
A Handbook of Results on Interval Linear Problems. Dedicated in memoriam to
my parents. 07.04.2005 / 23.09.2012

Rohn, Jiřı́
2012

Dostupný z http://www.nusl.cz/ntk/nusl-126613

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 22.08.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-126613
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Handbook of Results on Interval
Linear Problems
Dedicated in memoriam to my parents

Mrs. Nina Rohnová and Mr. Robert Rohn

Jǐŕı Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1163

07.04.2005 / 23.09.2012

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz

http://uivtx.cs.cas.cz/~rohn�

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Handbook of Results on Interval
Linear Problems
Dedicated in memoriam to my parents

Mrs. Nina Rohnová and Mr. Robert Rohn

Jǐŕı Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1163

07.04.2005 / 23.09.2012

Abstract:

This text surveys important results on interval matrices, interval linear equations (both square
and rectangular), and interval linear programming (without proofs). It is based on a “one-topic-
one-page” approach, in which each topic is allotted the space of one page only, and contains
MATLAB-like descriptions of 15 basic algorithms. The bibliography contains direct links to many
papers quoted. Verification versions of some of the algorithms presented in the text can be found
in the VERSOFT software package. The Handbook was finalized on 07.04.2005 and was left as
an internet text only; here it is published in its original 2005 form as a technical report. During
the years 2005-2012 many of the results have been improved; they can be found at author’s web
page http://uivtx.cs.cas.cz/~rohn/publist/000home.htm.

1

Keywords:
Interval linear problems, auxiliary results, interval matrices, systems of interval linear equations
(square case), systems of interval linear equations and inequalities (rectangular case), interval
linear programming, algorithms, and many others.

1Above: logo of interval computations and related areas (depiction of the solution set of the system
[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [6])).

http://uivtx.cs.cas.cz/~rohn�
http://uivtx.cs.cas.cz/~rohn/publist/000home.htm�

Motto

Was sich überhaupt sagen läßt, läßt sich klar sagen;
und wovon man nicht reden kann, darüber muß man schweigen.

L. Wittgenstein, Tractatus logico-philosophicus,
Routledge & Kegan Paul Ltd., London 1922

Contents

Preface 5

1 Notations 7

1.1 Basic notations . 8

1.1.1 Linear algebraic notations . 8

1.1.2 Specific notations . 8

1.2 Summary: Linear algebraic notations . 9

1.3 Summary: Specific notations . 10

2 Auxiliary results 11

2.1 The set Yn . 12

2.2 The norm ‖A‖∞,1 . 13

2.3 The equation Ax + B|x| = b and the sign accord algorithm 14

3 Interval matrices 15

3.1 Interval matrices: definition and basic notations 16

3.2 Regularity . 17

3.3 Finding a singular matrix . 18

3.4 Qz matrices . 19

3.5 Inverse interval matrix . 20

3.6 Enclosure of the inverse interval matrix . 21

3.7 Inverse stability . 22

3.8 Inverse sign pattern . 23

3.9 Inverse nonnegativity . 24

3.10 Radius of regularity . 25

3.11 Real eigenvalues . 26

3.12 Real eigenvectors . 27

3.13 Real eigenpairs . 28

1

3.14 Eigenvalues of symmetric matrices . 29

3.15 Positive semidefiniteness . 30

3.16 Positive definiteness . 31

3.17 Hurwitz stability . 32

3.18 Schur stability . 33

3.19 Full column rank . 34

4 Interval linear equations (square case) 35

4.1 Interval vectors: definition and basic notations 36

4.2 The solution set . 37

4.3 The hull . 38

4.4 The solution set lying in a single orthant . 39

4.5 Enclosure of the solution set . 40

4.6 Overestimation of the HBR enclosure . 41

5 Interval linear equations and inequalities (rectangular case) 42

5.1 (Z, z)-solutions . 43

5.2 Tolerance solutions . 44

5.3 Control solutions . 45

5.4 Strong solvability of equations . 46

5.5 Strong solvability of inequalities . 47

6 Interval linear programming 48

6.1 Reminder: optimal value of a linear program 49

6.2 Range of the optimal value . 50

7 Algorithms 51

7.1 An algorithm for generating the set Yn . 52

7.2 An algorithm for computing the norm ‖A‖∞,1 53

7.3 The sign accord algorithm . 54

7.4 An algorithm for checking regularity . 55

7.5 An algorithm for finding a singular matrix . 56

7.6 An algorithm for computing Qz . 57

7.7 An algorithm for computing the inverse . 58

7.8 An algorithm for checking positive definiteness 59

7.9 An algorithm for checking Hurwitz stability 60

7.10 An algorithm for checking Schur stability . 61

2

7.11 An algorithm for computing the hull . 62

7.12 The Hansen-Bliek-Rohn enclosure algorithm 63

7.13 An algorithm for checking strong solvability of equations 64

7.14 An algorithm for checking strong solvability of inequalities 65

7.15 An algorithm for computing the range of the optimal value 66

Bibliography 67

3

4

Preface

Aim. It has been the aim of this text to present a selection of important results on interval
linear problems in a unified and concise way.

Philosophy. The philosophy behind the text is the “one-topic-one-page” approach, in which
each topic is allotted the space of one page only.

Layout. There are basically two types of problems handled in interval analysis: decision
problems (as checking whether an interval matrix is regular), and computational problems
(as computation of the inverse of a regular interval matrix). For decision problems I was
using the following page layout:

Definition. (basic notion of the page)

Problem. (problem formulation)

Necessary and sufficient condition.

Complexity.

Sufficient condition. (if the problem is NP-hard)

Algorithm. (reference to Chapter 7, or to the above sufficient condition)

Comment. (if necessary)

Operation. (the way the algorithm is operating)

Special features. (explanations, connections or related results of particular interest)

References. (sources of given or related results; without names)

and for the computational problems a similar layout

Definition.

Problem.

Formula(e). (formula(e) used in the algorithm)

Complexity.

Algorithm.

Comment.

Operation.

Special features.

References.

Sometimes some of the headings are missing. Occasionally, when necessary, I also added

5

another headings, as Intro, Fact, Idea, Formulae for enclosures, Apology2, etc.

Algorithms. It has been my second goal to present not-a-priori-exponential algorithms for
solving NP-hard problems. They are those forming the branch starting with signaccord in
the scheme on p. 51.

Algorithm form. All the algorithms are gathered in Chapter 7. They are described in the
form of MATLAB-like functions, but with formulae written in the usual mathematical way.
In particular, the output variable flag always gives a verbal description of the output.

Hyperlinks. The source text contains hyperlinks that make it easy to flip through it simply
by clicking on links colored in magenta, or, in the Contents, in blue. In particular, each item
in the bibliography is appended with numbers (in magenta) of the pages where it is referenced
from. (This feature also allows you to verify that all the bibliographical items have been
referenced.) My own papers listed can be downloaded directly by clicking on the respective
URLs in the bibliography.3

Prague, Easter 2005 Jiri Rohn
(rohn@cs.cas.cz)

2On p. 40.
3Unfortunately, this works only in the dvi file, not in the pdf file.

6

Chapter 1

Notations

Subject. Notations used are introduced and summarized in this chapter.

7

1.1 Basic notations

1.1.1 Linear algebraic notations

Notation for matrices. The ith row of a matrix A is denoted by Ai•, the jth column
by A•j . For two matrices A,B of the same size, inequalities like A ≤ B or A < B are
understood componentwise. A is called nonnegative if 0 ≤ A and symmetric if AT = A; AT

is the transpose of A. A ◦ B denotes the Hadamard (entrywise) product of A,B ∈ Rm×n,
i.e., (A ◦ B)ij = AijBij for each i, j. The absolute value of a matrix A = (aij) is defined by
|A| = (|aij |). Maximum (or minimum) of two matrices A, B is taken componentwise, i.e.,
(max{A,B})ij = max{Aij , Bij} for each i, j.

Properties. The following properties are valid whenever the respective operations and
inequalities are defined: (i) A ≤ B and 0 ≤ C imply AC ≤ BC, (ii) A ≤ |A|, (iii) |A| ≤ B if
and only if −B ≤ A ≤ B, (iv) |A+B| ≤ |A|+ |B|, (v) if A◦B ≥ 0, then |A+B| = |A|+ |B|,
(vi) if |A−B| < |B|, then A ◦B > 0, (vii) ||A| − |B|| ≤ |A−B|, (viii) |AB| ≤ |A||B|.
Notation for vectors. The same notations and results also apply to vectors which are
always considered one-column matrices. Hence, for a = (ai) and b = (bi), aT b =

∑
i aibi is

the scalar product whereas abT is the matrix (aibj).

Notation. I denotes the unit matrix, ej is the jth column of I, e = (1, . . . , 1)T is the vector
of all ones and E = eeT ∈ Rm×n is the matrix of all ones (in these cases we do not designate
explicitly the dimension which can always be inferred from the context).

1.1.2 Specific notations

Notation specific for this text. Throughout the text, important role is played by the set
Ym of all ±1 vectors in Rm, i.e., Ym = {y ∈ Rm ; |y| = e}. Obviously, the cardinality of Ym

is 2m. For each x ∈ Rm we define its sign vector sgnx by

(sgn x)i =
{

1 if xi ≥ 0,
−1 if xi < 0

(i = 1, . . . ,m),

so that sgnx ∈ Ym. For a given vector y ∈ Rm we denote

Ty =

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym

 . (1.1)

With a few exceptions we use the notation Ty for vectors y ∈ Ym only, in which case we
have T−y = −Ty, T−1

y = Ty and |Ty| = I. For each x ∈ Rm we can write |x| = Tzx, where
z = sgnx; in the proofs1 this trick is often used to remove the absolute value of a vector.
Notice that Tzx = (zixi)m

i=1 = z ◦ x.

