weak solvability of equations,
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• weak feasibility of equations,

• strong solvability of equations,
• strong feasibility of equations,

• weak solvability of inequalities,

• weak feasibility of inequalities,
• strong solvability of inequalities,

• strong feasibility of inequalities.

We shall study these problems separately in the next eight sections. It will be shown
that all of them can be solved by finite means, however in half of the cases the number
of steps is exponential in matrix size and the respective problems will be proved to be
NP-hard.
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5.2.4 Weak solvability of equations

In this section we shall study the first of the eight decision problems delineated in
Section 5.2.3, namely weak solvability of systems of interval linear equations. As
before, we shall assume that A is an m×n interval matrix and b is an m-dimensional
interval vector, where m and n are arbitrary positive integers.

First we shall introduce a useful auxiliary term: a vector x ∈ Rn is called a weak
solution of Ax = b if it satisfies Ax = b for some A ∈ A, b ∈ b. Oettli and Prager [57]
proved in 1964 the following nice and far-reaching characterization of weak solutions:

Theorem 204. (Oettli-Prager) A vector x ∈ Rn is a weak solution of Ax = b if
and only if it satisfies

|Acx− bc| ≤ ∆|x|+ δ. (5.27)

Proof: If x is a weak solution, then Ax = b for some A ∈ A, b ∈ b, which gives
|Acx− bc| = |(Ac−A)x+ b− bc| ≤ ∆|x|+ δ. Conversely, let |Acx− bc| ≤ ∆|x|+ δ hold
for some x. Define y ∈ Rm by

yi =

{ (Acx−bc)i

(∆|x|+δ)i
if (∆|x|+ δ)i > 0,

1 if (∆|x|+ δ)i = 0
(i = 1, . . . , m), (5.28)

then |y| ≤ e and
Acx− bc = Ty(∆|x|+ δ). (5.29)

Put z = sgn x, then |x| = Tzx and from (5.29) we get

(Ac − Ty∆Tz)x = bc + Tyδ. (5.30)

Since |y| ≤ e and z ∈ Yn, we have |Ty∆Tz| ≤ ∆ and |Tyδ| ≤ δ, so that Ac−Ty∆Tz ∈ A
and bc + Tyδ ∈ b, which implies that x is a weak solution of Ax = b. 2

The main merit of the Oettli-Prager theorem consists in the fact that it describes
the set of all weak solutions by means of a single, but nonlinear, inequality (5.27).
In the proof we have also established a constructive result which is worth stating
independently:

Proposition 205 If x solves (5.27), then it satisfies

(Ac − Ty∆Tz)x = bc + Tyδ, (5.31)

where y is given by

yi =

{
(Acx− bc)i/(∆|x|+ δ)i if (∆|x|+ δ)i > 0,

1 if (∆|x|+ δ)i = 0
(i = 1, . . . , m), (5.32)

and z = sgn x.
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Weak solvability of a system Ax = b, as it was defined in Section 5.2.3, is equivalent
to existence of a weak solution to it. Hence we can employ the Oettli-Prager theorem
to characterize weak solvability of interval linear equations. Let us remind that in
accordance with the general definition (3.7) we have Aez = Ac − ∆Tz and A−ez =
Ac + ∆Tz.

Theorem 206. A system Ax = b is weakly solvable if and only if the system

Aezx ≤ b, (5.33)

−A−ezx ≤ −b (5.34)

is solvable for some z ∈ Yn.

Proof: If Ax = b is weakly solvable, then it has a weak solution x which according to
Theorem 204 satisfies (5.27) and thus also

−∆|x| − δ ≤ Acx− bc ≤ ∆|x|+ δ. (5.35)

If we put z = sgn x, then |x| = Tzx and (5.35) turns into Aezx = (Ac − ∆Tz)x ≤
bc + δ = b and A−ezx = (Ac + ∆Tz)x ≥ bc − δ = b which shows that x satisfies (5.33),
(5.34). Conversely, let (5.33), (5.34) hold for some x and z ∈ Yn. Then we have

−∆Tzx− δ ≤ Acx− bc ≤ ∆Tzx + δ

and consequently

|Acx− bc| ≤ ∆Tzx + δ ≤ ∆|x|+ δ,

hence x satisfies (5.27) and therefore it is a weak solution of Ax = b. 2

This result shows that checking weak solvability of interval linear equations can be
in principle performed by finite means by checking solvability of systems (5.33), (5.34),
z ∈ Yn by some finite procedure (e.g., a linear programming technique). However, to
verify that Ax = b is not weakly solvable, we have to check all the systems (5.33),
(5.34), z ∈ Yn, whose number in the worst case is 2n. Clearly, this is nearly impossible
even for relatively small values of n (say, n = 30). It turns out that the source
of these difficulties does not lie with inadequateness of our description, but that it
is inherently present in the problem itself which is NP-hard. In the proof of this
statement we shall see an approach that will also be used several times later, namely
a polynomial-time reduction of our standard NP-complete problem from Theorem 22
to the current problem, which will prove its NP-hardness.

Theorem 207. Checking weak solvability of interval linear equations is NP-hard.
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Proof: Let A be a square matrix. We shall first prove that the system

− e ≤ Ax ≤ e, (5.36)

eT |x| ≥ 1 (5.37)

has a solution if and only if the system of interval linear equations

[A,A]x = [−e, e], (5.38)

[−eT , eT ]x = [1, 1] (5.39)

is weakly solvable. If x solves (5.36), (5.37) and if we set x′ = x
eT |x| , then |Ax′| =

1
eT |x| |Ax| ≤ |Ax| ≤ e and eT |x′| = 1, hence x′ satisfies Ax′ = b, zT x′ = 1 for some

b ∈ [−e, e] and zT = (sgn x′)T ∈ [−eT , eT ], which means that (5.38), (5.39) is weakly
solvable. Conversely, let (5.38), (5.39) have a weak solution x; then Ax = b and cT x = 1
for some b ∈ [−e, e] and cT ∈ [−eT , eT ], hence |Ax| ≤ e and 1 = cT x ≤ |c|T |x| ≤ eT |x|,
so that x solves (5.36), (5.37). We have shown that the problem of checking solvability
of (5.36), (5.37) can be reduced in polynomial time to that of checking weak solvability
of (5.38), (5.39). Since the former problem is NP-complete by Theorem 22, the latter
one is NP-hard. 2
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5.2.5 Weak feasibility of equations

Using the notion of a weak solution introduced in Section 5.2.4, we can say that a
system Ax = b is weakly feasible (in the sense of the definition made in Section
5.2.3) if and only if it has a nonnegative weak solution. Hence we can again use the
Oettli-Prager theorem to obtain a characterization of weak feasibility:

Theorem 208. A system Ax = b is weakly feasible if and only if the system

Ax ≤ b, (5.40)

−Ax ≤ −b (5.41)

is feasible.

Proof: If Ax = b is weakly feasible, then it possesses a nonnegative weak solution x
which by Theorem 204 satisfies

|Acx− bc| ≤ ∆x + δ (5.42)

and thus also
−∆x− δ ≤ Acx− bc ≤ ∆x + δ, (5.43)

which is (5.40), (5.41). Conversely, if (5.40), (5.41) has a nonnegative solution x, then
it satisfies (5.43) and (5.42) and by the same Theorem 204 it is a nonnegative weak
solution to Ax = b which means that this system is weakly feasible. 2

Hence, only one system of linear inequalities (5.40), (5.41) is to be checked in this
case. Referring to the last paragraph of Section 5.2.2, we can conclude that check-
ing weak feasibility of interval linear equations can be performed in polynomial time
whereas checking weak solvability, as we have seen in Theorem 207, is NP-hard.
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5.2.6 Strong solvability of equations

By definition (Section 5.2.3), Ax = b is strongly solvable if each system Ax = b with
A ∈ A, b ∈ b is solvable. If Aij < Aij for some i, j or bi < bi for some i, then the family
Ax = b consists of infinitely many linear systems. Therefore the fact that solvability
of these infinitely many systems can be characterized in terms of feasibility of finitely
many systems is nontrivial, and so is the proof of the following theorem which also
establishes a useful additional property. Conv X denotes the convex hull of X, i.e.,
the intersection of all convex subsets of Rn containing X.

Theorem 209. A system Ax = b is strongly solvable if and only if for each y ∈ Ym

the system
Ayex

1 − A−yex
2 = by, (5.44)

x1 ≥ 0, x2 ≥ 0 (5.45)

has a solution x1
y, x2

y. Moreover, if this is the case, then for each A ∈ A, b ∈ b the
system Ax = b has a solution in the set

Conv{x1
y − x2

y; y ∈ Ym}.

Proof: “Only if”: Let Ax = b be strongly solvable. Assume to the contrary that
(5.44), (5.45) does not have a solution for some y ∈ Ym. Then Farkas theorem implies
existence of a p ∈ Rm satisfying

(Ac − Ty∆)T p ≥ 0, (5.46)

(Ac + Ty∆)T p ≤ 0, (5.47)

bT
y p < 0. (5.48)

Now (5.46) and (5.47) together give

∆T Typ ≤ AT
c p ≤ −∆T Typ,

hence
|AT

c p| ≤ −∆T Typ = | −∆T Typ| ≤ ∆T |p|,
and the Oettli-Prager theorem as applied to the system [AT

c −∆T , AT
c + ∆T ]x = [0, 0]

shows that there exists a matrix A ∈ A such that

AT p = 0. (5.49)

In the light of Theorem 200, (5.49) and (5.48) mean that the system

Ax = by

has no solution, which contradicts our assumption of strong solvability since A ∈ A
and by ∈ b.
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“If”: Conversely, let for each y ∈ Ym the system (5.44), (5.45) have a solution x1
y,

x2
y. Let A ∈ A, b ∈ b. To prove that the system Ax = b has a solution, take an

arbitrary y ∈ Ym and put xy = x1
y − x2

y. Then we have

Ty(Axy − b) = Ty(Acxy − bc) + Ty(A− Ac)xy + Ty(bc − b)

≥ Ty(Acxy − bc)−∆|xy| − δ

since |Ty(A − Ac)xy| ≤ ∆|xy|, which implies Ty(A − Ac)xy ≥ −∆|xy|, and similarly
|Ty(bc − b)| ≤ δ implies Ty(bc − b) ≥ −δ, thus

Ty(Axy − b) ≥ Ty(Ac(x
1
y − x2

y)− bc)−∆|x1
y − x2

y| − δ

≥ Ty(Ac(x
1
y − x2

y)− bc)−∆(x1
y + x2

y)− δ

= Ty((Ac − Ty∆)x1
y − (Ac + Ty∆)x2

y − (bc + Tyδ))

= Ty(Ayex
1
y − A−yex

2
y − by)

= 0

since x1
y, x2

y solve (5.44), (5.45). In this way we have proved that for each y ∈ Ym, xy

satisfies
TyAxy ≥ Tyb. (5.50)

Using (5.50), we shall next prove that the system of linear equations

∑
y∈Ym

λyAxy = b, (5.51)

∑
y∈Ym

λy = 1 (5.52)

has a solution λy ≥ 0, y ∈ Ym. In view of Farkas theorem, it suffices to show that for
each p ∈ Rm and each p0 ∈ R,

pT Axy + p0 ≥ 0 for each y ∈ Ym (5.53)

implies
pT b + p0 ≥ 0. (5.54)

Thus let p and p0 satisfy (5.53). Put y = −sgn p, then p = −Ty|p| and from (5.50),
(5.53) we have

pT b + p0 = −|p|T Tyb + p0 ≥ −|p|T TyAxy + p0 = pT Axy + p0 ≥ 0,

which proves (5.54). Hence the system (5.51), (5.52) has a solution λy ≥ 0, y ∈ Ym.
Put x =

∑
y∈Ym

λyxy, then Ax = b by (5.51) and x belongs to the set Conv{xy; y ∈
Ym} = Conv{x1

y − x2
y; y ∈ Ym} by (5.52). This proves the “if” part, and also the

additional assertion. 2
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Let us have a closer look at the form of the systems (5.44). If yk = 1, then the
kth rows of Aye and A−ye are equal to the kth rows of A and A, respectively, and
(by)k = bk. This means that in this case the kth equation of (5.44) has the form

(Ax1 − Ax2)k = bk, (5.55)

and similarly in case yk = −1 it is of the form

(Ax1 − Ax2)k = bk. (5.56)

Hence we can see that the family of systems (5.44) for all y ∈ Ym is just the family of
all systems whose kth equations are either of the form (5.55), or of the form (5.56) for
k = 1, . . . , m. Now we can use the algorithm of Section 1.3.1 to generate the systems
Ayex

1−A−yex
2 = by in such a way that any pair of successive systems differs in exactly

one equation. In this way, a feasible solution x1, x2 of the preceding system satisfies
all but at most one of the equations of the next generated system, so that this solution
x1, x2 can be used as the initial iteration for the procedure for checking feasibility
of the next system (the procedure is not specified in the algorithm; e.g., phase I of
the simplex method may be used for this purpose). The complete description of the
algorithm is as follows:

z := 0; y := e; strosolv := true;

A := A; B := A; b := b;
if Ax1 −Bx2 = b is not feasible then strosolv := false; end
while z 6= e & strosolv

k := min{i; zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;

if yk = 1 then Ak· := Ak·; Bk· := Ak·; bk := bk;
else Ak· := Ak·; Bk· := Ak·; bk := bk;

end
if Ax1 −Bx2 = b is not feasible then strosolv := false; end

end
% Ax = b is strongly solvable if and only if strosolv = true.

