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1 Introduction

Consider an aluminium shape weighting approximately 300 kg. This shape should be uni-
formly warming by using approximately 100 lamps of the same performance to reach 270° C'

temperature.

Every lamp is defined by the coordinates of its side points A, B and the lighting direction

u (9 parameters). The length d of all lamps is the same.

The shape surface is defined by using approximately 10000 plane elements. Every plane
element is represented by the coordinates of its center T and its outer normal d of unit

length (6 parameters).

The initial coordinates of all lamps are given. We require a uniform exposure of the

shape by seeking a suitable choice of the lamp coordinates.
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xT" - center of the plane element
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2 Formulation of optimization problem with constraints.

2.1 Equations for the exposure of a plane element by a lamp.

Let 27 = (2T, 2L 2T) be the center of the plane element, ¥ = (2, 24, zY’) be the normal

of the plane element, 2 = (24!, 22", x4, 28 = (2P 28 2P) be side points of the lamp and

2% = (27,25, 23) be the lighting direction of the lamp. We also denote v = —z™, u = 29

and use the following constraints

3
> i@ — ) =0,
i=1

S - aly =
i=1
where d is the length of the lamp. The first constraint ensures the unit length of vector z°,
the second its orthogonality to the axis of the lamp, and the third stabilize the length of
the lamp.
The lamp is a linear body of the length d, consisting of p lighting elements of lengths
dp = d/(p—1), 1 < k < p. The distance between the lighting element and the center of

the plane element is expressed as

wp =zt — (1-— Ak):cA — P, N = ——



where 1 < k£ < p. The exposure [ of the given plane element by the given lamp is given by

the formula
. 1 Br
I = E I, I.=1{3 /1 —-a2 | ———d,,
e (“’“WV a’f) o2

where . .
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Analytical expression of derivatives of the exposure I with respect to the elements of vectors

x4, 28, 2% (elements of vectors o7, 2V are constants, since the shape surface is invariant)

has the form
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and after substitution we obtain
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It is not necessary to known elements of vectors u, v and wy, 1 < k < p. We use only
their Euclidean norms and elements of the normalized vectors w, v and wg, 1 < k < p.
Therefore, it is advantageous to normalize vectors u, v and wy, 1 < k < p, beforehand.

2.2 Objective function and constraints for the uniform exposure.

We have n, plane elements and n; lamps. Every plane element can be exposed by several
lamps. Let L; be a set of indices of lamps that expose j-th plane element. Choose 1 < j < n,
and [ € L;. If we denote ;; the exposure of j-th element by [-th lamp, (this value correspond
to the value I from the previous subsection), then the total exposure [; of j-th element is

given by the formula
=Y I

lELj

The derivatives of I; are computed by the formulas

8]]' . anl 61] . (“le EHJ o 6Ijl

— = = le L;
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where we substitute the previously defined quantities. Let I be the prescribed value of the
exposure (the same for all elements of the shape surface). Then

F(e) = 53,1

Jj=1



where vector z has elements x4}, x4}, x4, 28, 28, 28 27 x5 x5, 1 <1 < n; (nine for every

lamp). One has
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o0z},

OF (z) _ i(f'_j)%
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where we substitute quantities computed in the previous relations. The prescribed value
of the exposure is determined initially using the formula

Ne

- 1
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The objective function F(z) is minimized on the feasible region given by the equality
constraints

cule) = S’ =1,

i=1
3

caulz) = Y aielf —af) =0,
i=1

calz) = Y (af —af)? =,
i=1

where 1 <[ < ny (three for every lamp). It holds

Jcyy(x) dey () dey ()
x4 ’ 0zB ’ oxy Ta>
ey () S Ocy () S dea(x) B_ A
Daf = Ty 2B = T, 03 =Ty — Ty
ey () A, Ocy(x) ay  Ocu()
9l = —2(955 — ), P = 2(zy —zy), 03 =0

and remaining derivatives are zeroes. The constraints are sparse, so the memory size and
the number of arithmetic operations are not large.