All notations are summed up on pp. 9-10.

1Omitted here.

8

1.2 Summary: Linear algebraic notations

A matrix
Ai• the ith row of A
A•j the jth column of A
A−1 inverse matrix
A+ the Moore-Penrose inverse of A
AT transpose of A
‖A‖∞,1 = max‖x‖∞=1 ‖Ax‖1

A ≤ B Aij ≤ Bij for each i, j
A < B Aij < Bij for each i, j
A ≥ B ⇔ B ≤ A
A > B ⇔ B < A
A ◦B = (aijbij) for A = (aij), B = (bij) (Hadamard product)
a column vector
aT b =

∑
i aibi (scalar product)

abT outer product ((abT)ij = aibj for each i, j)
Conv X the convex hull of X
detA determinant of A
E = eeT ∈ Rm×n (the matrix of all ones)
e = (1, 1, . . . , 1)T

ej the jth column of the unit matrix I
I unit (or identity) matrix
λi(A) the ith eigenvalue of a symmetric A (λ1(A) ≥ . . . ≥ λn(A))
max{A,B} componentwise maximum of matrices (vectors)
min{A,B} componentwise minimum of matrices (vectors)
R the set of real numbers
Rm×n the set of m× n real matrices
Rn real vector space
%(A) spectral radius of A

9

1.3 Summary: Specific notations

Notations marked in red are important and occur frequently.

A interval matrix
|A| absolute value of a matrix (|A| = (|aij |) for A = (aij))
A lower bound of an interval matrix A = [A, A]
A upper bound of an interval matrix A = [A,A]
Ac midpoint matrix of an interval matrix A = [Ac −∆, Ac + ∆]
As = [(A + AT)/2, (A + A

T)/2] for A = [A, A] (symmetrization)
Ayz = Ac − Ty∆Tz

A−yz = A−y,z
a
0 = 0 for a = 0, = ∞ for a > 0 (case a < 0 does not occur)
b interval vector
b lower bound of an interval vector b = [b, b]
b upper bound of an interval vector b = [b, b]
bc midpoint vector of an interval vector b = [bc − δ, bc + δ]
by = bc + Ty∆
δ radius vector of an interval vector b = [bc − δ, bc + δ]
∆ radius matrix of an interval matrix A = [Ac −∆, Ac + ∆]
f(A, b, c) optimal value of a linear programming problem
f(A,b, c) lower bound of the range of the optimal value of an

interval linear programming problem
f(A,b, c) upper bound of the range of the optimal value of an

interval linear programming problem
%0(A) real spectral radius of A (maximum of moduli of real eigenvalues)

= 0 if no real eigenvalue exists
Rn

z = {x ∈ Rn ; Tzx ≥ 0} (z-orthant, z ∈ Yn)
sgnx sign vector of a vector x ((sgnx)i = 1 if xi ≥ 0, (sgnx)i = −1 otherwise)
Ty the diagonal matrix with diagonal vector y
X the solution set of Ax = b
|x| absolute value of a vector (|x| = (|xi|) for x = (xi))
[x, x] the interval hull of the solution set X
[x, x] enclosure of X (in particular, that by Hansen-Bliek-Rohn)
Ym the set of all ±1-vectors in Rm

10

Chapter 2

Auxiliary results

Recommendation. Please, read the Preface (pp. 5-6) first.

Subject. Three auxiliary results (of noninterval character) are presented in this chapter.

11

2.1 The set Yn

Definition. Yn is the set of all ±1-vectors in Rn (there are 2n of them).

Problem. Generate Yn vector by vector so that each two successive vectors differ in exactly
one entry.

Algorithm. See p. 52.

Comment. In the algorithm description, y is the generated vector and z is an auxiliary
(0, 1)-vector used for determining the index k for which yk should be changed to −yk.

Operation. For each n ≥ 1 the algorithm at the output yields the set Y = Yn.

Special features. This algorithm is employed as a subroutine in exhaustive algorithms
that require to perform some operation for all y ∈ Yn (see the scheme on p. 51). The set Yn

itself is not constructed, the operation is applied to successively generated vectors.

References. [108].

12

2.2 The norm ‖A‖∞,1

Definition. For A ∈ Rm×n we define (see e.g. [35])

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1.

Problem. Compute ‖A‖∞,1 for a given A.

Formula. For each A ∈ Rm×n we have

‖A‖∞,1 = max
y∈Yn

‖Ay‖1.

Complexity. Computing ‖A‖∞,1 is NP-hard. Even more, checking whether ‖A‖∞,1 ≥ 1 is
NP-complete.

Algorithm. See p. 53.

Comment. This algorithm uses implicitly the algorithm ynset for generating the set Yn (p.
52). This simplifies computation of the new Ay′ from the old Ay. Also, since ‖A(−y)‖1 =
‖Ay‖1, only y’s with yn = 1 are considered.

Operation. The algorithm computes ‖A‖∞,1 in a number of steps exponential in n.

Special features. When studying complexity of interval linear problems, we often encounter
this norm (see the survey [105]). Since its computation is NP-hard, the norm forms one of
two main tools for establishing NP-hardness of interval linear problems (the second such a
tool is a related problem whether −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 has a solution, see [108]).

References. [107], [105], [108], [35], [25].

13

2.3 The equation Ax + B|x| = b and the sign accord algorithm

Problem. Given A,B ∈ Rn×n and b ∈ Rn, find a solution to the nonlinear equation

Ax + B|x| = b. (2.1)

Idea. If we knew the sign vector z = sgnx of the solution x of (2.1), we could rewrite (2.1)
as (A + BTz)x = b and solve it for x as x = (A + BTz)−1b. However, we know neither x,
nor z; but we do know that they should satisfy Tzx = |x| ≥ 0, i.e., zjxj ≥ 0 for each j (a
situation we call a sign accord of z and x). In its kernel form the sign accord algorithm
computes the z’s and x’s repeatedly until a sign accord occurs. A combinatorial argument

z = sgn (A−1b);
x = (A + BTz)−1b;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
zk = −zk;
x = (A + BTz)−1b;

end

Figure 2.1: The kernel of the sign accord algorithm (p. 54).

is used to prove that in case of regularity of [A − |B|, A + |B|], a sign accord is achieved
within a prespecified number of steps, so that crossing this number indicates singularity of
[A− |B|, A + |B|] (see p. 17 for regularity and singularity).

Complexity. The problem of checking whether (2.1) has a solution is NP-complete.

Algorithm. See p. 54.

Comment. The matrix C in the algorithm description is used for updating x according to
the Sherman-Morrison formula.

Operation. For each A,B ∈ Rn×n and each b ∈ Rn, the sign accord algorithm (p. 54) in
a finite number of steps either finds a solution of the equation (2.1), or states singularity
of the interval matrix [A − |B|, A + |B|] (and, in certain cases, finds a singular matrix
As ∈ [A− |B|, A + |B|]).
Comment. If [A−|B|, A+ |B|] is regular, then the algorithm finds a solution of (2.1) which,
moreover, is unique. In case of singularity the algorithm may state singularity without having
found a singular matrix, but such cases are rather rare; in most cases it finds a singular matrix
as well.

Special features. The sign accord algorithm is the fundamental building block for con-
struction of other algorithms presented in Chapter 7. (See the scheme on p. 51.)

References. [92].

14

Chapter 3

Interval matrices

Subject. In this chapter we consider various properties of square n × n interval matrices.
Rectangular interval matrices are handled only in the last Section 3.19.

15

3.1 Interval matrices: definition and basic notations

Definition. If A, A are two matrices in Rm×n, A ≤ A, then the set of matrices

A = [A, A] = {A ; A ≤ A ≤ A}
is called an interval matrix, and the matrices A, A are called its bounds.

Comment. Hence, if A = (aij) and A = (aij), then A is the set of all matrices A = (aij)
satisfying

aij ≤ aij ≤ aij (3.1)

for i = 1, . . . ,m, j = 1, . . . , n. It is worth noting that each coefficient may attain any value
in its interval (3.1) independently of the values taken on by other coefficients. Notice that
interval matrices are typeset in boldface letters.

Notation. In many cases it is more advantageous to express the data in terms of the center
matrix

Ac = 1
2(A + A) (3.2)

and of the radius matrix
∆ = 1

2(A−A), (3.3)

which is always nonnegative.

Comment. From (3.2), (3.3) we easily obtain that

A = Ac −∆,

A = Ac + ∆,

so that A can be given either as [A, A], or as [Ac − ∆, Ac + ∆]. In the sequel we employ
both forms and we switch freely between them according to which one is more useful in the
current context.

Matrices Ayz (important). Given an m × n interval matrix A = [Ac − ∆, Ac + ∆], we
define matrices

Ayz = Ac − Ty∆Tz

for each y ∈ Ym and z ∈ Yn (Ty is given by (1.1)).

Explanation. The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =
{

aij if yizj = −1,
aij if yizj = 1

(i = 1, . . . , m, j = 1, . . . , n), so that Ayz ∈ A for each y ∈ Ym, z ∈ Yn.

Special features. This finite set of matrices from A (of cardinality at most 2m+n−1 because
Ayz = A−y,−z for each y ∈ Ym, z ∈ Yn; the bound is attained if ∆ > 0) plays an important
role because it turns out that many problems with interval-valued data can be characterized
in terms of these matrices, thereby obtaining finite characterizations of problems involving
infinitely many sets of data.

Special cases. We write A−yz instead of A−y,z. In particular, we have A−yz = Ac +Ty∆Tz,
Aye = Ac − Ty∆, Aez = Ac −∆Tz, Aee = A and A−ee = A.

16

3.2 Regularity

Definition. A square interval matrix A is called regular if each A ∈ A is nonsingular, and
it is said to be singular otherwise (i.e., if it contains a singular matrix).

Problem. Check regularity of A.