A small change can greatly improve the performance of the algorithm. Observe that if

Ak· = Ak· and bk = bk (5.57)

holds for some k, then the equations (5.55) and (5.56) are the same and there is no
need to solve the same system anew. Hence only rows satisfying

Ak· 6= Ak· or bk < bk (5.58)
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play any role. Let us reorder the equations of Ax = b so that those satisfying (5.58)
go first, followed by those with (5.57). Hence, for the reordered system the matrix
(∆, δ) has first q nonzero rows, followed by m− q zero rows (0 ≤ q ≤ m). Now we can
employ the algorithm in literally the same formulation, but started with z := 0 ∈ Rq,
y := e ∈ Rq (instead of z, y ∈ Rm in the original version). In this way, in case of strong
solvability 2q systems Ayex

1 − A−yex
2 = by are to be checked for feasibility. Clearly,

the whole procedure can be considered acceptable for moderate values of q only.

Since the number of systems to be checked is in the worst case exponential in the
matrix size, we may suspect the problem to be NP-hard. It turns out to be indeed the
case, and the NP-complete problem of Theorem 22 can again be used for the purpose
of the proof of this result.

Theorem 210. Checking strong solvability of interval linear equations is NP-hard.

Proof: Let A be square n× n. We shall prove that the system

− e ≤ Ax ≤ e, (5.59)

eT |x| ≥ 1 (5.60)

has a solution if and only if the system of interval linear equations

[A− eeT , A + eeT ]x = [0, e] (5.61)

is not strongly solvable. “If”: Assume that (5.61) is not strongly solvable, so that
A′x = b′ does not have a solution for some A′ ∈ [A − eeT , A + eeT ] and b′ ∈ [0, e].
Then A′ must be singular, hence A′x′ = 0 for some x′ 6= 0. Then x′ is a weak solution
of the system [A− eeT , A + eeT ]x = [0, 0], hence |Ax′| ≤ eeT |x′| by the Oettli-Prager
theorem. Now if we set x = x′

eT |x′| , then |Ax| ≤ e and eT |x| = 1, so that x solves

(5.59), (5.60). “Only if” by contradiction: Assume that (5.61) is strongly solvable,
and let A′ be an arbitrary matrix in [A − eeT , A + eeT ]. Then for each j = 1, . . . , n
the system A′x = ej (where ej ∈ [0, e] is the jth column of the unit matrix I) has a
solution xj, hence the matrix X consisting of columns x1, . . . , xn satisfies A′X = I,
so that A′ is nonsingular. Hence, strong solvability of (5.61) implies nonsingularity of
each A′ ∈ [A− eeT , A + eeT ]. Assume now that (5.59), (5.60) has a solution x. Then
|Ax| ≤ e ≤ eeT |x|, and the Oettli-Prager theorem implies that x solves A′x = 0 for
some A′ ∈ [A − eeT , A + eeT ], hence A′ is singular which contradicts the above fact
that each A′ ∈ [A− eeT , A+ eeT ] is nonsingular. This contradiction shows that strong
solvability of (5.61) precludes existence of a solution to (5.59), (5.60), which proves the
“only if” part of the assertion. In view of the established equivalence, we can see that
the problem of checking solvability of (5.59), (5.60) can be reduced in polynomial time
to that of checking strong solvability of (5.61). By Theorem 22, the former problem
is NP-complete; hence the latter one is NP-hard. 2
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In an analogy with weak solutions, we may also introduce strong solutions of systems
of interval linear equations. A vector x is said to be a strong solution of Ax = b if
it satisfies Ax = b for each A ∈ A, b ∈ b. We have this characterization of strong
solutions:

Theorem 211. A vector x ∈ Rn is a strong solution of Ax = b if and only if it
satisfies

Acx = bc, (5.62)

∆|x| = δ = 0. (5.63)

Proof: Let x be a strong solution of Ax = b. Put z = sgn x, then |x| = Tzx, and x
satisfies both

Acx = bc (5.64)

and
(Ac + ∆Tz)x = bc − δ. (5.65)

Subtracting (5.64) from (5.65), we obtain

∆|x| = ∆Tzx = −δ,

where ∆|x| ≥ 0 and −δ ≤ 0, hence ∆|x| = δ = 0. Conversely, if (5.62) and (5.63)
hold, then for each A ∈ A, b ∈ b we have

|Ax− b| = |Acx− bc + (A− Ac)x + bc − b| ≤ ∆|x|+ δ = 0,

so that Ax = b, hence x is a strong solution of Ax = b. 2

The condition ∆|x| = 0 in (5.63) says that it must be xj = 0 for each j with ∆·j 6= 0.
Hence, putting J = {j; ∆·j 6= 0}, we may reformulate (5.62), (5.63) in the form

∑

j /∈J

(Ac)·jxj = bc, (5.66)

xj = 0 (j ∈ J), (5.67)

δ = 0, (5.68)

which shows that checking existence of a strong solution (and, in the positive case, also
computation of it) may be performed by solving a single system of linear equations
(5.66). But on the whole the system (5.66)-(5.68) shows that strong solutions exist on
rare occasions only, as it could have been expected already from the definition.
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5.2.7 Strong feasibility of equations

By definition in Section 5.2.3, a system Ax = b is strongly feasible if each system
Ax = b with A ∈ A, b ∈ b is feasible. It turns out that characterization of strong
feasibility can be easily derived from that of strong solvability:

Theorem 212. A system Ax = b is strongly feasible if and only if for each y ∈ Ym

the system
Ayex = by (5.69)

has a nonnegative solution xy. Moreover, if this is the case, then for each A ∈ A,
b ∈ b the system Ax = b has a solution in the set

Conv{xy; y ∈ Ym}.

Proof: If Ax = b is strongly feasible, then each system (5.69) has a nonnegative so-
lution since Aye ∈ A and by ∈ b for each y ∈ Ym. Conversely, if for each y ∈ Ym

the system (5.69) has a nonnegative solution xy, then setting x1
y = xy, x2

y = 0 for
each y ∈ Ym, we can see that x1

y, x2
y solve (5.44), (5.45). This according to Theo-

rem 209 means that each system Ax = b, A ∈ A, b ∈ b has a solution in the set
Conv{x1

y − x2
y; y ∈ Ym} = Conv{xy; y ∈ Ym} which is a part of the nonnegative or-

thant, hence Ax = b is strongly feasible. 2

Repeating the argument following the proof of Theorem 209, we can say that the
kth row of (5.69) is of the form

(Ax)k = bk

if yk = 1 and of the form
(Ax)k = bk

if yk = −1. Hence, the algorithm for checking strong solvability can be easily adapted
for the present purpose:

z := 0; y := e; strofeas := true;

A := A; b := b;
if Ax = b is not feasible then strofeas := false; end
while z 6= e & strofeas

k := min{i; zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;

if yk = 1 then Ak· := Ak·; bk := bk; else Ak· := Ak·; bk := bk; end
if Ax = b is not feasible then strofeas := false; end

end
% Ax = b is strongly feasible if and only if strofeas = true.
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As in Section 5.2.6, the equations of Ax = b should be first reordered so that the first
q of them satisfy (5.58) and the last m − q of them are of the form (5.57). Then the
algorithm remains in force if it is initialized with z := 0 ∈ Rq, y := e ∈ Rq.

In contrast to checking weak feasibility which is polynomial-time (Section 5.2.5),
checking strong feasibility remains NP-hard. The proof, going along similar lines as
before, is a little bit different since n× 2n matrices are needed here.

Theorem 213. Checking strong feasibility of interval linear equations is NP-hard.

Proof: Let A be square n× n. We shall prove that the system

− e ≤ Ax ≤ e, (5.70)

eT |x| ≥ 1 (5.71)

has a solution if and only if the system of interval linear equations

[(AT − eeT ,−AT − eeT ), (AT + eeT ,−AT + eeT )]x = [−e, e] (5.72)

(with an n × 2n interval matrix) is not strongly feasible. “If”: Let (5.72) be not
strongly feasible; then according to Theorem 212 there exists a y ∈ Ym such that the
system Ayex = by is not feasible. In our case this system has the form

(AT − yeT )x1 + (−AT − yeT )x2 = y.

Since it is not feasible, Farkas theorem assures existence of a vector x′ satisfying

(A− eyT )x′ ≥ 0, (5.73)

(−A− eyT )x′ ≥ 0, (5.74)

yT x′ < 0, (5.75)

then (5.73), (5.74) imply

|Ax′| ≤ −eyT x′ = | − eyT x′| ≤ eeT |x′|,

where x′ 6= 0 by (5.75), hence the vector x = x′
eT |x′| satisfies |Ax| ≤ e and eT |x| = 1, so

that it is a solution to (5.70), (5.71). “Only if” by contradiction: Assume that (5.72)
is strongly feasible. Let A′ ∈ [A− eeT , A + eeT ], then A′T ∈ [AT − eeT , AT + eeT ] and
−A′T ∈ [−AT − eeT ,−AT + eeT ], so that strong feasibility of (5.72) implies that for
each j = 1, . . . , n the equation

A′T x1 − A′T x2 = ej

is feasible, i.e., the equation A′T x = ej has a solution xj. Then the matrix X consisting
of columns x1, . . . , xn satisfies A′T X = I, which proves that A′T , and thus also A′, is
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nonsingular. We have proved that strong feasibility of (5.72) implies nonsingularity of
each A′ ∈ [A− eeT , A+ eeT ]. As we have seen in the proof of Theorem 210, solvability
of (5.70), (5.71) would mean existence of a singular matrix A′ ∈ [A − eeT , A + eeT ],
a contradiction. Hence (5.70), (5.71) is not solvable, which concludes the proof of the
“only if” part. In view of Theorem 22, the established equivalence shows that checking
strong feasibility is NP-hard. 2

Theorem 214. A system Ax = b is strongly feasible if and only if for each p ∈ Rm,
AT

c p + ∆T |p| ≥ 0 implies bT
c p− δT |p| ≥ 0.

Proof: First we prove that each system

Ax = b, x ≥ 0 (5.76)

with data satisfying
A ∈ A, b ∈ b (5.77)

has a solution if and only if

(∀y)(AT
c y + ∆T |y| ≥ 0 ⇒ bT

c y − δT |y| ≥ 0) (5.78)

holds. “Only if”: Let each system (5.76) with data (5.77) have a solution, and let
AT

c y + ∆T |y| ≥ 0 for some y ∈ Rm. Define a diagonal matrix T by Tii = 1 if yi ≥ 0,
Tii = −1 if yi < 0, and Tij = 0 if i 6= j (i, j = 1, . . . , m), then |y| = Ty. Consider now
the system

(Ac + T∆)x = bc − Tδ, x ≥ 0. (5.79)

Since Ac +T∆ ∈ A and bc−Tδ ∈ b, the system (5.79) has a solution according to the
assumption, and (Ac + T∆)T y = AT

c y + ∆T |y| ≥ 0, hence Farkas lemma applied to
(5.79) gives that bT

c y − δT |y| = (bc − Tδ)T y ≥ 0, which proves (5.78). “If”: Assuming
that (5.78) holds, consider a system (5.76) with data satisfying (5.77). Let AT y ≥ 0
for some y; then AT

c y + ∆T |y| ≥ (Ac + A− Ac)
T y = AT y ≥ 0, hence (5.78) gives that

bT y = (bc +b−bc)
T y ≥ bT

c y−δT |y| ≥ 0. Thus we have proved that for each y, AT y ≥ 0
implies bT y ≥ 0, and Farkas lemma proves the existence of a solution to (5.76). 2

Of the four decision problems related to interval linear equations we have investi-
gated so far, three were found to be NP-hard and only one to be solvable in polynomial
time. In the next four sections we shall see that this ratio becomes exactly reciprocal
for interval linear inequalities: only one problem will be NP-hard, and three will be
solvable in polynomial time.
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5.2.8 Farkas-type theorems for equations

Theorem 215. A system of interval linear equations Ax = b is

• weakly solvable if and only if

(∃z ∈ Yn)(∀p)(TzA
T
c p ≥ ∆T |p| ⇒ bT

c p + δT |p| ≥ 0),

• weakly feasible if and only if

(∀p)(AT
c p ≥ ∆T |p| ⇒ bT

c p + δT |p| ≥ 0),

• strongly solvable if and only if

(∀p)(|AT
c p| ≤ ∆T |p| ⇒ bT

c p− δT |p| ≥ 0),

• strongly feasible if and only if

(∀p)(AT
c p + ∆T |p| ≥ 0 ⇒ bT

c p− δT |p| ≥ 0).

Proof: Weak feasibility [67], pp. 524-525, strong feasibility [96], pp. S1051-S1052; the
other unpublished. 2

Theorem 216. If a system Ax = b is not weakly feasible, then there exists a fixed
linear combination of rows which, when applied to any system Ax = b with A ∈ A and
b ∈ b, always produces an equation which does not possess a nonnegative solution.

Proof: [78], p. 94. 2
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5.2.9 Weak solvability of inequalities

As in Section 5.2.4, we first define x ∈ Rn to be a weak solution of a system of interval
linear inequalities Ax ≤ b if it satisfies Ax ≤ b for some A ∈ A, b ∈ b. Gerlach [14]
proved in 1981 an analogue of the Oettli-Prager theorem for the case of interval linear
inequalities:

Theorem 217. (Gerlach) A vector x is a weak solution of Ax ≤ b if and only if it
satisfies

Acx−∆|x| ≤ b. (5.80)

Proof: If x solves Ax ≤ b for some A ∈ A and b ∈ b, then

Acx− bc ≤ (Ac − A)x + b− bc ≤ |(Ac − A)x + b− bc| ≤ ∆|x|+ δ,

which is (5.80). Conversely, let (5.80) hold for some x. Put z = sgn x, then substituting
|x| = Tzx into (5.80) leads to

Aezx ≤ b,

where Aez ∈ A and b ∈ b, hence x is a weak solution of Ax ≤ b. 2

A system Ax ≤ b is weakly solvable (Section 5.2.3) if some system Ax ≤ b, A ∈ A,
b ∈ b is solvable; in other words, weak solvability is equivalent to existence of a weak
solution. Hence, the Gerlach theorem provides us with the following characterization:

Theorem 218. A system Ax ≤ b is weakly solvable if and only if the system

Aezx ≤ b (5.81)

is solvable for some z ∈ Yn.