The described problem consists in the minimization of a sum of squares with respect
to nonlinear equality constraints. The number of partial functions in the sum of squares is



ne ~ 10000 (the number of the plane elements). The number of variables is 9n; ~ 900 (nine
for every lamp). The Hessian matrix of the objective function is not sparse. The number
of nonlinear equality constraints is 3n; ~ 300 (three for every lamp). The Jacobian matrix
of nonlinear equality constraints is sparse. These facts have an influence to the choice of
the numerical method.

2.3 The recursive quadratic programming method.

We want to find a local minimum of the twice continuously differentiable function F' :
R™ — R, on the feasible set given by the equality constraints

¢i(x) =0, 1<i<m.

Herex € R"ac¢;: R" — R, 1 <1 < m < n, are twice continuously differentiable functions.
If the LICQ constraint qualification (the linear independence of gradients of the constraint
functions) is satisfied, the necessary conditions for the local minimum have the form

VF(z)+ A(z)u = 0,
clx) = 0.

This is a set of n + m nonlinear equations for unknown vectors x € R" and u € R™,
where A(x) is the Jacobian matrix of the mapping c¢(x) and w is the vector of Lagrange
multipliers.

The principle of the recursive quadratic programming method consists in the appli-
cation of the Newton method to the system of nonlinear equations specifying the necessary
conditions for the local minimum. The iterative step of the Newton method has the form

X
Tpr1 = l‘k—i-()ékdk,

u
Upt1 = Ug + agdy,

where df, dj are direction vectors obtained as a solutions of the system of linear equations

G L] L]

(the linear KKT system) and a; > 0 is a selected stepsize. Here
g(x,u) = VF(x) + Z u;Vei(z), G(r,u) = V2F(z) + Z u; V2ei()
i=1 i=1

are the gradient and the Hessian matrix of the Lagrangian function. The exact Hessian
matrix G(xg,uy) is replaced by its approximation By obtained by the BFGS quasi-Newton

method. Then
[Bk Ak][di]:_{g(m,uk}]
AT 0 dy c(zg) |’
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where By = I (I is the unit matrix of order n) and

1
Byy1 = By + ST—ykyZ -

Tor %(Bkskyg + yksy Br),

where s, = Tp1 — T = agdy, and Y = g(Tpg1, Ung1) — 9( Tk, Upg1)-
As a merit function for stepsize selection, the augmented Lagrangian function

g
Pi(a) = F(zg + ady) + (ug + d}j)Tc(:z:k + adp) + §Hc(xk + aalg,g)H2

is used where ¢ > 0 is a penalty parameter. If the linear KKT system is solved in such a
way that
|Gy + Awdys + gill <@rllgell 1 ARdg + cill < Trllell,

where 0 < @y, < 1, then P/(0) < 0 holds and function Py(«) is decreasing in the direction
d%. In this case, we can chose the sepsize in such a way that oy, = 7~ max(1,A/|d%])),
where A is the maximum stepsize, 0 < # < 1 is the reduction coefficient and j € N is the
minimum integer such that

Pk(ozk) — Pk(O) S elosz,;(O),

where 0 < £, < 1/2is the Armijo parameter. The values A = 1000, 8 = 0.5 and £; = 0.0001
are usually used.

2.4 Solving the linear KKT system.

The linear KKT system can be written in the form

e[ 4)[£]-[2)-

This symmetric system of linear equations, whose matrix is indefinite, is solved by the
preconditioned conjugate gradient method with preconditioner

D A
C:|:AT O:|7

where D is a positive definite diagonal matrix approximating in some sense the main

diagonal of B. The multiplication of vector r by the matrix C~! can be expressed in the
form

—1(x u
Cflr — |: D (Ttu At ) :| ’ U = (ATDflA)fl(ATDflrz o Tu>'
Algorithm: Set d; =0, r; = b,

1= (ATD LAY (ATD N ), 1 = D - AR)
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and p; = t;. For ¢ > 1 the following steps are performed. If ||r¥|| < @||b*|| and ||| < @]|bY||,
where w is a given precision, then set d = d; and terminate the computation. In the opposite
case compute

¢ = Kp;, o =rlti/p]aq,

diy1 = d; + oup;, Tip1 = Ty — Q;4;,
th = (ATDP AN ATD Y — )
i+1 i+1 i+1/9
tfﬂ = D_I(T;'EH - At?ﬂ)a

and increase 7 by 1.
Matrix (ATD~*A)~! need not be computed explicitly, we use its Choleski decomposition
LLT = ATD7'A, where L is a lower triangular matrix.