Necessary and sufficient conditions. For a square interval matrix A = [Ac−∆, Ac +∆],
the following assertions are equivalent:

(i) A is regular,
(ii) the inequality |Acx| ≤ ∆|x| has only the trivial solution,
(iii) (detAyz)(detAy′z′) > 0 for each1 y, z, y′, z′ ∈ Yn,
(iv) Ac is nonsingular and2 maxy,z∈Yn %0(A−1

c Ty∆Tz) < 1,
(v) for each z ∈ Yn the equation QAc − |Q|∆Tz = I has a unique matrix solution Qz.

Complexity. Checking regularity of interval matrices is a co-NP-complete problem.

Sufficient regularity condition. An interval matrix A = [Ac −∆, Ac + ∆] is regular if

%(|A−1
c |∆) < 1 (3.4)

holds.3

Comment. The condition (3.4) can be verified in polynomial time since it is equivalent to
(I − |A−1

c |∆)−1 ≥ 0.

Sufficient singularity condition. An interval matrix A = [Ac −∆, Ac + ∆] is singular if

max
j

(|A−1
c |∆)jj ≥ 1

holds.

Algorithm. See p. 55.

Comment. The algorithm is based on another principles and employs the procedure hull
(see p. 62), but at the start it checks the above two sufficient conditions.

Operation. The algorithm in a finite number of steps checks regularity or singularity of A.

Special features. Among many properties of regular interval matrices, probably the most
important one is the unique solvability of the equation Ax + B|x| = b (p. 14) in conjunction
with the sign accord algorithm (p. 54) for finding its solution.

References. [9], [12], [92], [110], [41].

1Ayz = Ac − Ty∆Tz, see p. 10
2%0 is the real spectral radius, see p. 10.
3Interval matrices satisfying (3.4) are called strongly regular.

17

3.3 Finding a singular matrix

Fact. By definition (p. 17), a singular interval matrix A contains a singular matrix. The
algorithm regularity (p. 55) is capable of detecting singularity of A, but it does not find a
singular matrix in A.

Problem. Find a singular matrix in a singular interval matrix A.

Idea. By the assertion (iii) on p. 17, singularity of A is equivalent to existence of y, z, y′, z′ ∈
Yn such that

(detAyz)(detAy′z′) ≤ 0. (3.5)

Since the ±1-vectors (yT , zT) can be ordered in such a way that each two successive vectors
differ in exactly one entry (p. 12), the inequality (3.5) must occur for some ±1-vectors
(yT , zT), (y′T , z′T) differing in just one entry.

Formulae. Let (3.5) hold for some ±1-vectors (yT , zT), (y′T , z′T) differing in exactly one
entry. Then we have:

(a) if y′i 6= yi for some i, then As = Ac − (Ty − 2τeie
T
i)∆Tz is a singular matrix in A,

where τ = −yi/(2(AcD)ii − 2),
(b) if z′j 6= zj for some j, then As = Ac − Ty∆(Tz − 2τeje

T
j) is a singular matrix in A,

where τ = −zj/(2(DAc)jj − 2).

Algorithm. See p. 56.

Comment. The algorithm successively generates all the ±1-vectors (yT , zT) using implicitly
the algorithm ynset (pp. 12, 52) as a subroutine. detAy′z′ is evaluated from detAyz with
the help of the Sherman-Morrison determinant formula which also proves that the matrix
As constructed in (a) or (b) above is singular.

Operation. The algorithm in a finite number of steps checks regularity or singularity of A
and in the latter case it also constructs a singular matrix As ∈ A.

Comment. The algorithm is heavily exponential. It is therefore recommended to check first
singularity by the algorithm regularity, and if singularity is detected, to use the current
algorithm for finding a singular matrix.

Special features. The above cases (a), (b) show that if A is singular, then it contains a
singular matrix in a certain “normal form” As = Ac − Ty∆Tz, where all entries of y, z are
±1 with exception of one which belongs to [−1, 1].

References. [92], [96].

18

3.4 Qz matrices

Fact. According to the assertion (v) on p. 17, A = [Ac −∆, Ac + ∆] is regular if and only
if for each z ∈ Yn the equation

QAc − |Q|∆Tz = I (3.6)

has a unique matrix solution Qz.

Problem. Given a regular A, compute Qz for a given z ∈ Yn.

Formula. For each i, (Qz)i• = xT , where x is the solution of

AT
c x− Tz∆T |x| = ei

and can be found by the sign accord algorithm (see pp. 14, 54).

Complexity. Unknown.

Algorithm. See p. 57.

Operation. The algorithm in a finite number of steps either computes a solution to (3.6),
or states singularity of A.

Comment. If A is regular, then the computed solution of (3.6) is equal to Qz. But it may
happen that the algorithm finds a solution to (3.6) even in case of singularity.

Special features. Matrices Qz are the main tool for construction of a not-a-priori-exponential
algorithm for computing the hull, see p. 62.

References. [92].

19

3.5 Inverse interval matrix

Definition. For a regular A we define the inverse interval matrix as A−1 = [B, B], where

B = min{A−1 ; A ∈ A},

B = max{A−1 ; A ∈ A}
(componentwise).

Problem. Given a regular A, compute A−1.

Formulae. Let A be regular. Then for its inverse A−1 = [B,B] we have

B = min
z∈Yn

Qz = min
y,z∈Yn

A−1
yz ,

B = max
z∈Yn

Qz = max
y,z∈Yn

A−1
yz

(componentwise).

Complexity. Computing the inverse interval matrix is NP-hard.

Algorithm. See p. 58.

Operation. The algorithm in a finite number of steps either computes A−1, or states
singularity of A.

Special features. As in real numerical analysis, computation of A−1 should be avoided
whenever possible. In particular, an interval linear system Ax = b should never be solved
as x = A−1b.

References. [92], [97], [18].

20

3.6 Enclosure of the inverse interval matrix

Definition. An interval matrix
[
B, B

]
satisfying A−1 ⊆ [

B, B
]

is called an enclosure of the
inverse interval matrix.

Problem. Given a regular A, compute an enclosure of its inverse.

Comment. This weakened requirement is a consequence of the NP-hardness of computing
the exact interval inverse, see p. 20.

Formula. Let A = [Ac −∆, Ac + ∆] satisfy4 %(|A−1
c |∆) < 1. Then we have

A−1 ⊆ [min{B
˜

, TνB˜
}, max{B̃, TνB̃}],

where

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . , Mnn)T ,

Tν = (2Tµ − I)−1,

B
˜

= −M |A−1
c |+ Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c |+ Tµ(A−1

c − |A−1
c |).

Comment. This is the Hansen-Bliek-Rohn enclosure (p. 40) applied to interval linear
systems Ax = [ej , ej] for j = 1, . . . , n. It can be used only when %(|A−1

c |∆) < 1.

Complexity. This enclosure is computed in polynomial time.

Algorithm. Use the above formulae.

Operation. The algorithm in a finite number of steps either computes an enclosure, or fails
(due to %(|A−1

c |∆) ≥ 1).

Special features. Computing this enclosure requires inverting two real matrices only (in-
verting 2Tµ − I is trivial because it is a diagonal matrix).

References. [108], [95], [34], [17].

4See p. 17.

21

3.7 Inverse stability

Definition. A regular interval matrix A is called inverse stable5 if |A−1| > 0 for each A ∈ A.

Comment. Due to the continuity of the determinant, this means that for each i, j, either
(A−1)ij < 0 for each A ∈ A, or (A−1)ij > 0 for each A ∈ A. Thus we can also say that
inverse stability is equivalent to existence of a matrix Z such that6 Z ◦ A−1 > 0 for each
A ∈ A.

Problem. Check inverse stability of a regular A.

Necessary and sufficient condition. A is inverse stable if and only if there exists a
matrix Z such that Z ◦A−1

yz > 0 for each y, z ∈ Yn.

Complexity. Unknown.

Sufficient condition. If
[
B,B

]
is an enclosure of the inverse interval matrix (see p. 21)

and B ◦B > 0, then A is inverse stable.

Algorithm. Use the above sufficient condition.

Operation. The algorithm is polynomial-time, but it fails if %(|A−1
c |∆) ≥ 1 or B ◦B ≯ 0.

Special features. If A is inverse stable, then the coefficients of its inverse A−1 = [B, B]
are given by the explicit formulae

Bij = (A−1
−y(i),z(j))ij

Bij = (A−1
y(i)z(j))ij

(i, j = 1, . . . , n), where y(i) = sgn (A−1
c)i• and z(j) = sgn (A−1

c)•j for each i, j.

References. [92], [97].

5Meant: inverse sign stable.
6For clarity, Z may be “normalized” to satisfy |Z| = E, but it is not necessary. “◦” denotes the Hadamard

product, see p. 9.

22

3.8 Inverse sign pattern

Definition. Let A be regular. If there exist (fixed) z, y ∈ Yn such that TzA
−1Ty ≥ 0 holds

for each A ∈ A, then A is said to be of the inverse sign pattern (z, y).

Comment. In other words, for each i, j we have (A−1)ijziyj ≥ 0 for each A ∈ A, so that
ziyj prescribes the sign of (A−1)ij .

Problem. For given z, y ∈ Yn, check whether A is of the inverse sign pattern (z, y).

Necessary and sufficient condition. A is of the inverse sign pattern (z, y) if and only if

TzA
−1
yz Ty ≥ 0, (3.7)

TzA
−1
−yzTy ≥ 0 (3.8)

hold.7

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above two conditions.

Operation. Checking requires inverting two real matrices only.

Special features. This is a generalization of inverse nonnegativity (p. 24). E.g. for
z = y = (1,−1, 1, . . . , (−1)n−1)T we get the “chequer-board” inverse sign pattern, etc.

References. [92], [26].

7Which implicitly asserts that the two conditions (3.7), (3.8) imply regularity of A.