Proof: If x is a weak solution of Ax ≤ b, then, as we have seen in the proof of the
Gerlach theorem, it satisfies (5.81) for z = sgn x. Conversely, if x satisfies (5.81) for
some z ∈ Yn, then it is a weak solution of the system Ax ≤ b which is then weakly
solvable. 2

The description suggests that the problem might be NP-hard, and it turns out to
be again the case:

Theorem 219. Checking weak solvability of interval linear inequalities is NP-hard.

Proof: Given a square matrix A, the system

− e ≤ Ax ≤ e, (5.82)
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eT |x| ≥ 1 (5.83)

can be rewritten equivalently as




A
−A

0T


 x−




0
0
eT


 |x| ≤




e
e

−1


 ,

which is just the Gerlach inequality (5.80) for the system

Ax ≤ b, (5.84)

where

Ac =




A
−A

0T


 , ∆ =




0
0
eT


 , b = b =




e
e

−1


 . (5.85)

Hence the system (5.82), (5.83) has a solution if and only if the system of interval
linear inequalities (5.84), (5.85) is weakly solvable. Thus the NP-complete problem
of checking solvability of (5.82), (5.83) (Theorem 22) can be reduced in polynomial
time to the problem of checking weak solvability of interval linear inequalities, which
is then NP-hard. 2
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5.2.10 Weak feasibility of inequalities

Weak feasibility of inequalities was defined in Section 5.2.3 as existence of a nonneg-
ative weak solution. For nonnegative x we can replace the term |x| in the Gerlach
inequality simply by x, thereby obtaining this simple characterization:

Theorem 220. A system Ax ≤ b is weakly feasible if and only if the system

Ax ≤ b (5.86)

is feasible.

Proof: If x ≥ 0 satisfies Ax ≤ b for some A ∈ A and b ∈ b, then

Ax ≤ Ax ≤ b ≤ b

and x is a feasible solution to (5.86). Conversely, feasibility of (5.86) obviously implies
weak feasibility of Ax ≤ b. 2

Since feasibility of only one system of linear inequalities is to be checked, the problem
is solvable in polynomial time (see the last paragraph of Section 5.2.2).
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5.2.11 Strong solvability of inequalities

By definition, a system Ax ≤ b is strongly solvable if each system Ax ≤ b with A ∈ A,
b ∈ b is solvable. Since the problem of checking strong solvability of interval linear
equations is NP-hard (Theorem 210), one might expect the same to be the case for
interval linear inequalities. But this analogy is no more true, and we have this rather
surprising result:

Theorem 221. A system Ax ≤ b is strongly solvable if and only if the system

Ax1 − Ax2 ≤ b (5.87)

is feasible.

Proof: “Only if”: Assume to the contrary that the system (5.87) is not feasible; then
neither is the system

Ax1 − Ax2 + x3 = b,

and Farkas theorem implies existence of a vector p ∈ Rm satisfying

A
T
p ≥ 0, (5.88)

AT p ≤ 0, (5.89)

p ≥ 0, (5.90)

bT p < 0. (5.91)

Then (5.88) and (5.89) give

−∆T p ≤ −AT
c p ≤ ∆T p,

hence

|AT
c p| ≤ ∆T p = ∆T |p|

because of (5.90), and the Oettli-Prager theorem as applied to the system

[AT
c −∆T , AT

c + ∆T ]x = [0, 0]

implies existence of a matrix A ∈ A satisfying

AT p = 0,

which together with (5.90) and (5.91) shows in the light of Theorem 201 that the
system

Ax ≤ b

does not have a solution, a contradiction.
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“If”: Let x1 ≥ 0, x2 ≥ 0 solve (5.87). Then for each A ∈ A and each b ∈ b we have

A(x1 − x2) ≤ Ax1 − Ax2 ≤ b ≤ b,

so that x1 − x2 solves Ax ≤ b. Hence Ax ≤ b is strongly solvable; even more, all the
systems Ax ≤ b, A ∈ A, b ∈ b share a common solution x1 − x2. 2

Hence checking strong solvability of inequalities can be performed in polynomial
time. Let us call a vector x satisfying Ax ≤ b for each A ∈ A, b ∈ b a strong solution
of Ax ≤ b. We have simultaneously proved the following result:

Theorem 222. If a system Ax ≤ b is strongly solvable, then it has a strong solution.

In other words, if each system Ax ≤ b with data satisfying A ∈ A, b ∈ b has a
solution of its own (depending on A and b, say x(A, b)), then all these systems share
a common solution. This fact is certainly not obvious.

We have this characterization of strong solutions:

Theorem 223. The following assertions are equivalent:

(i) x is a strong solution of Ax ≤ b,
(ii) x satisfies

Acx− bc ≤ −∆|x| − δ, (5.92)

(iii) x = x1 − x2, where x1, x2 satisfy

Ax1 − Ax2 ≤ b, (5.93)

x1 ≥ 0, x2 ≥ 0. (5.94)

Proof: We shall prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii): If Ax ≤ b for each A ∈ A, b ∈ b, then also A−ezx ≤ b, where z = sgn x,
hence

Acx + ∆|x| = (Ac + ∆Tz)x = A−ezx ≤ b = bc − δ,

which implies (5.92).

(ii)⇒(iii): If x satisfies (5.92), then for x1 = x+ = max{x, 0}, x2 = x− = max{−x, 0}
we have x1 ≥ 0, x2 ≥ 0 and

Ax1 − Ax2 = Ac(x
1 − x2) + ∆(x1 + x2) = Acx + ∆|x| ≤ bc − δ = b,

hence x1, x2 solve (5.93), (5.94) and x = x1 − x2.

(iii)⇒(i) was proved in the “if” part of the proof of Theorem 221. 2

We can sum up these results in the form of a simple algorithm:

242



function [x, flag] = strongsol(A,b)
solve the system Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0;
if it has a solution x1, x2

x = x1 − x2; flag = ′strong solution found′; return
else

x = [ ]; flag = ′not strongly solvable′;
end

Figure 5.1: An algorithm for checking strong solvability of Ax ≤ b.

5.2.12 Strong feasibility of inequalities

Finally, checking strong feasibility of inequalities is easy to characterize and can be
done in polynomial time:

Theorem 224. A system Ax ≤ b is strongly feasible if and only if the system

Ax ≤ b (5.95)

is feasible.

Proof: If Ax ≤ b is strongly feasible, then (5.95) is feasible. Conversely, if (5.95) has
a solution x ≥ 0, then for each A ∈ A, b ∈ b we have

Ax ≤ Ax ≤ b ≤ b,

hence Ax ≤ b is strongly feasible. 2
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5.2.13 Farkas-type theorems for inequalities

Theorem 225. A system of interval linear inequalities Ax ≤ b is

• weakly solvable if and only if

(∃z ∈ Yn)(∀p ≥ 0)(TzA
T
c p ≥ ∆T p ⇒ (bc + δ)T p ≥ 0),

• weakly feasible if and only if

(∀p ≥ 0)((Ac −∆)T p ≥ 0 ⇒ (bc + δ)T p ≥ 0),

• strongly solvable if and only if

(∀p ≥ 0)(|AT
c p| ≤ ∆T p ⇒ (bc − δ)T p ≥ 0),

• strongly feasible if and only if

(∀p ≥ 0)((Ac + ∆)T p ≥ 0 ⇒ (bc − δ)T p ≥ 0).

Proof: Unpublished. 2
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5.2.14 Summary: Complexity results

We can now summarize the results of the previous eight sections in the form of a table.

weak- solvable NP-hard
equat- ly feasible polynomial-time
ions strong- solvable NP-hard

system ly feasible NP-hard
of weak- solvable NP-hard

inequa- ly feasible polynomial-time
lities strong- solvable polynomial-time

ly feasible polynomial-time

We can draw several conclusions from it. For interval problems, on the average:

(i) properties of equations are more difficult to check than those of inequalities,

(ii) checking solvability is more difficult than checking feasibility,
(iii) there is no such distinction between weak and strong properties.
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5.3 Radii of solvability and feasibility
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5.3.1 Definitions

Definition. For a system Ax = b we introduce:

rse(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x = b′ is unsolvable },
rue(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x = b′ is solvable },
rfe(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x = b′ is infeasible },
rie(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x = b′ is feasible }.

Definition. For a system Ax ≤ b we introduce:

rsi(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x ≤ b′ is unsolvable },
rui(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x ≤ b′ is solvable },
rfi(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x ≤ b′ is infeasible },
rii(A, b) = inf{ ‖(A, b)− (A′, b′)‖1,∞; A′x ≤ b′ is feasible }.

Note. ‖A‖1,∞ = maxij |aij|.
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5.3.2 Radii of (un)solvability and (in)feasibility for equations

Theorem 226. For each A ∈ Rm×n, b ∈ Rm there holds:

rse(A, b) = min
‖p‖1=1

max{ ‖AT p‖∞, |bT p| },

rue(A, b) = min
x

‖Ax− b‖∞
‖x‖1 + 1

,

rfe(A, b) = min
‖p‖1=1

max{ 0, max
i

(−AT p)i, bT p },

rie(A, b) = min
x≥0

‖Ax− b‖∞
‖x‖1 + 1

.

Proof: Unpublished. 2
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5.3.3 Radii of (un)solvability and (in)feasibility for inequalities

Theorem 227. For each A ∈ Rm×n, b ∈ Rm there holds:

rsi(A, b) = min
‖p‖1=1

p≥0

max{‖AT p‖∞, bT p},

rui(A, b) = min
x

max{0, maxi(Ax− b)i}
‖x‖1 + 1

,

rfi(A, b) = min
‖p‖1=1

p≥0

max{0, max
i

(−AT p)i, b
T p},

rii(A, b) = min
x≥0

max{0, maxi(Ax− b)i}
‖x‖1 + 1

.

Proof: Unpublished. 2
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5.4 Special types of solutions
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5.4.1 (Z, z)-solutions: A generalization of the Oettli-Prager theorem

In 1995 S. P. Shary proposed a new unifying view of different concepts of solutions of
interval linear equations by introducing quantifications over interval coefficients. His
definition is reformulated here in order to make it, as well as the following result, as
simple as possible.

Definition. Let |Z| = E ∈ Rm×n and |z| = e ∈ Rm. A vector x ∈ Rn is said to be a
(Z, z)-solution of a system Ax = b if for each Aij ∈ [Aij, Aij] with Zij = −1 and for

each bi ∈ [bi, bi] with zi = −1 there exist Aij ∈ [Aij, Aij] with Zij = 1 and bi ∈ [bi, bi]
with zi = 1 such that Ax = b holds1.

Despite the complexity of this definition, it turns out that description of (Z, z)-
solutions becomes wonderfully simple as soon as the Hadamard product is employed.
The following theorem constitutes a generalization of the Oettli-Prager theorem as
well as of several our previous results.

Theorem 228. (Shary-Lakeyev-Rohn) A vector x ∈ Rn is a (Z, z)-solution of
Ax = b if and only if it satisfies

|Acx− bc| ≤ (Z ◦∆)|x|+ z ◦ δ. (5.96)

Proof: Given Z and z, first define interval matrices A1, A2 and interval vectors b1,
b2 by

A1 = {1
2
(E − Z) ◦ A; A ∈ A} = [A′

c −∆′, A′
c + ∆′],

A2 = {1
2
(E + Z) ◦ A; A ∈ A} = [A′′

c −∆′′, A′′
c + ∆′′],

b1 = {1
2
(e− z) ◦ b; b ∈ b} = [b′c − δ′, b′c + δ′],

b2 = {1
2
(e + z) ◦ b; b ∈ b} = [b′′c − δ′′, b′′c + δ′′],

where “◦” denotes the Hadamard product. As we can see, A1 is obtained from A by
zeroing the ijth interval coefficients with Zij = 1, A2 by zeroing those with Zij = −1,
and an analogue holds for b1, b2. Then x is a (Z, z)-solution if and only if for each
A1 ∈ A1, b1 ∈ b1 the equation

(A1 + A2)b = b1 + b2,

i.e., the equation
A1x− b1 = b2 − A2x,

is satisfied for some A2 ∈ A2, b2 ∈ b2, which is equivalent to

{A1x− b1; A1 ∈ A1, b1 ∈ b1} ⊆ {b2 − A2x; A2 ∈ A2, , b2 ∈ b2}. (5.97)

1Thus “−1” corresponds to “∀” and “1” to “∃”. It could be argued that the reverse order would
be more natural, but we would have to pay for it by introducing minus signs into the main formula
(5.96).
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But according to Proposition 229,

{A1x− b1; A1 ∈ A1, b1 ∈ b1} = [A′
cx−∆′|x| − b′c − δ′, A′

cx + ∆′|x| − b′c + δ′]

and

{b2 − A2x; b2 ∈ b2, A2 ∈ A2} = [−A′′
cx−∆′′|x|+ b′′c − δ′′,−A′′

cx + ∆′′|x|+ b′′c + δ′′],

hence the inclusion (5.97) is equivalent to

−(∆′′ −∆′)|x| − (δ′′ − δ′) ≤ (A′
c + A′′

c )x− (b′c + b′′c ) ≤ (∆′′ −∆′)|x|+ (δ′′ − δ′),

which gives
|(A′

c + A′′
c )x− (b′c + b′′c )| ≤ (∆′′ −∆′)|x|+ (δ′′ − δ′). (5.98)

Now, taking into account that A′
c + A′′

c = Ac, b′c + b′′c = bc, ∆′′ − ∆′ = Z ◦ ∆, and
δ′′ − δ′ = z ◦ δ, we obtain (5.96). 2

In this way, the previously defined types of solutions become special cases of (Z, z)-
solutions, and their descriptions turn out to be special cases of Theorem 228. So we
obtain

• weak solutions for Z = E, z = e (Theorem 204),

• strong solutions for Z = −E, z = −e (Theorem 211),
• tolerance solutions for Z = −E, z = e (Theorem 230, (ii)),

• control solutions for Z = E, z = −e (Theorem 231, (ii)).