3 Formulation of optimization problem with constraints.

3.1 Equations for the exposure of a plane element by a lamp.

Let 27 = (2T, 21 21) be the center of the plane element, ¥ = (2, 2)Y, 21 be the normal

of the plane element, x4 = (x4, 22, 24'), 28 = (2P, 28, 2P) be side points of the lamp and

2% = (27,25, 73) be the lighting direction of the lamp. We also denote v = —z™, x = 24,
u = 2°. Let y be a vector parallel to the vector 22 — 24, so 2% — 24 = (y/||y||)d, where
d=[a® — a4,

We assume that the lighting direction of the lamp is mostly perpendicular to the plane
of the shape, so the angle between vector z°, which is perpendicular to the vector g, and
the normal e = (0,0, —1) of the plane (assumed to be horizontal) is minimal. If the norm

of vector u is unit, it can be uniquely determined from vectors y and e.

Véta 1 Vector
e+ Ay ely

eTle+ N\y) y'y

s the solution of the optimization problem

elu — max,
T, _
y u = )
wlu =1,

Since the length of vector u can be arbitrary, we put



where ¢ = ¢/|le|]| and § = y/||y|| (vector e = (0,0,—1) has the unit norm). To compute
the gradient of the objective function, we will use the Jacobian matrix V,u of vector u
depending on elements of vector y).

Véta 2 One has

T T T
vy ey ey 1 7 T .
Vu:(Q——I> — = 2uy —1e'yg—eéy

Y yTy vy yTy |yl ( )

The lamp is a linear body of the length d, consisting from p lighting elements of lengths
dp =d/(p—1), 1 < k < p. The distances between the lighting element and the center of
the plane element is expressed as

k—1
wk:mT—(1—)\k)xA—)\kmB::cT—xA—)\kdi, /\k:—;
[yl p—1

where 1 < k < p. It holds

T
Vo = 45 (1= V) = = i),
SO , ) : "
I= ;Ik, I, = (3ak +5y/1- ak) HwkH2d""
where T Ty
ap = ———t = @y, By= ———— = 5Ty
[[l[wg | [[v][ [l |

Analytical expression of derivatives of the exposure I with respect to the elements of vectors

r =14 and y = 2% — 2 (elements of vectors 27, /¥ are constants, since the shape surface

is invariant) has the form

p p
Vol = Y Vili=-) Vil
k=1 k=1

p

p
Vo = > V=) (VauVuli + Vywp Vo, Ii)
k=1

k=1

where

1 o Brdi,
Vel = |3—= Vo, @
- ( Nl—az) a2
( Brdy

1 dy,
3oy, + =4/1 — ozz) ( Vo B — 2—wik) )
2 AN [Jwe|*



Furthermore, one has

T
Wy, ut wy U 1 . N
V0l — = (Wy, — oy 1)
b Jullllwsll [l [lws]] [uf* [l ’
U uTwy, Wy, 1
AV ar = - = (ﬁ—akwk)
o ullllwell [lul[llwsl] [lwel* [lwgl] ’
v v wy, W 1
VB = - = (0 — Brwy)
o [ollllwell [[vl[llwl lwel? flwkl] ’

and after substitution we obtain

Vulk = (3 1 il > 5kdk (1I)k - Oékﬂ)

2/1—a2 ) [lullllwl?
1 oy Brdy . .

Vol = [3-2 -
a ( 2 1—ai> JuglF T )

1 dy,
3 —\/1—a? v — 30RwWy,).
+ (ak+2 O[k,) ||wk||3(v ﬁkwk)

Note that theorem 2 implies

VuV Iy, + Vywi Vo, I, = (Ve(Vulk = 277) + Yu€ + Med(Vs, Ik — V0, 9)) 5

1
Iyl

where 7. = 1€, v, = 7 Vo Iy, and 7y, = 57 Vi, Ix.