23

3.9 Inverse nonnegativity

Definition. A regular interval matrix A is called inverse nonnegative if A−1 ≥ 0 for each
A ∈ A.

Problem. Check whether a given A is inverse nonnegative.

Necessary and sufficient condition. A square interval matrix A = [A, A] is inverse
nonnegative if and only if A−1 ≥ 0 and A

−1 ≥ 0.8

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above two conditions.

Operation. Two inversions needed.

Special features. If A = [A, A] is inverse nonnegative, then A−1 = [A−1
, A−1].

Comment. In a similar way we may define A to be inverse positive if A−1 > 0 for each
A ∈ A. Then A is inverse positive if and only if A−1 > 0 and A

−1
> 0.

References. [56], [90].

8Which implicitly asserts that nonnegative invertibility of A and A implies regularity of A.

24

3.10 Radius of regularity

Convention. In this section (only) we use the convention 0
0 = 0, a

0 = ∞ for a > 0.

Definition. For a square interval matrix A = [Ac −∆, Ac + ∆], the number

d(A) = inf{ε ≥ 0 ; [Ac − ε∆, Ac + ε∆] is singular} (3.9)

is called the radius of regularity9 of A.

Comment. Hence, d(A) ∈ [0,∞]. If d(A) is finite, then the infimum in (3.9) is attained as
minimum.

Problem. Given A, compute d(A).

Formulae. For each square interval matrix A = [Ac −∆, Ac + ∆] we have10

d(A) = inf
x 6=0

max
i

|Acx|i
(∆|x|)i

=
1

max
y,z∈Yn

%0(A−1
c Ty∆Tz)

, (3.10)

the second formula assuming nonsingularity of Ac.

Comment. In the first formula in (3.10), “x 6= 0” can be replaced by “‖x‖ = 1” in any
vector norm.

Complexity. Computing d(A) is NP-hard, even in the case11 ∆ = E.

Bounds. If Ac is nonsingular, then

1
%(|A−1

c |∆)
≤ d(A) ≤ 1

max
j

(|A−1
c |∆)jj

. (3.11)

Algorithm. Starting from the bounds (3.11) (if finite), use the method of halving the
interval in conjunction with the algorithm regularity, p. 55.

Comment. In the neighbourhood of d(A) the algorithm is likely to behave exponentially
and the computation is likely to be slow.

Special features. d(A) = 1/%(|A−1
c |∆) if Ac is nonsingular and TzA

−1
c Ty ≥ 0 holds for

some z, y ∈ Yn.

Comment. The topic was further investigated in [22], [116], [117], [115], and has found
applications in control theory.

References. [79], [80], [91], [22], [116], [117], [115], [3], [5], [16], [19], [23], [83].

9Also “radius of nonsingularity”, and even “radius of singularity”.
10From conditions (ii), (iv) on p. 17.
11The first NP-hardness result for an interval problem, see [79], [80].

25

3.11 Real eigenvalues

Definition. A real number12 λ is called a real eigenvalue of A if it is a real eigenvalue of
some A ∈ A.

Problem. Check whether a given λ ∈ R is a real eigenvalue of A.

Necessary and sufficient condition. A λ ∈ R is a real eigenvalue of A = [Ac−∆, Ac+∆]
if and only if the interval matrix

[(Ac − λI)−∆, (Ac − λI) + ∆] (3.12)

is singular.

Complexity. The problem is NP-hard. (It is NP-hard even for λ = 0, see p. 17.)

Sufficient conditions. If λ ∈ R is not an eigenvalue of Ac, then13:

(a) if maxj(|(Ac − λI)−1|∆)jj ≥ 1, then λ is a real eigenvalue of A,
(b) if %(|(Ac − λI)−1|∆) < 1, then λ is not a real eigenvalue of A.

Algorithm. Check singularity of (3.12) by the algorithm regularity (p. 55).

Operation. The algorithm solves the problem in a finite number of steps.

References. [96], [92], [84].

12We consider the real eigenproblem only; complex eigenvalues seemingly cannot be handled effectively by
our methods.

13See p. 17.

26

3.12 Real eigenvectors

Definition. A real vector x is called a real eigenvector of A if it is a real eigenvector of
some A ∈ A.

Problem. Check whether a given real vector x is a real eigenvector of A.

Necessary and sufficient condition. A vector 0 6= x ∈ Rn is a real eigenvector of A if
and only if it satisfies14

TzAzzxxT Tz ≤ TzxxT AT
−zzTz,

where z = sgn x.

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above condition.

Special features. While checking real eigenvalues is NP-hard (p. 26), checking real eigen-
vectors is a polynomial-time problem. This is certainly a surprising and unexpected result.
For another kind of such a distinction, see p. 50.

References. [96].

14Azz = Ac − Tz∆Tz and A−zz = Ac + Tz∆Tz, see p. 10.

27

3.13 Real eigenpairs

Definition. If λ ∈ R and x ∈ Rn, then the pair (λ, x) is called a real eigenpair of A if it is
a real eigenpair of some A ∈ A.

Problem. Given λ ∈ R and x ∈ Rn, check whether (λ, x) is a real eigenpair of A.

Necessary and sufficient condition. If λ ∈ R and 0 6= x ∈ Rn, then (λ, x) is a real
eigenpair of A = [Ac −∆, Ac + ∆] if and only if

|(Ac − λI)x| ≤ ∆|x| (3.13)

holds.

Complexity. Verification can be performed in polynomial time.

Algorithm. Check the above condition.

Special features. It follows15 from (3.13) that (λ, x), x 6= 0, is a real eigenpair of A if and
only if

max
xi 6=0

((TzAcTz −∆)|x|)i

|xi| ≤ λ ≤ min
xj 6=0

((TzAcTz + ∆)|x|)j

|xj |
holds, where z = sgnx. This shows the range of all real eigenvalues λ of A belonging to the
same real eigenvector x.

References. [96].

15See [96].

28

3.14 Eigenvalues of symmetric matrices

Fact. A symmetric matrix A ∈ Rn×n has all eigenvalues real. They are (usually) ordered in
a nonincreasing sequence as λ1(A) ≥ . . . ≥ λn(A).

Definition. A square interval matrix A = [Ac −∆, Ac + ∆] is called symmetric if both Ac

and ∆ are symmetric (so that it may also contain nonsymmetric matrices).

Fact. If A is symmetric, then for each i ∈ {1, . . . , n} the set

{λi(A) ; A ∈ A, A symmetric}

is a compact interval. We denote this interval by [λi(A), λi(A)].

Problem. Given a symmetric A, compute the intervals [λi(A), λi(A)], i = 1, . . . , n.

Formulae for the extremal eigenvalues. Unfortunately, formulae are available only for
the extremal eigenvalues so far16: For each symmetric A = [Ac −∆, Ac + ∆] there holds17

λ1(A) = max
‖x‖2=1

(xT Acx + |x|T ∆|x|) = max
z∈Yn

λ1(A−zz),

λn(A) = min
‖x‖2=1

(xT Acx− |x|T ∆|x|) = min
z∈Yn

λn(Azz).

Complexity. Computing λ1(A), λn(A) is NP-hard.

Reformulation of the problem. Due to the above difficulties, we reformulate the problem
as follows: given a symmetric A, compute enclosures of the intervals [λi(A), λi(A)], i =
1, . . . , n.

Formulae for enclosures. For a symmetric A = [Ac −∆, Ac + ∆] we have18

[λi(A), λi(A)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)] (i = 1, . . . , n). (3.14)

Algorithm. Use the above formulae.

Comment. It is an unpleasant feature that all the intervals in (3.14) have the same radius.
But nothing better seems to be available.

Operation. Computing the enclosures requires computation of all the eigenvalues of Ac

and of the spectral radius of ∆.

Special features. In particular, for each eigenvalue λi(A) of each symmetric A ∈ A there
holds

λn(Ac)− %(∆) ≤ λi(A) ≤ λ1(Ac) + %(∆).

These bounds are useful for solving problems formulated in terms of extremal eigenvalues
(as e.g. positive (semi)definiteness or Hurwitz stability).

References. [103], [106], [99], [28].
16As far as known to me.
17Azz = Ac − Tz∆Tz, see p. 10.
18Consequence of the Wielandt-Hoffman theorem, see [28].

29

3.15 Positive semidefiniteness

Definition. A symmetric interval matrix (see p. 29) is said to be positive semidefinite if
xT Ax ≥ 0 holds for each A ∈ A and each x.

Problem. Given a symmetric A, check it for positive semidefiniteness.

Necessary and sufficient conditions. For a symmetric interval matrix A = [Ac−∆, Ac+
∆], the following assertions are equivalent:

(i) A is positive semidefinite,
(ii) xT Acx− |x|T ∆|x| ≥ 0 for each x,
(iii) each Azz, z ∈ Yn, is positive semidefinite.19

Complexity. Checking positive semidefiniteness is NP-hard.

Sufficient condition. If
%(∆) ≤ λn(Ac),

then A = [Ac −∆, Ac + ∆] is positive semidefinite.

Algorithm. Check the above sufficient condition.

Comment. Employing the necessary and sufficient condition (iii) results in an exponential
number of operations and can be hardly recommended.

References. [101], [54].

19Each matrix Azz = Ac − Tz∆Tz, z ∈ Yn, is symmetric.

30

3.16 Positive definiteness

Definition. A symmetric interval matrix (see p. 29) is said to be positive definite if
xT Ax > 0 holds for each A ∈ A and each x 6= 0.

Problem. Given a symmetric A, check it for positive definiteness.

Necessary and sufficient conditions. For a symmetric interval matrix A = [Ac−∆, Ac+
∆], the following assertions are equivalent:

(i) A is positive definite,
(ii) xT Acx− |x|T ∆|x| > 0 for each x 6= 0,
(iii) each Azz, z ∈ Yn, is positive definite,20

(iv) A is regular (see p. 17) and Ac is positive definite.