This shows that Theorem 228 (though little known so far) indeed offers a unified
view of different types of solutions of interval linear equations. It could also be easily
reformulated for interval linear inequalities, but we refrain from it here.
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5.4.2 Tolerance solutions

So far we have investigated mainly decision problems and in frame of it four types
of solutions (weak and strong solutions of both equations and inequalities) were in-
troduced as auxiliary tools only. In this and in the next two sections we shall define
additional three types of solutions motivated by some practical considerations.

In the present section we shall study tolerance solutions. A vector x ∈ Rn is said to
be a tolerance solution of Ax = b if it satisfies Ax ∈ b for each A ∈ A. The name of
this type of solution reflects the fact that vector Ax stays within the prescribed toler-
ance [b, b] independently of the choice of A ∈ A. Original motivations for introducing
and studying tolerance solutions came from the problem of crane construction (Nuding
and Wilhelm [56]) and from the problem of input-output planning with inexact data
[66].

The definition can also be recast by saying that x shall satisfy

{Ax; A ∈ A} ⊆ b. (5.99)

We start therefore with a description of the left-hand-side set in (5.99).

Proposition 229 Let A be an m × n interval matrix and let x ∈ Rn. Then there
holds

{Ax; A ∈ A} = [Acx−∆|x|, Acx + ∆|x|]. (5.100)

Proof: If b ∈ {Ax; A ∈ A}, then Ax = b for some A ∈ A, hence x is a weak solution
of

Ax = [b, b] (5.101)

and by the Oettli-Prager theorem it satisfies

|Acx− b| ≤ ∆|x|, (5.102)

hence
−∆|x| ≤ Acx− b ≤ ∆|x| (5.103)

and
Acx−∆|x| ≤ b ≤ Acx + ∆|x|. (5.104)

We have proved that {Ax; A ∈ A} ⊆ [Acx − ∆|x|, Acx + ∆|x|]. Conversely, if
b ∈ [Acx − ∆|x|, Acx + ∆|x|], then b satisfies (5.104), (5.103) and (5.102), hence x
is a weak solution of (5.101) which gives that b ∈ {Ax; A ∈ A}. This proves the
converse inclusion, hence (5.100) holds. 2

With the help of this auxiliary result we can give two equivalent descriptions of
tolerance solutions:
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Theorem 230. The following assertions are equivalent:

(i) x is a tolerance solution of Ax = b,

(ii) x satisfies
|Acx− bc| ≤ −∆|x|+ δ, (5.105)

(iii) x = x1 − x2, where x1, x2 satisfy

Ax1 − Ax2 ≤ b, (5.106)

Ax1 − Ax2 ≥ b, (5.107)

x1 ≥ 0, x2 ≥ 0. (5.108)

Proof: We prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii): According to Proposition 229,

{Ax; A ∈ A} = [Acx−∆|x|, Acx + ∆|x|].
Hence, if x is a tolerance solution, then

[Acx−∆|x|, Acx + ∆|x|] ⊆ [bc − δ, bc + δ],

which implies
bc − δ ≤ Acx−∆|x| ≤ Acx + ∆|x| ≤ bc + δ

and thus also
− (−∆|x|+ δ) ≤ Acx− bc ≤ −∆|x|+ δ, (5.109)

which is (5.105).

(ii)⇒(iii): If x satisfies (5.105), then for x1 = x+, x2 = x− we have x = x1 − x2,
|x| = x1 + x2 and the inequalities (5.109) turn into

∆(x1 + x2)− δ ≤ Ac(x1 − x2)− bc ≤ −∆(x1 + x2) + δ,

which gives (5.106), (5.107), and (5.108) is satisfied because x+ ≥ 0, x− ≥ 0.

(iii)⇒(i): If x1 ≥ 0, x2 ≥ 0 solve (5.106), (5.107), then for x = x1− x2 and for each
A ∈ A we have

Ax = A(x1 − x2) ≤ Ax1 − Ax2 ≤ b

and
Ax = A(x1 − x2) ≥ Ax1 − Ax2 ≥ b

which shows that Ax ∈ b for each A ∈ A, hence x is a tolerance solution. 2

There is a remarkable similarity between the inequality (5.105) and the Oettli-Prager
inequality (5.27): both descriptions differ in the sign preceding the matrix ∆ only. Yet
this seemingly small difference has an astounding impact: while checking existence of
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solution of the Oettli-Prager inequality is NP-hard (Theorem 207), checking existence
of a tolerance solution can be performed in polynomial time simply by checking solv-
ability of the system (5.106)-(5.108). The description (iii) also shows that the set of
tolerance solutions is a convex polyhedron, it allows to compute the range of com-
ponents of tolerance solutions by solving the respective linear programming problems
[74], etc.
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5.4.3 Control solutions

A vector x ∈ Rn is called a control solution of Ax = b if for each b ∈ b there exists
an A ∈ A such that Ax = b holds; in other words, if

b ⊆ {Ax; A ∈ A}.

Control solutions were introduced by Shary [106] in 1992. The choice of the word
“control” was probably motivated by the fact that each vector b ∈ b can be reached
by Ax when properly controlling the coefficients of A within A. We have this charac-
terization:

Theorem 231. The following assertions are equivalent:

(i) x is a control solution of Ax = b,

(ii) x satisfies
|Acx− bc| ≤ ∆|x| − δ, (5.110)

(iii) x solves

Aezx ≤ b, (5.111)

−A−ezx ≤ −b (5.112)

for some z ∈ Yn.

Proof: We shall prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii): If x is a control solution, then by Proposition 229 it satisfies [bc−δ, bc+δ] ⊆
{Ax; A ∈ A} = [Acx−∆|x|, Acx + ∆|x|], which implies

Acx−∆|x| ≤ bc − δ ≤ bc + δ ≤ Acx + ∆|x|

and
− (∆|x| − δ) ≤ Acx− bc ≤ ∆|x| − δ, (5.113)

hence
|Acx− bc| ≤ ∆|x| − δ.

(ii)⇒(iii): If x satisfies (5.110), then (5.113) holds and with z = sgn x we can
substitute |x| = Tzx into (5.113) which leads to (5.111), (5.112).

(iii)⇒(i): If x solves (5.111), (5.112) for some z ∈ Yn, then |∆Tzx| ≤ ∆|x|, hence

Acx−∆|x| ≤ (Ac −∆Tz)x = Aezx ≤ b ≤ b ≤ A−ezx

= (Ac + ∆Tz)x ≤ Acx + ∆|x|,

which implies
[b, b] ⊆ [Acx−∆|x|, Acx + ∆|x|] = {Ax; A ∈ A}
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by Proposition 229, hence x is a control solution. 2

Again, the inequality (5.110) differs from the Oettli-Prager inequality (5.27) in the
sign preceding δ only. But this time the difference does not affect complexity of the
problem:

Theorem 232. Checking existence of control solutions is NP-hard.

Proof: For a square matrix A, consider the system

− e ≤ Ax ≤ e, (5.114)

eT |x| ≥ 1, (5.115)

and the inequality

∣∣∣∣
(

A
0T

)
x−

(
0
1

)∣∣∣∣ ≤
(

eeT

eT

)
|x| −

(
0
0

)
. (5.116)

If x solves (5.114), (5.115), then it also solves (5.116). Conversely, if x solves (5.116),
then x 6= 0 and x′ = x

eT |x| solves (5.114), (5.115). Hence, the system (5.114), (5.115)

has a solution if and only if the inequality (5.116) has a solution. But (5.116) is exactly
the inequality (5.110) for the system of interval linear equations

[A− eeT , A + eeT ]x = [0, 0], (5.117)

[−eT , eT ]x = [1, 1], (5.118)

which gives that (5.114), (5.115) has a solution if and only if (5.117), (5.118) has a
control solution. Now an application of Theorem 22 concludes the proof. 2
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5.4.4 (Strictly) formal solutions

Definition. An interval vector x is called a formal solution of an interval linear
system Ax = b if it satisfies A · x = b, where the matrix multiplication is performed
in interval arithmetic.

Definition. An interval vector x is called a strictly formal solution of Ax = b if it
is a formal solution of it and there exist A′, A′′ ∈ A and x′, x′′ ∈ x such that A′x′ = b
and A′′x′′ = b hold.

Theorem 233. Let Ax = b have a strictly formal solution. Then the equations

Acx−∆|x| = b, (5.119)

Acx + ∆|x| = b (5.120)

have solutions and for each pair x1, x2 of solutions of (5.119), (5.120) the interval
vector

x = [min{x1, x2}, max{x1, x2}]
is a strictly formal solution of Ax = b.

Proof: [84], p. 222. 2

Theorem 234. Let A be regular and let

x∗ = [min{x1, x2}, max{x1, x2}],

where x1 and x2 are the unique solutions of the equations (5.119), (5.120) respectively
(see Subsection ...). Then there holds: if Ax = b has a strictly formal solution, then
x∗ is a strictly formal solution.

Proof: [84], p. 222. 2
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5.4.5 Algebraic solutions

A vector x ∈ Rn is called an algebraic solution of Ax = b if it satisfies

{Ax; A ∈ A} = b. (5.121)

Algebraic solutions were first introduced by Ratschek and Sauer in [61]. This type of
solution is easy to characterize:

Theorem 235. x is an algebraic solution of Ax = b if and only if it satisfies

Acx = bc, (5.122)

∆|x| = δ. (5.123)

Proof: By Proposition 229, (5.121) is equivalent to

[Acx−∆|x|, Acx + ∆|x|] = [bc − δ, bc + δ], (5.124)

which implies (5.122), (5.123). On the other hand, (5.122) and (5.123) imply (5.124)
and thus also (5.121). 2

It follows from Theorems 230 and 231, inequalities (5.105) and (5.110), that x is an
algebraic solution of Ax = b if and only if it is both tolerance and control solution of
it. If m = n and Ac is nonsingular, then Ax = b has an algebraic solution if and only
if the data satisfy

∆|A−1
c bc| = δ, (5.125)

in which case x = A−1
c bc is the unique algebraic solution of it.
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5.4.6 Summary: Solution types

We have introduced altogether eight types of solutions. We summarize the results in
the following table which clearly illustrates the tiny differences in their descriptions.

Solution Description Reference

weak solution of Ax = b |Acx− bc| ≤ ∆|x|+ δ (5.27)
strong solution of Ax = b Acx− bc = ∆|x| = δ = 0 (5.62), (5.63)
weak solution of Ax ≤ b Acx− bc ≤ ∆|x|+ δ (5.80)
strong solution of Ax ≤ b Acx− bc ≤ −∆|x| − δ (5.92)

tolerance solution |Acx− bc| ≤ −∆|x|+ δ (5.105)
control solution |Acx− bc| ≤ ∆|x| − δ (5.110)

algebraic solution Acx− bc = ∆|x| − δ = 0 (5.122), (5.123)
(Z, z)-solution |Acx− bc| ≤ (Z ◦∆)|x|+ z ◦ δ (5.96)
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5.5 Notes and references

In this section we give some additional notes and references to the material contained
in this chapter.

Section 5.2.1. We use standard linear algebraic notations except for Ym, Ty and
sgn x (introduced in [81]).

Section 5.2.2. The word “feasibility”, which is a one-word substitute for nonnegative
solvability, was inspired by linear programming terminology. Theorem 199, also known
as Farkas lemma, was proved by Farkas [9] in 1902. It is an important theoretical
result (as evidenced throughout this chapter), but it does not give a constructive way
of checking feasibility which must be done by another means (usually by a linear
programming technique).

Section 3.2.2. Matrices Ayz and vectors by were introduced in [81]. Importance of
the finite set of matrices Ayz becomes more apparent with problems involving square
interval matrices only (as regularity, positive definiteness etc.). For example, an inter-
val matrix A is regular (see Section 3.3.2) if and only if det Ayz is of the same sign for
each z, y ∈ Yn (Baumann [4]); for further results of this type see the monograph by
Kreinovich, Lakeyev, Rohn and Kahl [38], Chapters 21 and 22. As we have seen, in
context of interval systems typically only matrices of the form Aye or Aez arise.

Section 5.2.3. The definition of an interval linear system Ax = b as a family of
systems Ax = b, A ∈ A, b ∈ b makes it possible to define various types of solutions.
The notion of strong feasibility of interval linear equations was introduced in [68], and
weak solvability as a counterpart of strong solvability was first studied by Rohn and
Kreslová in [101]. Formulation and study of the complete set of the eight decision
problems is new and forms the bulk of this chapter.

Section 5.2.4. The Oettli-Prager theorem is formulated here in the form (5.27)
which has become standard, although not explicitly present in the original paper [57]
where the authors preferred an entrywise formulation. The theorem is now considered
a basic tool for both backward error analysis (Golub and van Loan [15], Higham [20])
and interval analysis (Neumaier [55]) of systems of linear equations. Another form of
Proposition 205 (perhaps more attractive, but less useful) is described in [72], Theorem
1.2. NP-hardness of checking weak solvability of equations was proved by Lakeyev and
Noskov [41] (preliminary announcement without proof in [40]) by another means. The
proof given here employs polynomial reduction of our standard problem of Theorem
22 to the current problem, an approach adhered to throughout the chapter.