3.2 Objective function for the uniform exposure.

We have n. plane elements and n; lamps. Every plane element can be exposed by several
lamps. Let L; be a set of indices of lamps that expose j-th plane element. Choose 1 < j < n,
and [ € L;. If we denote I;; the exposure of j-th element by [-th lamp, (this value correspond
to the value I from the previous subsection), then the total exposure I; of j-th element I,
is given by the formula

=) I

IEL]‘

The derivatives of I; are computed by the formulas
szlj = vwlljlv vyz = vylljl7 le Lj?
szIj :O, Vyl :07 lng?

where we substitute the previously defined quantities. Let I be the prescribed value of the
exposure (the same for all elements of the shape surface). Then

1 &

F(.’L’) = 5 Z(I] _7)27

j=1
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where vector z has elements xy;, za, T3, Y11, Yo, Yz, 1 < 1 < my (six for every lamp). One
has

Ne Ne

leF(x) = Z(IJ(ZL’) - 7>V$zlj<x>7 vyzF(x) = Z(Ij(x) - 7>Vyzlj(x)a

J=1 J=1

where we substitute derivatives computed in the previous relations. The prescribed value
of the exposure is determined initially using the formula

The described problem consists in the minimization of a sum of squares without con-
straints. The number of partial functions in the sum of squares is n, ~ 10000 (the number
of the plane elements). The number of variables is 6n; ~ 900 (six for every lamp). The
Hessian matrix of the objective function is not sparse. These facts have an influence to the
choice of the numerical method.

3.3 The combined method for minimizing the sum of squares.

Let .
F(x) = ") f(x) = ful2),
k=1

where fi(z), 1 < k < m, be a twice continuously differentiable functions. Then the gradient
g(x) and the Hessian matrix G(z) of the objective function F'(z) can be expressed in the
form

gl@) = J'@)f(x) = fel@)gi(o)

G(z) = J'(@)J(@)+C(x) =) ge()gi (@) + Y fulx)Ci(x).

k=1 k=1

The direction vector is determined by the trust region method in such a way that

s; —arg min Q.(s
' % |s1<a, Quls).

Tiy1 =z, pi(s) <0,

Tiy1 =T + 8, pi(s) >0

Bllsill < Aia < Blisll, — pilsi)
A <A <A), pisy)

(AVARRVAN
A
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where
F(z; +s) — F(x;)

Qi(s)

and B; is an approximation of G(z;). The Gauss—Newton method uses the matrix

1
Qi(s) = giTs + QSTBis pi(s) =

m

By =JJi = gi(xi)gi (x:).

k=1

We combine the Gauss—Newton method with the BFGS quasi-Newton method. In this case

Bip1 = J£1Ji+1a (F; — Fip)/Fi >0,
yiyiT _ Bidi(Bidi)T

Bi = Bz 5
H T T T T AT B,

(F; — Fi1)/Fi <0,

where d; = ;11 — 2, ¥i = ¢is1 — ¢; and usually ¥ = 107%. This combined method is
superlinearly convergent if it is applied to problems with large residuals.

4 Numerical comparison.

The objective function defined in Section 2 was minimized, subject to nonlinear equality
constraints, by the recursive quadratic programming method described in [3]. More details
can be found in [1]. The objective function defined in Section 3 was minimized by the hybrid
method described in [2]. Both these methods are implemented in the universal functional
optimization system UFO [4].

The following table contains the results obtained by two mentioned methods applied
to the four sample problems.

Method with constraints Method without constraints

Problem | NIT NFV  Time F NIT NFV Time F
L1 1111 4272 1243 26.02 46 105 0.33 27.11
L2 939 3551 11.07 30.41 55 123 0.39  30.02
L3 312 630 3.18 12.68 99 226 140 10.60
L4 4282 50003 141.36 1.78* 64 142 0.39 1.20

These results demonstrate that the analytical elimination of constraints considerable in-
creases the efficiency of numerical optimization.
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