Complexity. Checking positive definiteness is NP-hard.

Sufficient condition. If
%(∆) < λn(Ac),

then A = [Ac −∆, Ac + ∆] is positive definite.

Algorithm. See p. 59.

Comment. The algorithm is based on the above necessary and sufficient condition (iv),
and also employs the sufficient condition.

Operation. The algorithm in a finite number of steps checks positive definiteness of A.

Special features. The connection of positive definiteness with regularity in the above
condition (iv) is worth noticing.

References. [101], [99].

20Each matrix Azz = Ac − Tz∆Tz, z ∈ Yn, is symmetric.

31

3.17 Hurwitz stability

Definition. A square matrix A is called Hurwitz stable if Reλ < 0 for each eigenvalue λ of
A.

Definition. A square interval matrix A is called Hurwitz stable if each A ∈ A is Hurwitz
stable.

Problem. Given A, check it for Hurwitz stability.

A negative result. For a general square interval matrix A, Hurwitz stability of all vertex
matrices21 of A is not sufficient for Hurwitz stability of A (it was wrongly stated so in [14],
but shown to be erroneous in [43] and independently in [4]). However, such a characterization
is possible for symmetric interval matrices.

Necessary and sufficient condition. A symmetric interval matrix A = [Ac−∆, Ac + ∆]
is Hurwitz stable if and only if the interval matrix [−Ac−∆,−Ac + ∆] is positive definite.22

Complexity. Checking Hurwitz stability is NP-hard (even for symmetric interval matrices).

Sufficient condition. Let A = [A, A] be a (nonsymmetric) square interval matrix. If the
symmetric interval matrix

As = [(A + AT)/2, (A + A
T)/2]

is Hurwitz stable, then A is Hurwitz stable. Many other sufficient conditions are surveyed in
[60].

Algorithm. See p. 60.

Comment. The algorithm employs both the necessary and sufficient condition and the
sufficient condition.

Operation. If A is symmetric, then the algorithm in a finite number of steps checks Hurwitz
stability of A. It fails to give any result if A is nonsymmetric and As is not Hurwitz stable.

Special features. All the properties of interval matrices considered in this chapter so far
were characterized in terms of the matrices Ayz, y, z ∈ Yn (see p. 10). Hurwitz stability is
the first exception.

References. [101], [99], [14], [43], [4], [60], [68].

21Vertex matrix of A = [A, A] is any matrix A satisfying Aij ∈ {Aij , Aij} for each i, j; each Ayz is a vertex
matrix, see p. 16.

22See p. 31.

32

3.18 Schur stability

Definition. A square matrix A is called Schur stable if %(A) < 1.

Definition. A symmetric interval matrix A is called Schur stable if each symmetric A ∈ A
is Schur stable.

Comment. Hence, we do not take into account the nonsymmetric matrices contained in A.
The reasons for it are purely technical.

Problem. Given a symmetric A, check it for Schur stability.

Necessary and sufficient condition. A symmetric interval matrix A = [A, A] is Schur
stable if and only if the symmetric interval matrices [A− I, A− I] and [−A− I,−A− I] are
Hurwitz stable.

Complexity. Checking Schur stability of symmetric interval matrices is NP-hard.

Algorithm. See p. 61.

Operation. The algorithm in a finite number of steps checks Schur stability of a symmetric
interval matrix A.

References. [101], [99].

33

3.19 Full column rank

Definition. A matrix A ∈ Rm×n is said to have full column rank if rank(A) = n (or,
equivalently, if Ax = 0 implies x = 0).

Definition. An m×n interval matrix A is said to have full column rank if each A ∈ A has
full column rank.

Comment. This is the only property in this chapter formulated for rectangular interval
matrices.

Problem. Check whether a given m× n interval matrix A has full column rank.

Necessary and sufficient condition. A = [Ac −∆, Ac + ∆] has full column rank if and
only if the inequality

|Acx| ≤ ∆|x|
has only the trivial solution x = 0.

Complexity. Checking full column rank is NP-hard (it is NP-hard even in the square case).

Sufficient condition. Let Ac have full column rank and let

%(|(AT
c Ac)

−1AT
c |∆) < 1.

Then A = [Ac −∆, Ac + ∆] has full column rank.

Comment. (AT
c Ac)

−1AT
c is the Moore-Penrose inverse A+

c of Ac.

Algorithm. Check the above sufficient condition.

Special features. For square interval matrices, this notion is equivalent to regularity (see
p. 17).

References. [104].

34

Chapter 4

Interval linear equations (square case)

Subject. In this chapter we consider interval linear equations Ax = b with a square n× n
interval matrix A.

35

4.1 Interval vectors: definition and basic notations

Definition. An interval vector is a one-column interval matrix

b = {b ; b ≤ b ≤ b},

where b, b ∈ Rm, b ≤ b.

Notation. We again use the center vector

bc = 1
2(b + b)

and the nonnegative radius vector
δ = 1

2(b− b).

Comment. We employ both forms b = [b, b] = [bc− δ, bc + δ]. Notice that interval matrices
and vectors are typeset in boldface letters.

Vectors by. For an m-dimensional interval vector b = [bc − δ, bc + δ], in analogy with the
matrices Ayz (p. 16), we define vectors

by = bc + Tyδ

for each y ∈ Ym.

Explanation. Then for each such a y we have

(by)i = (bc)i + yiδi =
{

bi if yi = −1,

bi if yi = 1

(i = 1, . . . , m), so that by ∈ b for each y ∈ Ym. In particular, b−e = b and be = b. Together
with matrices Ayz, vectors by are used in finite characterizations of interval problems having
right-hand sides.

36

4.2 The solution set

Definition. Given an n× n interval matrix A = [Ac −∆, Ac + ∆] and an interval n-vector
b = [bc − δ, bc + δ], the set

X = {x ; Ax = b for some A ∈ A, b ∈ b}

is called the solution set of the (formally written) interval linear system Ax = b.

Problem. Describe the solution set of Ax = b.

Formula.1 We have
X = {x ; |Acx− bc| ≤ ∆|x|+ δ}.

Comment. Observe that no assumptions concerning A or b are made.

Complexity. Verifying whether a given x belongs to X can be performed in polynomial
time.

Special features. The solution set is nonconvex in general, but its intersection with each
orthant is a convex polyhedron (possibly empty). If A is regular, then X is compact and
connected [10]; if A is singular, then each component of X is unbounded [40].

References. [77], [71], [10], [40], [108].

1The Oettli-Prager theorem [77].

37

4.3 The hull

Fact. If A is regular, then the solution set X is compact (p. 37) and therefore bounded.

Definition. If A is regular, then the interval vector [x, x] given by

xi = min
x∈X

xi,

xi = max
x∈X

xi (i = 1, . . . , n),

(i.e., the narrowest interval vector containing the solution set X) is called the interval hull2

of the solution set X.

Problem. Compute the interval hull of the solution set X of an interval linear system
Ax = b with A regular.

Formulae.3 Let Z be any subset of Yn such that for each x ∈ X there exists a z ∈ Z with
Tzx ≥ 0. If for each z ∈ Z the equations

QAc − |Q|∆Tz = I, (4.1)
QAc + |Q|∆Tz = I (4.2)

have solutions4 Qz and Q−z, respectively, then A is regular5 and for the interval hull [x, x]
there holds

x = min
z∈Z

(Q−zbc − |Q−z|δ),
x = max

z∈Z
(Qzbc + |Qz|δ)

(componentwise).

Comment. The first assumption concerning Z is satisfied e.g. for Z = Yn. The algorithm
referenced below attempts to make Z as small as possible. For Qz matrices, see pp. 19 and
57.

Complexity. Computing the hull of the solution set is an NP-hard problem.

Algorithm. See p. 62.

Operation. The algorithm in a finite number of steps either computes the hull, or states
singularity of A.

Special features. This is a not-a-priori-exponential algorithm. Its number of steps depends
on the cardinality of the set Z. For example, if X ⊂ (Rn

z)◦, then Z = {z} and only two
matrices (Qz and Q−z) are to be computed, see p. 39; if 0 ∈ X◦, then Z = Yn and we must
compute 2n of them (the superscript “◦” denotes the interior).

References. (The algorithm has not been published.) [92], [40], [110], [108], [76], [6], [11],
[2], [71].

2Or simply “hull”.
3The result is formulated in this somewhat complicated form in order to circumvent the assumption of

regularity of A which is verified (or disproved) on the way.
4If (4.1) or (4.2) does not have a solution, then A is singular, see p. 19.
5Which, in turn, guarantees that the solutions Qz, Q−z of (4.1), (4.2) are unique, see p. 19.

38

4.4 The solution set lying in a single orthant

Formulae. Let A be regular. Then X ⊂ (Rn
z)◦ holds6 for some z ∈ Yn if and only if

Tz(A−1
c bc) > 0, (4.3)

Tz(Q−zbc − |Q−z|δ) > 0, (4.4)
Tz(Qzbc + |Qz|δ) > 0. (4.5)

In this case the hull [x, x] is given by

x = Q−zbc − |Q−z|δ, (4.6)
x = Qzbc + |Qz|δ. (4.7)

Algorithm. If (4.3)- (4.5) are satisfied, then the algorithm hull (see p. 62) detects this
situation and computes the hull directly by (4.6)-(4.7).

Operation. In this case the algorithm requires computing two matrices (Qz and Q−z) only.

Special features. This is a rare case when the bounds of the hull can be given explicitly
by closed-form formulae.

References. (Unpublished.) [6], [11], [90].

6(Rn
z)◦ is the interior of Rn

z .

39

4.5 Enclosure of the solution set

Definition. An interval vector [x, x] satisfying X ⊆ [x, x] is called an enclosure of the
solution set X.