Section 5.2.5. Theorem 208 is a simple consequence of the Oettli-Prager theorem.
It was rediscovered independently in [65].

Section 5.2.6. The proof of Theorem 209 is not straightforward and so was the
history of it. The “if” part was formulated and proved in technical reports [71], [70] in
1984, but the author refrained from further journal publication because he considered
the sufficient condition too strong. Only in 1996 he discovered by chance that it was
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also necessary (paradoxically, it was the easier part of the proof), which gave rise to
Theorem 209 published in [99]. The second part of the proof of the “if” part relies in
fact on a new existence theorem for systems of linear equations which was published
in [83] (existence proof, as given here) and in [85] (constructive proof). NP-hardness
of checking strong solvability (Theorem 210) is an easy consequence of the same com-
plexity result for the problem of checking regularity of interval matrices (Theorem ...),
but because of the layout of this chapter it had to be proved independently.

Section 5.2.7. Characterization of strong feasibility of equations (Theorem 212) was
published in [68] as a part of study of the interval linear programming problem. Many
unsuccessful attempts by the author through the following years to find a characteri-
zation of strong feasibility that would not be inherently exponential finally led to the
NP-hardness conjecture and to the proof of it in [96] (part 2 of the proof).

Section 5.2.9. Gerlach [14] initiated study of systems of interval linear inequalities
by proving Theorem 217 as a follow-up of the Oettli-Prager theorem. NP-hardness of
checking weak solvability of inequalities was proved in technical report [90] and has
not been published in journal form.

Section 5.2.10. The result of Theorem 220 is obvious and is included here for
completeness.

Section 5.2.11. Both Theorems 221 and 222 are due to Rohn and Kreslová [101].
The contrast between the complexity results for strong solvability of interval linear
equations (Theorem 210) and inequalities (Theorem 221) is striking and reveals that
classical solvability-preserving reductions between linear equations and linear inequal-
ities are no longer in force when inexact data are present. In fact, a system of linear
equations Ax = b can be equivalently written as a system if linear inequalities Ax ≤ b,
−Ax ≤ −b and solved as such. But in case of interval data, the sets of weak solutions
of Ax = b and of Ax ≤ b, −Ax ≤ −b are generally not identical since the latter
family contains systems of inequalities of type Ax ≤ b, −Ãx ≤ −b̃ (A, Ã ∈ A, b, b̃ ∈ b)
that may possess solutions which do not satisfy Ax = b for any A ∈ A, b ∈ b. Exis-
tence of strong solutions in case of strong solvability (Theorem 222) is a nontrivial fact
which can be expected to find some applications, although none of them have been
known to date.

Section 5.2.12. Theorem 224 is again obvious.

Section 5.4.1. Shary presented his idea of (Z, z)-solutions, which he called “∀∃-
solutions”, at a conference in Wuppertal in 1995 and published it in [110]. His for-
mulation of Theorem 228 contained, however, interval arithmetic operations. A proof
not using these operations and based on the Oettli-Prager theorem was given in this
author’s letter to Shary and Lakeyev [64]. The final step towards utmost simplicity
by employing the Hadamard product was done by Lakeyev in [39].

Section 5.4.2. Introduction of the notion of tolerance solutions was motivated by
considerations concerning crane construction (Nuding and Wilhelm [56]) and input-
output planning with inexact data of the socialist economy of former Czechoslovakia
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[66]. Descriptions (ii), (iii) of tolerance solutions in Theorem 230 were proved in
[74]. Tolerance solutions were studied since by Neumaier [54], Deif [8], Kelling and
Oelschlägel [33], Kelling [31], [32], Shaydurov and Shary [113], Shary [105], [107], [108],
[109] and Lakeyev and Noskov [41].

Section 5.4.3. Control solutions were introduced by Shary [106] and further studied
by him in [109], [111]. The description (5.110) in Theorem 231 is due to Lakeyev and
Noskov [41] who in the same paper also proved NP-hardness of checking existence of
control solutions, as well as of algebraic solutions. For other possible types of solutions
see the survey paper by Shary [112].

Section 5.4.5. Algebraic solutions were introduced by Ratschek and Sauer [61],
although for the case m = 1 only. The condition (5.125) was proved in [72]. The
topic makes more sense when the problem is formulated as A · x = b, where x is an
interval vector and multiplication is performed in interval arithmetic. A solution of
this problem in full generality is not known so far; for a partial solution see [84].
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Chapter 6

Interval linear programming
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6.1 Introduction
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6.2 Summary of facts: Duality in linear programming

We shall now switch to optimization problems. Given A ∈ Rm×n, b ∈ Rm and c ∈ Rn,
the problem

minimize cT x (6.1)

subject to (s.t.)
Ax = b, x ≥ 0 (6.2)

is called a linear programming problem, or simply a linear program. We shall write
the problem (6.1), (6.2) briefly as

Min{cT x; Ax = b, x ≥ 0} (6.3)

(notice the use of the upper case in “Min” to denote a problem in contrast to “min”
which denotes minimum when applicable). A vector x satisfying (6.2) is called a
feasible solution of (6.3). A problem (6.3) having a feasible solution is said to be
feasible, and infeasible in the opposite case. Hence, the problem (6.3) is feasible if and
only if the system Ax = b is feasible in terminology of Section 5.2.2.

For a given linear program (6.3) we introduce the value

f(A, b, c) = inf{cT x; Ax = b, x ≥ 0} (6.4)

and we shall call it the optimal value of (6.3)1. The optimal value can be computed
by any linear programming technique, as e.g. the simplex method by Dantzig [7], or
the polynomial-time algorithms by Khachiyan [34], Karmarkar [30] and others (see
Padberg [58]). Exactly one of the following three cases may occur:

(a) If f(A, b, c) is finite, then, as proved in part (a) of the proof of Theorem 236
below, the infimum in (6.4) is attained as minimum, so that there exists a feasible
solution x∗ of (6.3) satisfying f(A, b, c) = cT x∗. Such an x∗ is called an optimal
solution of (6.3). In this case we say that the problem (6.3) has an optimal solution.

(b) If f(A, b, c) = −∞, then the set of feasible solutions of (6.3) contains a half-line
along which the value of cT x tends to −∞ (see part (b) of the proof of Theorem 236);
in this case we call the problem (6.3) unbounded.

(c) If f(A, b, c) = ∞, then the set of feasible solutions of (6.3) is empty, hence the
problem (6.3) is infeasible.

Given a problem (6.3) (called “primal” in this context), we can formulate its dual
problem as

maximize bT p (6.5)

s.t.
AT p ≤ c, (6.6)

1in linear programming only finite value of f(A, b, c) is accepted as the optimal value; we use this
formulation for the sake of utmost generality of later results.
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or briefly
Max{bT p; AT p ≤ c} (6.7)

(notice that the nonnegativity constraint is missing in (6.6)). The dual problem is
called solvable if the system AT p ≤ c is solvable2, and unsolvable in the opposite case.
In analogy with the primal problem, we introduce for the dual problem the value

g(A, b, c) = sup{bT p; AT p ≤ c}.
A solution p∗ of AT p ≤ c is called an optimal solution of (6.7) if g(A, b, c) = bT p∗; if
g(A, b, c) = −∞, then the problem (6.7) is unsolvable, and if g(A, b, c) = ∞, then it
is called unbounded. The primal and the dual problem are connected by the following
important result whose proof is included here for the sake of completeness:

Theorem 236. [Duality theorem] If f(A, b, c) < ∞ or g(A, b, c) > −∞, then

f(A, b, c) = g(A, b, c). (6.8)

Comment. The formal equality (6.8) covers three qualitative issues: (i) if one of
the problems (6.3), (6.7) has an optimal solution, then so does the second one and
the optimal values of both problems are equal, (ii) if the primal problem (6.3) is
unbounded, then the dual problem (6.7) is unsolvable, (iii) if the dual problem (6.7)
is unbounded, then the primal problem (6.3) is infeasible. If the assumptions of the
theorem are not met, then (6.3) is infeasible and (6.7) is unsolvable, in which case
nothing more can be said.

Proof: Three possibilities may occur under our assumptions: (a) f(A, b, c) < ∞ and
g(A, b, c) > −∞, (b) f(A, b, c) < ∞ and g(A, b, c) = −∞, (c) f(A, b, c) = ∞ and
g(A, b, c) > −∞.

(a) Let f(A, b, c) < ∞ and g(A, b, c) > −∞. We shall first prove that the system

Ax = b, x ≥ 0, (6.9)

AT p ≤ c, (6.10)

cT x ≤ bT p (6.11)

has a solution. Introducing artificial variables, we can write it in the form




A 0 0 0 0
0 AT −AT I 0
cT −bT bT 0 1







x
p1

p2

p3

ξ




=




b
c
0


 , (6.12)

2at this point we must depart from traditional linear programming terminology where (6.7) is
called feasible if AT p ≤ c has a solution; but for us feasibility means nonnegative solvability, so that
we cannot use this term here and we must stick to terminology introduced in Section 5.2.2.
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where all the variables are nonnegative. Now we can apply Farkas theorem which says
that (6.12) has a nonnegative solution if and only if for each t1, t2 and τ ,




AT 0 c
0 A −b
0 −A b
0 I 0
0 0 1







t1
t2
τ


 ≥ 0 implies




b
c
0




T 


t1
t2
τ


 ≥ 0, (6.13)

which means that
AT t1 + τc ≥ 0, (6.14)

At2 = τb, (6.15)

t2 ≥ 0, τ ≥ 0 (6.16)

should imply
bT t1 + cT t2 ≥ 0. (6.17)

To prove the last statement, in view of nonnegativity of τ we can consider two cases.
If τ > 0, then we have b = 1

τ
At2, hence

bT t1 + cT t2 = 1
τ
tT2 AT t1 + cT t2 = 1

τ
tT2 (AT t1 + τc) ≥ 0

because of (6.14), (6.16), which is (6.17). If τ = 0, then (6.14)-(6.16) turn into

AT t1 ≥ 0, (6.18)

At2 = 0, (6.19)

t2 ≥ 0. (6.20)

Since f(A, b, c) < ∞, the system Ax = b is feasible and (6.18) by Farkas theorem
implies bT t1 ≥ 0; since g(A, b, c) > −∞, the system AT p ≤ c is solvable and (6.19),
(6.20) by Theorem 201 imply cT t2 ≥ 0, hence (6.17) again holds. In this way we have
proved the implication (6.13), which in turn guarantees existence of a solution x∗, p∗

of the system (6.9)-(6.11). From (6.9), (6.10) we obtain

cT x∗ = x∗T c ≥ x∗T AT p∗ = (Ax∗)T p∗ = bT p∗,

which together with (6.11) gives cT x∗ = bT p∗. Summing up, we have proved that there
exist x∗, p∗ satisfying

Ax∗ = b, x∗ ≥ 0,

AT p∗ ≤ c,

cT x∗ = bT p∗.

Now, for each feasible solution x of the primal problem we have

cT x = xT c ≥ xT AT p∗ = (Ax)T p∗ = bT p∗ = cT x∗,
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which means that

cT x∗ = min{cT x; Ax = b, x ≥ 0} = f(A, b, c),

and similarly for each solution p of the system of constraints AT p ≤ c of the dual
problem we have

bT p = pT b = pT Ax∗ = (AT p)T x∗ ≤ cT x∗ = bT p∗,

which gives that
bT p∗ = max{bT p; AT p ≤ c} = g(A, b, c),

and finally
f(A, b, c) = cT x∗ = bT p∗ = g(A, b, c),

which is (6.8).

(b) Let f(A, b, c) < ∞ and g(A, b, c) = −∞. Then the primal problem has a feasible
solution, say x1, and the dual problem is unsolvable, so that the system AT p ≤ c has
no solution, hence according to Theorem 201 there exists an x0 satisfying Ax0 = 0,
x0 ≥ 0 and cT x0 < 0. Then for each α ∈ R, α ≥ 0 we have A(x1 + αx0) = Ax1 = b
and x1 + αx0 ≥ 0, hence x1 + αx0 is a feasible solution of the primal problem for each
α ≥ 0 and

lim
α→∞

cT (x1 + αx0) = lim
α→∞

(cT x1 + αcT x0) = −∞

because of cT x0 < 0, hence

f(A, b, c) = inf{cT x; Ax = b, x ≥ 0} = −∞ = g(A, b, c),

which is (6.8).

(c) Let f(A, b, c) = ∞ and g(A, b, c) > −∞. Then the primal problem is infeasible
and the system of constraints AT p ≤ c of the dual problem has a solution, say p1.
Since the system Ax = b is not feasible, according to Farkas theorem there exists
a p0 satisfying AT p0 ≥ 0 and bT p0 < 0. Then for each α ∈ R, α ≥ 0 we have
AT (p1 − αp0) ≤ AT p1 ≤ c and

lim
α→∞

bT (p1 − αp0) = lim
α→∞

(bT p1 − αbT p0) = ∞

because of bT p0 < 0, hence

g(A, b, c) = sup{bT p; AT p ≤ c} = ∞ = f(A, b, c),

which is (6.8).

We have proved that in all three cases (a), (b), (c) the equality (6.8) holds. This
concludes the proof. 2
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6.3 The interval linear programming problem
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6.3.1 Definition

Let A = [A, A] = [Ac −∆, Ac + ∆] be an m × n interval matrix and let b = [b, b] =
[bc − δ, bc + δ] and c = [c, c] = [cc − γ, cc + γ] be an m-dimensional and n-dimensional
interval vector, respectively. The family of linear programming problems

Min{cT x; Ax = b, x ≥ 0} (6.21)

with data satisfying
A ∈ A, b ∈ b, c ∈ c (6.22)

is called an interval linear programming problem. Since for each linear programming
problem (6.21) we have a uniquely determined optimal value f(A, b, c), it is natural
to consider its range over the data (6.22) by introducing the values

f(A,b, c) = inf{f(A, b, c); A ∈ A, b ∈ b, c ∈ c},

f(A,b, c) = sup{f(A, b, c); A ∈ A, b ∈ b, c ∈ c}.
The interval [f(A,b, c), f(A,b, c)], whose bounds may be infinite, is called the range
of the optimal value of the interval linear programming problem (6.21), (6.22). In the
next section we shall derive formulae for computing the range that will become the
cornerstone point of our approach.
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6.3.2 Range of the optimal value

The following theorem gives explicit formulae for computing the bounds of the range.
Notice that the result holds without any additional assumptions.

Theorem 237. We have

f(A,b, c) = inf{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}, (6.23)

f(A,b, c) = sup
y∈Ym

f(Aye, by, c). (6.24)

Comment. Hence, solving only one linear programming problem is needed to evaluate
f(A,b, c), whereas up to 2m of them are to be solved to compute f(A,b, c) according
to (6.24). Although the set Ym is finite, we use “sup” here because some of the values
may be infinite.

Proof: For given A, b, c denote f := f(A,b, c), f := f(A,b, c).

(a) To prove (6.23), put

ϕ = inf{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}.

(a.1) First we prove f ≤ ϕ. This is obvious if ϕ = ∞. If ϕ < ∞, then the linear
system

Ax ≤ b, Ax ≥ b (6.25)

is feasible. Let x be a nonnegative solution of it. Then in view of Theorem 208, x is
a nonnegative weak solution of Ax = b, hence there exist A ∈ A, b ∈ b such that
Ax = b holds. Then f ≤ f(A, b, c) ≤ cT x, and since x is an arbitrary nonnegative
solution of (6.25), we obtain f ≤ ϕ.

(a.2) Second we prove ϕ ≤ f by showing that

ϕ ≤ f(A, b, c) (6.26)

holds for each A ∈ A, b ∈ b, c ∈ c. This is obvious if f(A, b, c) = ∞. If f(A, b, c) < ∞,
then the linear programming problem

Min{cT x; Ax = b, x ≥ 0} (6.27)

is feasible. Let x be any feasible solution of it. Then, according to Theorem 208, x is
also a nonnegative solution of the system (6.25), hence ϕ ≤ cT x ≤ cT x, which implies
(6.26). Thus (6.26) holds for each A ∈ A, b ∈ b, c ∈ c, which means that ϕ ≤ f .
Hence, from (a.1) and (a.2) we obtain f = ϕ, which is (6.23).

(b) To prove (6.24), put
ϕ = sup

y∈Ym

f(Aye, by, c).
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(b.1) Since Aye ∈ A, by ∈ b for each y ∈ Ym and c ∈ c, we immediately obtain that

ϕ ≤ sup{f(A, b, c); A ∈ A, b ∈ b, c ∈ c} = f.

(b.2) Finally we prove f ≤ ϕ by showing that

f(A, b, c) ≤ ϕ (6.28)

holds for each A ∈ A, b ∈ b, c ∈ c. This is obvious if f(A, b, c) = −∞. If f(A, b, c) =
∞, then the linear programming problem (6.27) is infeasible, hence the system Ax = b
is not strongly feasible, which in view of Theorem 212 means that a system Ayex = by

is not feasible for some y ∈ Ym, so that f(Aye, by, c) = ∞, hence ϕ = ∞ and (6.28)
holds. Thus we are left with the case of f(A, b, c) finite. Then by the duality theorem
the dual problem to (6.27)

Max{bT p; AT p ≤ c}
has an optimal solution p∗ and f(A, b, c) = bT p∗ holds. Put y = sgn p∗, then y ∈ Ym

and |p∗| = Typ
∗. Consider the linear programming problem

Min{cT x; Ayex = by, x ≥ 0} (6.29)

and its dual problem
Max{bT

y p; AT
yep ≤ c}. (6.30)

The dual problem (6.30) is solvable because p∗ solves AT
yep ≤ c: in fact, since |(A −

Ac)
T p∗| ≤ ∆T |p∗|, we have

AT
yep

∗ = (Ac − Ty∆)T p∗ = (AT
c −∆T Ty)p

∗ = AT
c p∗ −∆T |p∗|

≤ (Ac + A− Ac)
T p∗ = AT p∗ ≤ c ≤ c.

Now, if the primal problem (6.29) is infeasible, then f(Aye, by, c) = ∞, hence ϕ = ∞
and (6.28) holds. If it is feasible, then f(A, b, c) < ∞ and g(A, b, c) > −∞, and
by the duality theorem the dual problem (6.30) has an optimal solution p̂ satisfying
f(Aye, by, c) = bT

y p̂, hence

f(A, b, c) = bT p∗ = (bc + b− bc)
T p∗ ≤ bT

c p∗ + δT |p∗| = (bT
c + δT Ty)p

∗

= (bc + Tyδ)
T p∗ = bT

y p∗ ≤ bT
y p̂ = f(Aye, by, c) ≤ ϕ,

which is (6.28). This proves that (6.28) holds for each A ∈ A, b ∈ b, c ∈ c, implying
f ≤ ϕ. Hence, (b.1) and (b.2) together give f = ϕ, which proves (6.24). This com-
pletes the proof. 2

In Section 5.2.7 we presented an algorithm for checking feasibility of the systems

Ayex = by
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for all y ∈ Ym. Since we are now facing a very close problem of solving

Min{cT x; Ayex = by, x ≥ 0}

for all y ∈ Ym, we can adapt the previous algorithm for the current purpose. Let us
reorder the equations of Ax = b so that those containing at least one nondegenerate
interval coefficient go first. Let q be the number of them, so that after reordering the
last m − q equations consist only of real (i.e., noninterval) data. Then the following
algorithm, where z ∈ Rq and y ∈ Rq, does the job:

compute f by (6.23);
z := 0; y := e;

A := A; b := b; f := f(A, b, c);

while z 6= e & f < ∞
k := min{i; zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;

if yk = 1 then Ak· := Ak·; bk := bk; else Ak· := Ak·; bk := bk; end

f := max{f, f(A, b, c)};
end

% [f, f ] is the range of the optimal value.

Example 238 Let

cc = (−1,−2, 3, 4)T ,

Ac =

(
5 6 −7 8

10 −11 12 13

)
, bc =

( −9
14

)

(the pattern of the absolute values of coefficients is obvious). For each ε > 0 consider
the interval data

Aε = [Ac − εeeT , Ac + εeeT ], bε = [bc − εe, bc + εe], cε = [cc − εe, cc + εe].

Using the algorithm, we have computed f(Aε,bε, cε) and f(Aε,bε, cε) for ε := 0.00, 0.01, . . . , 0.24
with MATLAB 6.0, where we employed the procedure QP.M for evaluating f(A, b, c).
The results, rounded to four decimal places, are summed up in the following table
(the last column brings the values of f(Aε,bε, cε)− f(Aε,bε, cε), denoted for short as

f − f):
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ε f(Aε,bε, cε) f(Aε,bε, cε) f − f

0.00 5.0000 5.0000 0.0000
0.01 4.8085 5.2228 0.4143
0.02 4.6424 5.4847 0.8423
0.03 4.4971 5.7965 1.2994
0.04 4.3692 6.1735 1.8043
0.05 4.2559 6.6375 2.3816
0.06 4.1550 7.2217 3.0667
0.07 4.0647 7.9784 3.9137
0.08 3.9836 8.9955 5.0119
0.09 3.9104 10.4327 6.5223
0.10 3.8442 12.6143 8.7701
0.11 3.7841 16.3131 12.5290
0.12 3.7294 23.9388 20.2094
0.13 3.6796 48.7450 45.0654
0.14 3.6340 ∞ ∞
0.15 3.5923 ∞ ∞
0.16 3.5541 ∞ ∞
0.17 3.5189 ∞ ∞
0.18 3.4866 ∞ ∞
0.19 3.4569 ∞ ∞
0.20 3.4295 ∞ ∞
0.21 3.4043 ∞ ∞
0.22 3.3810 ∞ ∞
0.23 3.3396 ∞ ∞
0.24 −∞ ∞ ∞

As we can see, all the linear programming problems in the family have optimal solutions
for ε up to 0.13, infeasible problems appear from ε = 0.14 on and the family contains
infeasible and unbounded problems (as well as those having optimal solutions) from
ε = 0.24 on.

In the next two sections we shall study separately properties of the two bounds.
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6.3.3 The lower bound

In this section we shall derive some consequences of the formula for the lower bound

f(A,b, c) = inf{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}

in Theorem 237. If f(A,b, c) = ∞, then each problem in the family is infeasible. Let
us consider the case f(A,b, c) = −∞.

Theorem 239. If f(A,b, c) = −∞, then there exists an A0 ∈ A such that

f(A0, b, c) ∈ {−∞,∞} (6.31)

holds for each b ∈ b.

Comment. In other words, none of the problems

Min{cT x; A0x = b, x ≥ 0}, b ∈ b

has an optimal solution.

Proof: If f(A,b, c) = −∞, then by Theorem 237 the linear programming problem

Min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}

is unbounded and by the duality theorem its dual problem

Max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}

is infeasible, hence the system

A
T
p1 − AT p2 ≤ c

is infeasible and Theorem 202 assures existence of an x0 that satisfies

Ax0 ≤ 0, Ax0 ≥ 0, x0 ≥ 0, cT x0 < 0.

Then Theorem 208 gives that x0 is a nonnegative weak solution of the system [A,A]x =
[0, 0], hence there exists a matrix A0 ∈ A such that

A0x0 = 0, x0 ≥ 0, cT x0 < 0. (6.32)

Now consider the problem

Min{cT x; A0x = b, x ≥ 0} (6.33)
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for a b ∈ b. If it is infeasible, then f(A0, b, c) = ∞. If it has a feasible solution x1,
then from (6.32) it follows that x1 + αx0 is a feasible solution of (6.33) for each α ≥ 0
and

lim
α→∞

cT (x1 + αx0) = lim
α→∞

(cT x1 + αcT x0) = −∞
due to (6.32), hence the problem (6.33) is unbounded and f(A0, b, c) = −∞. Thus for
each b ∈ b we have (6.31), which concludes the proof. 2

However, in case of f(A,b, c) = −∞ the family need not contain an unbounded
problem.

Example 240 Let

A = [0, 1], b = [1, 1], c = [−1,−1]

(i.e., m = n = 1). Then each problem in the family is of the form

Min{−x; ax = 1, x ≥ 0},
it is infeasible for a = 0 and its optimal value is equal to −1/a for a ∈ (0, 1], hence
f(A,b, c) = −∞ but no problem in the family is unbounded.

If the lower bound f(A,b, c) is finite, then it can be expected that it is attained
as the optimal value of some problem in the family. The following theorem shows a
constructive way how to find the data of such a problem.

Theorem 241. Let f(A,b, c) be finite and let x∗ be an optimal solution of the problem

Min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}. (6.34)

Then
f(A,b, c) = f(Ac − Ty∆, bc + Tyδ, c), (6.35)

where

yi =

{ (Acx∗−bc)i

(∆x∗+δ)i
if (∆x∗ + δ)i > 0,

1 if (∆x∗ + δ)i = 0
(i = 1, . . . , m). (6.36)

Proof: If f(A,b, c) is finite, then according to (6.23) it is equal to the optimal value of

the problem (6.34), hence f(A,b, c) = cT x∗, where x∗ is an arbitrary optimal solution
of (6.34). Hence x∗ satisfies

Ax∗ ≤ b, Ax∗ ≥ b, x∗ ≥ 0,

which can be equivalently written as

|Acx
∗ − bc| ≤ ∆x∗ + δ, x∗ ≥ 0. (6.37)
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Now Proposition 205 gives that (Ac − Ty∆)x∗ = bc + Tyδ, where y is given by (6.36).
Then |y| ≤ e because of (6.37), hence Ac − Ty∆ ∈ A and bc + Tyδ ∈ b, and we have

cT x∗ = f(A,b, c) ≤ f(Ac − Ty∆, bc + Tyδ, c) ≤ cT x∗,

which proves (6.35). 2

Notice that the vector y defined by (6.36) satisfies y /∈ Ym in general (this is why
we wrote Ac − Ty∆, bc + Tyδ instead of Aye, by in (6.35) because Aye, by are defined
for y ∈ Ym only, see Section 3.2.2). But y can be enforced to belong to Ym under an
additional assumption:

Theorem 242. Let the problem

Max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0} (6.38)

have an optimal solution p∗1, p∗2 satisfying

p∗1 + p∗2 > 0. (6.39)

Then
f(A,b, c) = f(Aye, by, c), (6.40)

where

yi =

{
1 if (p∗2)i > 0,

−1 if (p∗2)i = 0
(i = 1, . . . , m). (6.41)

Proof: If the problem (6.38) has an optimal solution p∗1, p∗2, then its primal problem

Min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0}
has an optimal solution x∗, f(A,b, c) = cT x∗ holds by Theorem 237 and the comple-
mentary slackness conditions of linear programming [7] give

p∗T1 (Ax∗ − b) = p∗T2 (b− Ax∗) = 0.