Problem. Given an interval linear system Ax = b with regular A, compute an enclosure
of its solution set X.

Comment. This weakened requirement is a consequence of the NP-hardness of computing
the interval hull of the solution set, see p. 38.

Formulae. Let A = [Ac −∆, Ac + ∆] satisfy %(|A−1
c |∆) < 1 (see p. 17). Then the interval

vector [x, x] computed by the following formulae is an enclosure7 of the solution set X:

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . ,Mnn)T ,

Tν = (2Tµ − I)−1,

xc = A−1
c bc,

x∗ = M(|xc|+ |A−1
c δ|),

x
˜

= −x∗ + Tµ(xc + |xc|),
x̃ = x∗ + Tµ(xc − |xc|),
x = min{x

˜
, Tνx

˜
},

x = max{x̃, Tν x̃}.

Complexity. This enclosure is computed in polynomial time.

Algorithm. See p. 63, up to the line “flag = ′enclosure computed′;” (the rest of the
algorithm is explained on p. 41).

Comment. The algorithm works only under the condition %(|A−1
c |∆) < 1.

Operation. The algorithm in a finite number of steps either computes an enclosure, or fails.

Special features. The bounds given by the HBR enclosure are always at least as good as the
componentwise Bauer-Skeel bounds8, and they are better in each entry provided (|A−1

c |∆)ii >
0 holds for each i.

Apology. At this place I apologize to all colleagues who have ever written papers on
enclosures for not having quoted their results here. Because of the “one-topic-one-page”
approach I could choose only one type, and I opted for the HBR enclosure because of its
special properties (p. 41).

References. [31], [15], [95], [108], [100], [74], [72]; [8], [130], [131]; [1], [2], [7], [12], [24], [26],
[27], [29], [30], [32], [33], [36], [50], [53], [55], [61], [62], [63], [64], [67], [69], [71], [73], [81],
[85], [112], [113], [114], [119], [124], [127], [129].

7Called the Hansen-Bliek-Rohn enclosure (abbreviated as HBR).
8For the Bauer-Skeel bounds, see e.g. [131].

40

4.6 Overestimation of the HBR enclosure

Fact. By definition (see p. 40), any enclosure [x, x] satisfies [x, x] ⊆ [x, x], where [x, x] is
the interval hull.

Problem. Determine the overestimation of the enclosure.9

Comment. Such information is usually not available. The HBR enclosure was chosen for
inclusion here because of possessing this particular property.

Formulae. Under assumption and notations from p. 40, let [x, x] be the interval hull and
[x, x] the HBR enclosure. Then for each i ∈ {1, . . . , n} we have

x
i
≤ xi ≤ x

i
+ di, (4.8)

xi − di ≤ xi ≤ xi, (4.9)

where

di = eT
i (I − |A−1

c Tz∆|)−1|(TzA
−1
c Tz − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|,

di = eT
i (I − |A−1

c Tz∆|)−1|(TzA
−1
c Tz − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|,
ξ
i

= (|x|+ x− xc − |xc|)i,

ξi = (|x| − x + xc − |xc|)i

and z, z are given by

zj =
{

sgn (xc)j if j 6= i,
−1 if j = i,

zj =
{

sgn (xc)j if j 6= i,
1 if j = i

(j = 1, . . . , n).

Comment. Computing d, d requires computation of up to 2n inverses (but it usually pays
off). If this number is considered too large, the matrices (I−|A−1

c Tz∆|)−1, (I−|A−1
c Tz∆|)−1

in the formulae for di, di can be replaced by the matrix M , and the whole theorem will remain
in force.

Complexity. Vectors d, d can be computed in polynomial time.

Algorithm. See p. 63, the lines after “flag = ′enclosure computed′;”.

Operation. The algorithm in a finite number of steps computes nonnegative vectors d, d
satisfying (4.8), (4.9).

Special features. If Ac is a diagonal matrix with positive diagonal entries, then TzA
−1
c Tz−

|A−1
c | = TzA

−1
c Tz − |A−1

c | = 0 and consequently d = d = 0, so that [x, x] = [x, x]. Hence, in
this case the HBR enclosure yields the exact interval hull.

References. (Unpublished.) [31], [15], [95], [74], [72].

9Of course, without computing the hull, which is an NP-hard problem.

41

Chapter 5

Interval linear equations and inequalities (rectangular
case)

Subject. In this chapter we consider systems of interval linear equations Ax = b (or systems
of interval linear inequalities Ax ≤ b) with a rectangular m× n interval matrix A.

42

5.1 (Z, z)-solutions

Intro. Let A = [Ac − ∆, Ac + ∆] be an m × n interval matrix and b = [bc − δ, bc + δ] an
interval m-vector. Under an interval linear system Ax = b we understand the family of all
systems Ax = b with A ∈ A, b ∈ b.

Definition. Let |Z| = E ∈ Rm×n and |z| = e ∈ Rm. A vector x ∈ Rn is said to be a
(Z, z)-solution of a system Ax = b if for each Aij ∈ [Aij , Aij] with Zij = −1 and for each
bi ∈ [bi, bi] with zi = −1 there exist Aij ∈ [Aij , Aij] with Zij = 1 and bi ∈ [bi, bi] with zi = 1
such that Ax = b holds.1

Problem. Given Z and z, describe the set of all (Z, z)-solutions of Ax = b.

Comment. Despite the complexity of the definition, it turns out that description of (Z, z)-
solutions becomes wonderfully simple as soon as the Hadamard product is employed.

Formula.2 A vector x ∈ Rn is a (Z, z)-solution of Ax = b if and only if it satisfies

|Acx− bc| ≤ (Z ◦∆)|x|+ z ◦ δ. (5.1)

Complexity. Complexity of checking whether a system Ax = b has a (Z, z)-solution
depends on the choice of Z and z; see pp. 44 and 45 for two opposite examples.

Algorithm. For verification whether a given x is a (Z, z)-solution of Ax = b, check (5.1).

Special features. This is a generalization of the Oettli-Prager theorem [77], p. 37 (which
can be obtained from (5.1) by putting Z = E and z = e). Both its formulation and proof were
not straightforward. Shary presented his definition of (Z, z)-solutions, which he called “∀∃-
solutions”, in [125]. His formulation of the result contained interval arithmetic operations.
A formula not using these operations and proved from the Oettli-Prager theorem was given
in this author’s letter to Shary and Lakeyev [102]. The final step towards utmost simplicity
by employing the Hadamard product was done by Lakeyev in [57].

References. [125], [57], [102], [77].

1Thus “−1” corresponds to “∀” and “1” to “∃”. It could be argued that the reverse order would be more
natural, but we would have to pay for it by introducing minus signs into the main formula (5.1).

2By Shary, Lakeyev and Rohn.

43

5.2 Tolerance solutions

Definition. A (−E, e)-solution (see p. 43) is called a tolerance solution of Ax = b. In
other words, x is a tolerance solution if it satisfies

{Ax ; A ∈ A} ⊆ b.

Problem. Describe the set of tolerance solutions of Ax = b.

Formula. For the set Xtol of tolerance solutions of Ax = b we have

Xtol = {x ; |Acx− bc| ≤ −∆|x|+ δ}
= {x1 − x2 ; Ax1 −Ax2 ≤ b, Ax1 −Ax2 ≥ b, x1 ≥ 0, x2 ≥ 0}. (5.2)

Complexity. Checking whether a system Ax = b has a tolerance solution can be performed
in polynomial time.

Algorithm. Use a polynomial-time linear programming algorithm to check whether the
system of linear inequalities in (5.2) has a solution.

Operation. The algorithm in a finite number of steps checks whether Ax = b has a
tolerance solution (and, in the positive case, also finds such a solution).

Special features. Introduction of the notion of tolerance solutions (as early as in 1970’s)
was motivated by considerations concerning crane construction [75] and input-output plan-
ning with inexact data of the socialist economy of former Czechoslovakia [86].

References. [75], [86], [89], [70], [21], [47], [45], [46], [128], [118], [121], [122], [123], [58].

44

5.3 Control solutions

Definition. An (E,−e)-solution (see p. 43) is called a control solution of Ax = b. In other
words, x is a control solution if it satisfies

b ⊆ {Ax ; A ∈ A}.

Problem. Describe the set of control solutions of Ax = b.

Formula. For the set Xcon of control solutions of Ax = b we have

Xcon = {x ; |Acx− bc| ≤ ∆|x| − δ}.

Complexity. The problem of checking whether a system Ax = b has a control solution is
NP-complete.

Special features. Control solutions were introduced in [120]. The choice of the word
“control” was probably motivated by the fact that each vector b ∈ b can be reached by Ax
when properly controlling the coefficients of A within A.

References. [120], [123], [126], [58], [127].

45

5.4 Strong solvability of equations

Definition. Let A = [Ac −∆, Ac + ∆] be an m× n interval matrix and b = [bc − δ, bc + δ]
an interval m-vector. We say that the system Ax = b is strongly solvable if each system
Ax = b with A ∈ A, b ∈ b has a solution.

Problem. Check whether a given system Ax = b is strongly solvable.

Necessary and sufficient condition. A system Ax = b is strongly solvable if and only if
for each y ∈ Ym the system3

Ayex
1 −A−yex

2 = by, (5.3)

x1 ≥ 0, x2 ≥ 0 (5.4)

has a solution x1
y, x2

y. Moreover, if this is the case, then for each A ∈ A, b ∈ b the system
Ax = b has a solution in the set Conv{x1

y − x2
y ; y ∈ Ym}.

Complexity. The problem of checking strong solvability of interval linear equations is NP-
hard.

Algorithm. See p. 64.

Comment. The algorithm uses a (not specified) polynomial-time linear programming sub-
routine for solving the system (5.3), (5.4).