Since all four vectors p∗1, Ax∗ − b, p∗2 and b− Ax∗ are nonnegative, it must be

(p∗1)i(Ax∗ − b)i = (p∗2)i(b− Ax∗)i = 0 (6.42)

for i = 1, . . . ,m. Now, if (p∗2)i > 0, then (6.42) gives (Ax∗)i = bi; if (p∗2)i = 0, then
(p∗1)i > 0 by (6.39) and (6.42) implies (Ax∗)i = bi (i = 1, . . . ,m). Hence for the vector
y defined by (6.41) we have y ∈ Ym and Ayex

∗ = by, where Aye ∈ A and by ∈ b. Then

f(Aye, by, c) ≤ cT x∗ = f(A,b, c) ≤ f(Aye, by, c),

which gives (6.40). 2

Finally we shall prove a kind of duality theorem for f(A,b, c) which shows that

this value, if finite, can be reached via optimization over strong solutions of AT p ≤ c
only (see Theorems 222 and 223).
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Theorem 243. If f(A,b, c) is finite, then

f(A,b, c) = max{min
b∈b

bT p; AT p ≤ c for each A ∈ A, c ∈ c}. (6.43)

Proof: The proof consists of three steps.

(a) First we shall prove a technical result: for each p ∈ Rm there holds

A
T
p+ − AT p− = AT

yep, (6.44)

bT p+ − b
T
p− = bT

y p = min
b∈b

bT p, (6.45)

where y = −sgn p. Indeed, since |p| = −Typ, we have

A
T
p+ − AT p− = (Ac + ∆)T p+ − (Ac −∆)T p−

= AT
c (p+ − p−) + ∆T (p+ + p−)

= AT
c p + ∆T |p| = AT

c p−∆T Typ

= (Ac − Ty∆)T p = AT
yep,

which is (6.44), and

bT p = bT (p+ − p−) ≥ bT p+ − b
T
p− = bT

c (p+ − p−)− δT (p+ + p−)

= bT
c p− δT |p| = bT

c p + δT Typ = (bc + Tyδ)
T p = bT

y p

for each b ∈ b, hence

min
b∈b

bT p ≥ bT p+ − b
T
p− = bT

y p ≥ min
b∈b

bT p,

which is (6.45).

(b) If f(A,b, c) is finite, then by Theorem 237 and by the duality theorem we have

f(A,b, c) = max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}. (6.46)

Let p satisfy AT p ≤ c for each A ∈ A, c ∈ c. Then in particular AT
yep ≤ c, where

y = −sgn p, and (6.44) gives A
T
p+ − AT p− = AT

yep ≤ c, hence from (6.45), (6.46) we
obtain

min
b∈b

bT p = bT p+ − b
T
p−

≤ max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}

= f(A,b, c)

and consequently

sup{min
b∈b

bT p; AT p ≤ c for each A ∈ A, c ∈ c} ≤ f(A,b, c). (6.47)
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(c) To prove that equality holds in (6.47), take any optimal solution p∗1, p∗2 of the
problem

Max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0} (6.48)

and put p̂1 = p∗1 − d, p̂2 = p∗2 − d, where d = min{p∗1, p∗2}. Then d ≥ 0, p̂1 ≥ 0, p̂2 ≥ 0
and p̂T

1 p̂2 = 0. We shall show that p̂1, p̂2 is again an optimal solution of (6.48). In
fact,

A
T
p̂1 − AT p̂2 = A

T
(p∗1 − d)− AT (p∗2 − d) = A

T
p∗1 − AT p∗2 − (A− A)T d

≤ A
T
p∗1 − AT p∗2 ≤ c (6.49)

since (A− A)T d ≥ 0, and

bT p̂1 − b
T
p̂2 = bT (p∗1 − d)− b

T
(p∗2 − d) = bT p∗1 − b

T
p∗2 + (b− b)T d

≥ bT p∗1 − b
T
p∗2

since (b− b)T d ≥ 0, hence it must be

bT p̂1 − b
T
p̂2 = bT p∗1 − b

T
p∗2 (6.50)

and p̂1, p̂2 is an optimal solution of (6.48). Put p = p̂1− p̂2. Since p̂T
1 p̂2 = 0, it follows

that p+ = p̂1, p− = p̂2, hence for each A ∈ A, c ∈ c we have

AT p = AT (p̂1 − p̂2) ≤ A
T
p̂1 − AT p̂2 ≤ c ≤ c

by (6.49), and

min
b∈b

bT p = bT p+ − b
T
p− = bT p̂1 − b

T
p̂2 = bT p∗1 − b

T
p∗2 = f(A,b, c)

by (6.45), (6.50) and (6.46), hence the value f(A,b, c) is attained in (6.47) and (6.43)
holds. 2
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6.3.4 The upper bound

The formula
f(A,b, c) = sup

y∈Ym

f(Aye, by, c)

of Theorem 237 requires solving up to 2m linear programs. In this section we shall
show that the upper bound is closely connected with the optimal value of the nonlinear
program

maximize bT
c p + δT |p| (6.51)

s.t.
AT

c p−∆T |p| ≤ c. (6.52)

Let us denote
ϕ(A,b, c) = sup{bT

c p + δT |p|; AT
c p−∆T |p| ≤ c}. (6.53)

We shall consider separately the cases of ϕ(A,b, c) = −∞, ϕ(A,b, c) = ∞ and
ϕ(A,b, c) finite.

Proposition 244 If ϕ(A,b, c) = −∞, then f(A,b, c) ∈ {−∞,∞}.

Proof: Assume that AT p ≤ c has a solution for some A ∈ A, c ∈ c. Then AT
c p −

∆T |p| ≤ AT p ≤ c ≤ c, hence p solves (6.52) (cf. Theorem 217), which implies that
ϕ(A,b, c) > −∞, a contradiction. Hence for each A ∈ A, b ∈ b, c ∈ c the dual
problem

Max{bT p; AT p ≤ c}
is unsolvable, which means that each primal problem

Min{cT x; Ax = b, x ≥ 0}
is either infeasible or unbounded, so that f(A, b, c) ∈ {−∞,∞} for each A ∈ A, b ∈ b,
c ∈ c and consequently f(A,b, c) ∈ {−∞,∞}. 2

Proposition 245 If ϕ(A,b, c) = ∞, then f(A,b, c) = ∞.

Proof: If ϕ(A,b, c) = sup{bT
c p + δT |p|; AT

c p−∆T |p| ≤ c} = ∞, then for each positive
integer k there exists a pk ∈ Rm such that

AT
c pk −∆T |pk| ≤ c (6.54)

and
bT
c pk + δT |pk| ≥ k. (6.55)

For each k = 1, 2, . . . put yk = sgn pk. Since yk ∈ Ym for each k and Ym is finite, the
sequence {yk}∞k=1 must contain a member which appears there infinitely many times,
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i.e., there exists a subsequence {kj}∞j=1 and a y ∈ Ym such that sgn pkj
= y for each j.

Then from (6.54), (6.55) we have

AT
yepkj

= AT
c pkj

−∆T Typkj
= AT

c pkj
−∆T |pkj

| ≤ c,

bT
y pkj

= bT
c pkj

+ δT Typkj
= bT

c pkj
+ δT |pkj

| ≥ kj

for j = 1, 2, . . ., hence the problem

Max{bT
y p; AT

yep ≤ c}

is unbounded and by the duality theorem the respective primal problem

Min{cT x; Ayex = by, x ≥ 0}

is infeasible, hence f(Aye, by, c) = ∞ and consequently f(A,b, c) = ∞. 2

Theorem 246. If ϕ(A,b, c) is finite, then

ϕ(A,b, c) = max{f(A, b, c); f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c}. (6.56)

Proof: (a) First we shall prove that if f(A, b, c) < ∞ for some A ∈ A, b ∈ b, c ∈ c,
then

f(A, b, c) ≤ ϕ(A,b, c). (6.57)

This is clearly the case if f(A, b, c) = −∞. Thus let f(A, b, c) be finite. Then
f(A, b, c) = bT p∗, where p∗ is an optimal solution of the dual problem

Max{bT p; AT p ≤ c}.

Since
AT

c p∗ −∆T |p∗| ≤ AT p∗ ≤ c ≤ c,

we can see that p∗ solves (6.52), hence

f(A, b, c) = bT p∗ ≤ sup{bT p; AT
c p−∆T |p| ≤ c}

≤ sup{bT
c p + δT |p|; AT

c p−∆T |p| ≤ c} = ϕ(A,b, c).

This proves (6.57) and hence also

sup{f(A, b, c); f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c} ≤ ϕ(A,b, c). (6.58)

(b) To prove that the upper bound is attained in (6.58), we start from the fact that
because of (6.53) for each positive integer k there exists a vector pk satisfying

AT
c pk −∆T |pk| ≤ c,
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ϕ(A,b, c)− 1
k

< bT
c pk + δT |pk| ≤ ϕ(A,b, c).

Arguing as in the proof of Proposition 245, we can assure existence of a y ∈ Ym

satisfying sgn pkj
= y for an infinite subsequence {kj}. For each kj we then have

AT
yepkj

≤ c, (6.59)

ϕ(A,b, c)− 1
kj

< bT
y pkj

≤ ϕ(A,b, c). (6.60)

Now consider the problem

Max{bT
y p; AT

yep ≤ c}.
From (6.53) we have that its optimal value is bounded by ϕ(A,b, c), and (6.59), (6.60)
show that this bound can be approximated with arbitrary accuracy by the value of the
objective bT

y p over the solution set of AT
yep ≤ c. This gives, by the duality theorem,

ϕ(A,b, c) = max{bT
y p; AT

yep ≤ c} = f(Aye, by, c),

hence the upper bound in (6.58) is attained and (6.56) holds. 2

Now we arrive at an important consequence which justifies introduction of the value
ϕ(A,b, c):

Theorem 247. If f(A,b, c) is finite, then

f(A,b, c) = ϕ(A,b, c). (6.61)

Proof: Since the possibilities ϕ(A,b, c) = −∞ and ϕ(A,b, c) = ∞ are precluded by
Propositions 244 and 245, ϕ(A,b, c) must be finite, and Theorem 246 gives

ϕ(A,b, c) = max{f(A, b, c); f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c}
= max{f(A, b, c); A ∈ A, b ∈ b, c ∈ c} = f(A,b, c).

2

Hence, if f(A,b, c) is finite, then it can be computed as the optimal value of a single
nonlinear programming problem (6.51), (6.52) by nonlinear programming techniques.
Moreover, the equality (6.61) yields a computable upper bound on ϕ(A,b, c). Let us
remind that if A has linearly independent rows, then the matrix AAT is nonsingular
and there holds

(A+)T = (AT )+ = (AAT )−1A,

where A+ is the Moore-Penrose inverse of A.
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Theorem 248. If Ac has linearly independent rows and

%(∆|A+
c |) < 1 (6.62)

holds, then
ϕ(A,b, c) ≤ cT |A+

c |(I −∆|A+
c |)−1(|bc|+ δ). (6.63)

Proof: If the inequality (6.52) has no solution, then ϕ(A,b, c) = −∞ and (6.63) holds.
Thus let p be a solution to (6.52). Then we have

|p| = |(AcA
T
c )−1AcA

T
c p| = |(A+

c )T AT
c p| ≤ |A+

c |T |AT
c p|

≤ |A+
c |T (∆T |p|+ c) ≤ (∆|A+

c |)T |p|+ |A+
c |T c,

hence
(I −∆|A+

c |)T |p| ≤ |A+
c |T c. (6.64)

Because of (6.62) the matrix I−∆|A+
c | is nonnegatively invertible and premultiplying

(6.64) by its transposed inverse gives

|p| ≤ ((I −∆|A+
c |)−1)T |A+

c |T c

and

bT
c p + δT |p| ≤ (|bc|+ δ)T |p| ≤ (|bc|+ δ)T ((I −∆|A+

c |)−1)T |A+
c |T c

= cT |A+
c |(I −∆|A+

c |)−1(|bc|+ δ),

which yields (6.63). 2

Theorem 247 can also be reformulated as a counterpart of Theorem 243 of Section
6.3.3:

Theorem 249. If f(A,b, c) is finite, then

f(A,b, c) = max{max
b∈b

bT p; AT p ≤ c for some A ∈ A, c ∈ c}. (6.65)

Proof: By Gerlach theorem 217, p satisfies (6.52) if and only if it is a weak solution
of the system [AT

c −∆T , AT
c + ∆T ]p ≤ [c, c], i.e., if and only if it satisfies AT p ≤ c for

some A ∈ A, c ∈ c. Next, as in the part (a) of the proof of Theorem 243 we can show
that

bT
c p + δT |p| = bT

y p = max
b∈b

bT p,

where y = sgn p. The rest follows from Theorem 247. 2

Observe the additional “duality” between quantifiers used in formulae (6.43) and
(6.65): the optimization is performed over strong solutions in (6.43) and over weak
solutions in (6.65).

Finally, we have this complexity result:
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Theorem 250. Computing the upper bound f(A,b, c) is NP-hard.