Operation. The algorithm in a finite number of steps checks strong solvability of Ax = b.

Special features. The proof of the above necessary and sufficient condition is nontrivial
and uses a new existence theorem for systems of linear equations [93], [94].

References. [109], [108], [93], [94].

3Aye = Ac − Ty∆, A−ye = Ac + Ty∆ and by = bc + Tyδ, see p. 10.

46

5.5 Strong solvability of inequalities

Definition. Let A = [A,A] be an m×n interval matrix and b = [b, b] an interval m-vector.
We say that the system Ax ≤ b is strongly solvable if each system Ax ≤ b with A ∈ A,
b ∈ b has a solution.

Problem. Check whether a given system Ax ≤ b is strongly solvable.

Necessary and sufficient condition. A system Ax ≤ b is strongly solvable if and only if
the system

Ax1 −Ax2 ≤ b, (5.5)

x1 ≥ 0, x2 ≥ 0 (5.6)

has a solution.

Complexity. The problem of checking strong solvability of interval linear inequalities can
be solved in polynomial time.

Algorithm. See p. 65.

Comment. The algorithm uses a (not specified) polynomial-time linear programming sub-
routine for solving the system (5.5), (5.6).

Operation. The algorithm in a finite number of steps checks strong solvability of Ax ≤ b.

Special features. If a system Ax ≤ b is strongly solvable, then all the systems Ax ≤ b,
A ∈ A, b ∈ b, have a common solution (a nontrivial fact), which is called a strong solution
of Ax ≤ b. The algorithm on p. 65 finds a strong solution if it exists. Also, observe the
difference: checking strong solvability of interval linear equations is NP-hard, whereas the
same problem for interval linear inequalities is solvable in polynomial time.

References. [111], [108].

47

Chapter 6

Interval linear programming

Subject. This last, and shortest, chapter is dedicated to a single topic, namely the range
of the optimal value of an interval linear programming problem.

48

6.1 Reminder: optimal value of a linear program

Definition. The value1

f(A, b, c) = inf{cT x ; Ax = b, x ≥ 0}

is called the optimal value of a linear program

minimize cT x

subject to
Ax = b, x ≥ 0.

Comment. Hence, f(A, b, c) ∈ [−∞,∞].

Problem. Given A, b, c, compute f(A, b, c).

Complexity. The problem can be solved in polynomial time.

Algorithm. The first polynomial-time linear programming algorithm was described by
Khachiyan in [48]. Many of them exist nowadays; see e.g. [78].

Special features. A polynomial-time linear programming subroutine is implicitly used in
the algorithms on pp. 64, 65 and 66.

References. [20], [48], [44], [78].

1In linear programming only finite value of f(A, b, c) is accepted as the optimal value; we use this formu-
lation for the sake of utmost generality of the results.

49

6.2 Range of the optimal value

Definition. Let A = [A, A] = [Ac − ∆, Ac + ∆] be an m × n interval matrix and let
b = [b, b] = [bc − δ, bc + δ] and c = [c, c] be an m-dimensional and n-dimensional interval
vector, respectively. The family of linear programming problems

min{cT x ; Ax = b, x ≥ 0} (6.1)

with data satisfying
A ∈ A, b ∈ b, c ∈ c (6.2)

is called an interval linear programming problem.

Definition. The interval [f(A,b, c), f(A,b, c)], where

f(A,b, c) = inf{f(A, b, c) ; A ∈ A, b ∈ b, c ∈ c},

f(A,b, c) = sup{f(A, b, c) ; A ∈ A, b ∈ b, c ∈ c},
is called the range of the optimal value of the interval linear programming problem (6.1),
(6.2).

Comment. The endpoints of [f(A,b, c), f(A,b, c)] may be ±∞.

Problem. Given A, b, c, compute [f(A,b, c), f(A,b, c)].

Formula. We have

f(A,b, c) = inf{cT x ; Ax ≤ b, Ax ≥ b, x ≥ 0},
f(A,b, c) = sup

y∈Ym

f(Aye, by, c). (6.3)

Comment. Hence, solving only one linear programming problem is needed to evaluate
f(A,b, c), whereas up to 2m of them are to be solved to compute f(A,b, c) according to
(6.3). Although the set Ym is finite, we use “sup” here because some of the values may be
infinite. Notice the absence of any assumptions: the result is fully general.

Complexity. Computing f(A,b, c) can be performed in polynomial time, whereas compu-
tation of f(A,b, c) is NP-hard.

Algorithm. See p. 66.

Operation. The algorithm computes the range of the optimal value in a finite number of
steps.

Special features. If f(A,b, c) is finite, then

f(A,b, c) = sup{bT
c p + δT |p| ; AT

c p−∆T |p| ≤ c},

so that in this case the upper bound can be computed by solving one nonlinear programming
problem.

References. [87], [88], [108], [59], [52], [13], [65], [66], [37], [38], [39], [42], [98], [88], [49],
[51], [67], [82], [132].

50

Chapter 7

Algorithms

Subject. Here we give MATLAB-like descriptions of fifteen basic algorithms that have been
referred to in the previous chapters.

Scheme. The following scheme demonstrates the interdependence of the algorithms (a → b
means that the algorithm a is used as a subroutine in the algorithm b). It explains the
central role played by the algorithms ynset, signaccord and hull.

norminfone
↑

ynset −→ strosolveq
↓ ↑

range ←− linear programming −→ strosolvin

signaccord −→ qzmatrix −→ hull −→ inverse
↓

regularity −→ posdefness −→ hurwitzstab
↓

schurstab

The algorithms singular and hbr do not use subroutines.

Algorithm description. For algorithm form, see p. 6. In particular, [] denotes the empty
matrix or vector (which is not used in linear algebra, but is a useful programming tool); it
is assigned to matrices or vectors that have not been computed.

51

7.1 An algorithm for generating the set Yn

function Y = ynset(n)
z = 0 ∈ Rn; y = e ∈ Rn; Y = {y};
while z 6= e

k = min{i ; zi = 0};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;
Y = Y ∪ {y};

end

Figure 7.1: An algorithm for generating the set Yn (p. 12).

52

7.2 An algorithm for computing the norm ‖A‖∞,1

function ν = norminfone (A)
y = e ∈ Rn; z = 0 ∈ Rn−1;
x = Ay;
ν = ‖x‖1;
while z 6= e

k = min{i ; zi = 0};
x = x− 2ykA•k;
ν = max{ν, ‖x‖1};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;

end

Figure 7.2: An algorithm for computing the norm ‖A‖∞,1 (p. 13).

53

7.3 The sign accord algorithm

function [x, flag, As] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b or states
% singularity of [A− |B|, A + |B|].
x = []; flag = ′singular′; As = [];
if A is singular, As = A; return, end
p = 0 ∈ Rn;
x = A−1b;
z = sgnx;
if A + BTz is singular, As = A + BTz; x = []; return, end
x = (A + BTz)−1b;
C = −(A + BTz)−1B;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
if 1 + 2zkCkk ≤ 0

τ = (−1)/(2zkCkk);
As = A + B(Tz − 2τzkeke

T
k);

x = [];
return

end
pk = pk + 1;
zk = −zk;
if log2 pk > n− k, x = []; return, end
α = 2zk/(1− 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution found′;

Figure 7.3: The sign accord algorithm (p. 14).

Comment. After each updating of x and C there holds x = (A + BTz)−1b and C =
−(A + BTz)−1B for the current z. The variable pk registers the number of occurrences of k;
if pk > 2n−k for some k, then [A− |B|, A + |B|] is singular (see [92]).

54

7.4 An algorithm for checking regularity

function flag = regularity (A)
if Ac is singular, flag = ′singular′; return, end
R = A−1

c ;
if %(|R|∆) < 1, flag = ′regular′; return, end
if maxj(|R|∆)jj ≥ 1, flag = ′singular′; return, end
b = e; γ = mink |Rb|k;
for i = 1 : n

for j = 1 : n
b′ = b; b′j = −b′j ;
if mink |Rb′|k > γ, γ = mink |Rb′|k; b = b′; end

end
end
[x, x, flag] = hull (A, [b, b]);
if flag = ′hull computed′, flag = ′regular′; return
end

Figure 7.4: An algorithm for checking regularity (p. 17).

Comment. Both the for loops may be omitted without affecting functioning of the algo-
rithm. They form only an empirical tool [41] aimed at diminishing the number of orthants
to be visited by the subroutine hull.

55

7.5 An algorithm for finding a singular matrix

function [flag,As] = singular (A)
flag = ′singular′; As = [];
if Ac is singular, As = Ac; return, end
y = e ∈ Rn; z = e ∈ Rn; t = 0 ∈ R2n−1;
if A is singular, As = A; return, end
D = A−1;
while t 6= e

k = min{i ; ti = 0};
for i = 1 : k − 1, ti = 0; end
tk = 1;
if k ≤ n

i = k; p = eT
i AcD − eT

i ;
if 2pi + 1 ≤ 0

τ = −yi/(2pi);
As = Ac − (Ty − 2τeie

T
i)∆Tz; return

end
α = 2/(2pi + 1);
D = D − αDeip;
yi = −yi;

else
j = k − n; p = DAcej − ej ;
if 2pj + 1 ≤ 0

τ = −zj/(2pj);
As = Ac − Ty∆(Tz − 2τeje

T
j); return

end
α = 2/(2pj + 1);
D = D − αpeT

j D;
zj = −zj ;

end
end
flag = ′regular′;

Figure 7.5: An algorithm for finding a singular matrix (p. 18).

Comment. After each updating of y or z there holds D = A−1
yz .

56

7.6 An algorithm for computing Qz

function [Qz, f lag] = qzmatrix (A, z)
for i = 1 : n

[x, flag] = signaccord (AT
c ,−Tz∆T , ei);

if flag = ′singular′, Qz = []; return
end
(Qz)i• = xT ;

end
flag = ′solution computed′;

Figure 7.6: An algorithm for computing Qz (p. 19).