Proof: Given a symmetric M -matrix A, consider the interval linear programming
problem with Ac = (A,−A), ∆ = (0, 0), bc = 0, δ = e, cc = (eT , eT )T and γ = 0. Then
each primal problem in the family has the form

Min{eT x1 + eT x2; A(x1 − x2) = b, x1 ≥ 0, x2 ≥ 0}

and its dual problem is of the form

Max{bT p; −e ≤ Ap ≤ e}

(because A is symmetric by assumption). Each dual problem is solvable (p = 0 solves
the system) and each solution p of −e ≤ Ap ≤ e satisfies |p| = |A−1Ap| ≤ |A−1|e,
hence |bT p| ≤ eT |A−1|e, so that each dual problem has an optimal solution and thus
also each primal problem has an optimal solution and the absolute value of its optimal
value is bounded by eT |A−1|e, hence f(A,b, c) is finite. Then by Theorem 247 we
have

f(A,b, c) = ϕ(A,b, c) = max{eT |p|; −e ≤ Ap ≤ e},
hence

f(A,b, c) ≥ 1 (6.66)

holds if and only if the system
−e ≤ Ap ≤ e,

eT |p| ≥ 1

has a solution. Since the latter problem is NP-complete by Theorem 22, the problem
of deciding whether (6.66) holds is NP-hard, hence computing f(A,b, c) is NP-hard. 2

Summing up, we arrive at the following conclusion: computing the lower bound of
the range of the optimal value [f(A,b, c), f(A,b, c)] can be performed in polynomial
time, whereas computing the upper bound is NP-hard.
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6.3.5 Finite range

In applications we are mostly interested in linear programming problems having opti-
mal solutions. Therefore for problems with inexact data the case when all problems in
the family have optimal solutions is of particular interest. Several equivalent conditions
are listed in the following theorem.

Theorem 251. For an interval linear programming problem with data A, b, c the
following assertions are equivalent:

(i) for each A ∈ A, b ∈ b, c ∈ c the problem

Min{cT x; Ax = b, x ≥ 0} (6.67)

has an optimal solution,

(ii) both f(A,b, c) and f(A,b, c) are finite,
(iii) both f(A,b, c) and ϕ(A,b, c) are finite,

(iv) the system

A
T
p1 − AT p2 ≤ c (6.68)

is feasible and ϕ(A,b, c) is finite.

In each case the range of the optimal value is given by

[f(A,b, c), ϕ(A,b, c)].

Proof: We shall prove (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).

(i)⇒(ii): Since each problem (6.67) has an optimal solution, it must be f(A,b, c) <
∞, and the possibility of f(A,b, c) = −∞ is precluded by Theorem 239. Hence

f(A,b, c) is finite, and Theorem 237 implies that f(A,b, c) is also finite.

(ii)⇒(iii) follows directly from Theorem 247.

(iii)⇒(iv): If f(A,b, c) is finite, then, as shown in the part (b) of the proof of
Theorem 243, equation (6.46), there holds

f(A,b, c) = max{bT p1 − b
T
p2; A

T
p1 − AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0},

hence the system (6.68) is feasible.

(iv)⇒(i): Let the system (6.68) have a nonnegative solution p1, p2 and let A ∈ A,
b ∈ b, c ∈ c. Then we have

AT (p1 − p2) ≤ A
T
p1 − AT p2 ≤ c ≤ c,

so that the dual problem to (6.67)

Max{bT p; AT p ≤ c} (6.69)
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is solvable, and for each solution p of AT p ≤ c there holds

bT p ≤ sup{bT p; AT p ≤ c} ≤ sup{bT
c p + δT |p|; AT

c p−∆T |p| ≤ c}
= ϕ(A,b, c) < ∞,

hence the objective is bounded, so that the problem (6.69) has an optimal solution
and by the duality theorem the problem (6.67) also has an optimal solution.

Since in all four cases f(A,b, c) is finite, we have f(A,b, c) = ϕ(A,b, c) by Theo-
rem 247 and the range of the optimal value is equal to

[f(A,b, c), ϕ(A,b, c)],

which concludes the proof. 2

Finally, we have this complexity result:

Theorem 252. Checking whether each problem (6.67) with data satisfying A ∈ A,
b ∈ b, c ∈ c has an optimal solution is NP-hard.

Proof: Since a system Ax = b is feasible if and only if the problem

Min{eT x; Ax = b, x ≥ 0}

has an optimal solution, we have that a system of interval linear equations Ax = b is
strongly feasible if and only if each problem (6.67) with data satisfying A ∈ A, b ∈ b,
c ∈ [e, e] has an optimal solution. Since the former problem is NP-hard by Theorem
213, the latter one is NP-hard as well. 2
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6.3.6 An algorithm for computing the range

Summing up Proposition 245 and Theorem 251, we can formulate the following al-
ternative algorithm for computing the range which, in contrast to the algorithm of
Section 6.3.2, requires solving two optimization problems only:

compute the optimal value f of the problem

Min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0};
compute the optimal value ϕ of the problem

Max{bT
c p + δT |p|; AT

c p−∆T |p| ≤ c};
if f is finite or ϕ = ∞
then [f, ϕ] is the range of the optimal value
end
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6.3.7 The set of optimal solutions
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6.3.8 Basis stability
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6.3.9 Radii of (in)feasibility and (un)boundedness
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6.4 Condition number for the optimal value

γα(A, b, c) = max

{∣∣∣∣
f(A′, b′, c′)− f(A, b, c)

f(A, b, c)

∣∣∣∣ ; |A′−A| ≤ α|A|, |b′−b| ≤ α|b|, |c′−c| ≤ α|c|
}

γ(A, b, c) = lim
α→0+

γα(A, b, c)

α

Theorem 253. Let the basic optimal solution x∗ of ... be nondegenerate, let the
nonbasic relative cost coefficients be positive and let cT x∗ 6= 0. Then there holds

γ(A, b, c) =
|c|T x∗ + |b|T |y∗|+ |y∗|T |A|x∗

|cT x∗| ,

where y∗ is the (unique) dual optimal solution.

Proof: [80], p. 106. 2
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6.5 Notes and references

In the last section we again give some additional notes and references to the material
of the chapter.

Section 6.2. Duality theorem was published by Gale, Kuhn and Tucker [12] in
1951. The notion of it appeared earlier in an unpublished manuscript by J. von
Neumann [117] which had evolved from his discussions with G. Dantzig in the autumn
of 1947. Our formulation using functions f(A, b, c) and g(A, b, c) that may attain
infinite values is untypical, but it allows to formulate the duality theorem as well as
two its consequences in the form of a single equality (6.8).

Section 6.3.1. Although sensitivity analysis forms a standard part of linear pro-
gramming textbooks, the interval linear programming problem was seemingly pio-
neered only in 1970 by Machost in his report [42]. His attempt to perform the simplex
algorithm by replacing standard arithmetic operations by their interval arithmetic
counterparts proved, however, to be ineffective; moreover, the report contained some
errors ([5], p. 8). The first paper that handled the interval linear programming prob-
lem systematically was due to Krawczyk [37], followed by the state-of-the-art report
by Beeck [5].

Section 6.3.2. As we have seen, Theorem 237 which gives formulae for computing
f(A,b, c) and f(A,b, c) forms the cornerstone of our approach. The formula (6.23)
for computing f(A,b, c), which is an easy consequence of description of the set of
nonnegative weak solutions of Ax = b by the system of inequalities (5.40), (5.41),
appeared in [65]. The formula (6.24) for f(A,b, c) was proved in the report [69]
(although for finite values only) and republished by Mráz in his survey paper [50].
The general treatment which allows for infinite values of f(A,b, c) presented here is
new.

Section 6.3.3. The lower bound f(A,b, c) can be computed as the optimal value of
the problem

Min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0},

where the number of constraints is doubled compared to the original problem. But
Theorems 241 and 242 suggest that one might also succeed with solving a problem
of the original size with properly parameterized constraints. Mráz’s report [45] is
dedicated to this question; these and related results are summed up in his habilitation-
sschrift [48]. The “duality theorem” 243 for f(A,b, c) was published in [67] using a
burdensome notation that obscured its actual contents (i.e., optimization over strong
solutions of AT p ≤ c).

Section 6.3.4. While computing f(A,b, c) is easy, computation of f(A,b, c) is
much more involved. Some partial results were achieved by Mráz in [46], [47], [49].
The treatment via ϕ(A,b, c), as presented in this section, is new. NP-hardness of
computing f(A,b, c) was proved in technical report [90].
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Section 6.3.5. The problem of finite range was first addressed in [68]; the conditions
given in this section are easy consequences of our previous results. The NP-hardness
result (Theorem 252) was proved in [96]. Based on the ideas outlined in this section,
a “condition number” for linear programs was proposed in [80].

Section 6.3.6. The algorithm, which reduces the complicated formula (6.24) to
solving one nonlinear program, perhaps shows a promising way; but at the time this
text was being written there was limited computational experience at our disposal
only.

In our exposition we have left aside the difficult problem of determining (or bound-
ing) the set of optimal solutions of all the linear programming problems contained in
the family. A general treatment was done by Jansson [26], [27], [28], and computa-
tional aspects were studied by Jansson and Rump [29]. A special class is formed by
so-called basis stable problems (where each problem in the family has a unique nonde-
generate basic optimal solution with the same basis index set B) that were introduced
by Krawczyk [37], characterized in [88], [69] and further studied by Końıčková [35],
[36]. Basis stable problems are much more easy to handle; but checking basis stability
was proved to be NP-hard in an unpublished manuscript by Rohn.

Related works include Bauch et al. [18], Filipowski [11], Nedoma [52], Ramı́k [59],
[60], Renegar [62], Vatolin [115] and Vera [116].
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strong solvability of inequalities, 243
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strong solvability
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weak solvability
of equations, 226
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control solution, see solution, control
convex hull, 229

definition
(Z, z)-solution, 251

dual problem, 266
duality

between weak and strong solutions, 278
theorem, 267

f(A,b, c), 271
formula for, 272

f(A,b, c), 271
formula for, 272

Farkas lemma, see theorem, Farkas
feasibility

means nonnegative solvability, 28, 218
of linear equations

characterization of, 28, 218
definition, 28, 218

of linear inequalities
characterization of, 31, 221
definition, 30, 220

feasibility, strong, see strong feasibility
feasibility, weak, see weak feasibility
feasible solution, see solution, feasible

Gerlach theorem, see theorem, Gerlach

Hansen-Bliek-Rohn theorem, see theorem,
Hansen-Bliek-Rohn

hull
convex, 229

interval linear equations, see system of in-
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interval linear inequalities, see system of
interval linear inequalities
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basis stability of, 294
formulation, 271
lower bound
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formula for, 272
properties of, 276–280

range of optimal value
algorithm for, 274, 288
definition of, 271
finite, characterization of, 286
finite, complexity of, 287
formulae for, 272

set of optimal solutions, 294
simplex method in interval arithmetic,

293
upper bound

complexity of, 285
formula for, 272
properties of, 281–285

interval matrix, 55
full column rank

complexity of, 131
definition, 131
sufficient condition for, 132

full row rank
definition, 131

inclusion characterization, 55
interval vector, 56

linear equations, see system of linear equa-
tions

linear inequalities, see system of linear in-
equalities

linear programming problem, 266
condition number for, 294
dual, 266
duality theorem, 267
feasible, 266
infeasible, 266
optimal solution of, 266
optimal value of, 266
primal, 266
unbounded, 266

matrix
absolute value of, 10, 216
M -matrix, 35

norms, 17
positive definite, 35

matrix interval, see interval matrix
M -matrix, 35
Moore-Penrose inverse, 283

Oettli-Prager
inequality, 225

and description of tolerance solutions,
254

theorem, 225
optimal solution, 266
optimal value, 266

ϕ(A,b, c), 281
connection with f(A,b, c), 281, 283

primal problem, 266

range of optimal value, 271
formulae for, 272

regularity
and P -matrices, 86

singular values, 24
formulae for, 24

solution
algebraic, 259

definition making more sense, 263
control, 256
feasible, 266
optimal, 266
strong

of interval linear equations, 233
of interval linear inequalities, 242

tolerance, 253
bounds on components of, 255
crane construction, 253, 262
in input-output planning, 253, 262

weak
of interval linear equations, 225
of interval linear inequalities, 238

(Z, z)-solution, 251
solvability

of linear equations
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characterization of, 30, 220
definition, 28, 218

of linear inequalities
characterization of, 30, 220
definition, 30, 220

solvability, strong, see strong solvability
solvability, weak, see weak solvability
strong feasibility

of interval linear equations
characterization, 234
complexity, 235
definition, 223

of interval linear inequalities
characterization, 243
complexity, 243
definition, 223

strong properties
as referring to all systems, 223

strong solution, see solution, strong
strong solvability

of interval linear equations
characterization, 229
characterization, history of, 261
complexity, 232
definition, 223

of interval linear inequalities
characterization, 241
complexity, 242
definition, 223
implies existence of a strong solu-

tion, 242
summary

of complexity results, 245
of solution types, 260
of solvability/feasibility conditions, 31,

221
symmetric matrix, 10

eigenvalues, 23
Courant-Fischer theorem, 23
extremal, 23

system of interval linear equations, 223
strongly feasible, 223
strongly solvable, 223

weakly feasible, 223
weakly solvable, 223

system of interval linear inequalities, 223
strongly feasible, 223
strongly solvable, 223

existence of a strong solution, 242
weakly feasible, 223
weakly solvable, 223

system of linear equations
feasible, 28, 218
solvable, 28, 218

system of linear inequalities
feasible, 30, 220
solvable, 30, 220

theorem
Courant-Fischer, 23
duality

in interval linear programming, 278
in linear programming, 267
in linear programming, authorship

of, 293
Farkas, 28, 218
Gerlach, 238
Oettli-Prager, 225
Shary-Lakeyev-Rohn, 251

tolerance solution, see solution, tolerance

vector interval, see interval vector
vector norms, 17

weak feasibility
of interval linear equations

characterization, 228
complexity, 228
definition, 223

of interval linear inequalities
characterization, 240
complexity, 240
definition, 223

weak properties
as referring to some system, 223

weak solution, see solution, weak
weak solvability
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of interval linear equations
characterization, 226
complexity, 226
definition, 223

of interval linear inequalities
characterization, 238
complexity, 238
definition, 223

(Z, z)-solution, 251
as generalization of other types of so-

lutions, 252
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