57

7.7 An algorithm for computing the inverse

function [B, B, flag] = inverse (A)
for j = 1 : n

[x, x, flag] = hull (A, [ej , ej]);
if flag = ′singular′, B = []; B = []; return
end
B•j = x; B•j = x;

end
flag = ′inverse computed′;

Figure 7.7: An algorithm for computing the inverse (p. 20).

58

7.8 An algorithm for checking positive definiteness

function flag = posdefness (A)
if Ac is not positive definite

flag = ′not positive definite′; return
end
if λmin(Ac) > %(∆)

flag = ′positive definite′; return
end
flag = regularity (A);
if flag = ′regular′, flag = ′positive definite′; return
else flag = ′not positive definite′; return
end

Figure 7.8: An algorithm for checking positive definiteness (p. 31).

59

7.9 An algorithm for checking Hurwitz stability

function flag = hurwitzstab (A)
A′c = (Ac + AT

c)/2; ∆′ = (∆ + ∆T)/2;
flag = posdefness ([−A′c −∆′,−A′c + ∆′]);
if flag = ′positive definite′

flag = ′Hurwitz stable′; return
else

if (A′c = Ac and ∆′ = ∆)
flag = ′not Hurwitz stable′; return

else
flag = ′Hurwitz stability not verified′; return

end
end

Figure 7.9: An algorithm for checking Hurwitz stability (p. 32).

60

7.10 An algorithm for checking Schur stability

function flag = schurstab (A)
if (AT

c 6= Ac or ∆T 6= ∆)
flag = ′Schur stability not verified′; return

end
flag = hurwitzstab ([Ac − I −∆, Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = hurwitzstab ([−Ac − I −∆,−Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = ′Schur stable′;

Figure 7.10: An algorithm for checking Schur stability (p. 33).

61

7.11 An algorithm for computing the hull

function [x, x, flag] = hull (A,b)
if Ac is singular

x = []; x = []; flag = ′singular′; return
end
x = A−1

c bc; x = x;
z = sgnx; Z = {z}; D = ∅;
while Z 6= ∅

select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
[Q−z, f lag] = qzmatrix(A,−z);
if flag = ′singular′, x = []; x = []; return, end
x
˜

= Q−zbc − |Q−z|δ;
[Qz, f lag] = qzmatrix(A, z);
if flag = ′singular′, x = []; x = []; return, end
x̃ = Qzbc + |Qz|δ;
if x

˜
≤ x̃

x = min{x, x
˜
};

x = max{x, x̃};
for j = 1 : n

z′ = z; z′j = −z′j ;
if (x

˜
j x̃j ≤ 0 and z′ /∈ Z ∪D), Z = Z ∪ {z′}; end

end
end

end
flag = ′hull computed′;

Figure 7.11: An algorithm for computing the hull (p. 38).

Comment. Z is the set of sign vectors of orthants to be visited; D is the set of those that
already have been visited.

62

7.12 The Hansen-Bliek-Rohn enclosure algorithm

function [x, x, d, d, flag] = hbr (A,b)
if (Ac is singular or I − |A−1

c |∆ is singular or (I − |A−1
c |∆)−1 6≥ I)

x = []; x = []; d = []; d = []; flag = ′enclosure not computed′;
return

end
M = (I − |A−1

c |∆)−1;
µ = (M11, . . . , Mnn)T ;
Tν = (2Tµ − I)−1;
xc = A−1

c bc;
x∗ = M(|xc|+ |A−1

c δ|);
x
˜

= −x∗ + Tµ(xc + |xc|);
x̃ = x∗ + Tµ(xc − |xc|);
x = max{x̃, Tν x̃};
x = min{x

˜
, Tνx

˜
};

flag = ′enclosure computed′;
z = sgnxc;
ξ = |x| − x + xc − |xc|;
ξ = |x|+ x− xc − |xc|;
for i = 1 : n

z′ = z; z′i = −1; N = (I − |A−1
c Tz′∆|)−1;

di = (N |(Tz′A
−1
c Tz′ − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|)i;

z′i = 1; N = (I − |A−1
c Tz′∆|)−1;

di = (N |(Tz′A
−1
c Tz′ − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|)i;
end

Figure 7.12: The Hansen-Bliek-Rohn enclosure algorithm (pp. 40, 41).

63

7.13 An algorithm for checking strong solvability of equations

At the start of the algorithm the equations of the system Ax = b should be reordered in
such a way that the matrix (∆ δ) has first q rows nonzero (0 ≤ q ≤ m) and the remaining
m− q rows zero.

function flag = strosolveq(A,b)
reorder the equations;
z = 0 ∈ Rq; y = e ∈ Rq; flag = ′strongly solvable′;
A = A; B = A; b = b;
if Ax1 −Bx2 = b, x1 ≥ 0, x2 ≥ 0 is not solvable

flag = ′not strongly solvable′; return
end
while z 6= e

k = min{i ; zi = 0};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;
if yk = 1

Ak• = Ak•; Bk• = Ak•; bk = bk;
else

Ak• = Ak•; Bk• = Ak•; bk = bk;
end
if Ax1 −Bx2 = b, x1 ≥ 0, x2 ≥ 0 is not solvable

flag = ′not strongly solvable′; return
end

end

Figure 7.13: An algorithm for checking strong solvability of equations (p. 46).

Comment. After each updating of A, B and b there holds A = Aye, B = A−ye, b = by for
the current y.

64

7.14 An algorithm for checking strong solvability of inequalities

function [x, flag] = strosolvin(A,b)
solve the system Ax1 −Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0;
if it has a solution x1, x2

x = x1 − x2; flag = ′strong solution found′;
else

x = []; flag = ′not strongly solvable′;
end

Figure 7.14: An algorithm for checking strong solvability of inequalities (p. 47).

65

7.15 An algorithm for computing the range of the optimal value

At the start of the algorithm the equations of the system Ax = b should be reordered in
such a way that the matrix (∆ δ) has first q rows nonzero (0 ≤ q ≤ m) and the remaining
m− q rows zero.

function [f, f, flag] = range(A,b, c)
reorder the equations;
compute f = inf{cT x ; Ax ≤ b, Ax ≥ b, x ≥ 0};
z = 0 ∈ Rq; y = e ∈ Rq;
A = A; b = b; f = f(A, b, c);
while (z 6= e and f < ∞)

k = min{i ; zi = 0};
for i = 1 to k − 1, zi = 0; end
zk = 1;
yk = −yk;
if yk = 1

Ak• = Ak•; bk = bk;
else

Ak• = Ak•; bk = bk;
end
f = max{f, f(A, b, c)};

end
flag = ′range computed′;

Figure 7.15: An algorithm for computing the range of the optimal value (p. 50).

Comment. After each updating of A and b there holds A = Aye, b = by for the current y.

66

Bibliography

[1] J. Albrecht, Monotone Iterationsfolgen und ihre Verwendung zur Lösung linearer Gle-
ichungssysteme, Numerische Mathematik, 3 (1961), pp. 345–358. 40

[2] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983. 38, 40

[3] B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York,
1994. 25

[4] B. R. Barmish and C. V. Hollot, Counter-example to a recent result on the stability of
interval matrices by S. BiaÃlas, International Journal of Control, 39 (1984), pp. 1103–
1104. 32

[5] I. Bar-On, B. Codenotti and M. Leoncini, Checking robust nonsingularity of tridiagonal
matrices in linear time, BIT, 36 (1996), pp. 206–220. 25

[6] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Comput-
ing, 12 (1974), pp. 117–125. 1, 38, 39

[7] H. Bauch, K.-U. Jahn, D. Oelschlägel, H. Süsse, and V. Wiebigke, Intervallmathematik,
Teubner, Leipzig, 1987. 40

[8] F. L. Bauer, Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme, Zeitschrift
für Angewandte Mathematik und Mechanik, 46 (1966), pp. 409–421. 40

[9] M. Baumann, A regularity criterion for interval matrices, in Collection of Scientific Pa-
pers Honouring Prof. Dr. K. Nickel on Occasion of his 60th Birthday, Part I, J. Garloff
et al., eds., Freiburg, 1984, Albert-Ludwigs-Universität, pp. 45–50. 17

[10] H. Beeck, Charakterisierung der Lösungsmenge von Intervallgleichungssystemen,
Zeitschrift für Angewandte Mathematik und Mechanik, 53 (1973), pp. T181–T182.
37

[11] H. Beeck, Zur scharfen Aussenabschätzung der Lösungsmenge bei linearen Intervall-
gleichungssystemen, Zeitschrift für Angewandte Mathematik und Mechanik, 54 (1974),
pp. T208–T209. 38, 39

[12] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in
Interval Mathematics, K. Nickel, ed., Lecture Notes in Computer Science 29, Berlin,
1975, Springer-Verlag, pp. 150–159. 17, 40

67

[13] H. Beeck, Linear programming with inexact data, Technical Report TUM–ISU–7830,
Technical University of Munich, Munich, 1978. 50

[14] S. BiaÃlas, A necessary and sufficient condition for the stability of interval matrices,
International Journal of Control, 37 (1983), pp. 717–722. 32

[15] C. Bliek, Computer Methods for Design Automation, PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, July 1992. 40, 41

[16] R. D. Braatz, P. M. Young, J. C. Doyle and M. Morari, Computational complexity of
mu calculation, IEEE Transactions on Automatic Control, 39 (1994), pp. 1000–1002.
25

[17] G. F. Corliss, Industrial applications of interval techniques, in Computer Arithmetic
and Self-Validating Numerical Methods, C. Ullrich, ed., no. 7 in Notes and Reports in
Mathematics in Science and Engineering, San Diego, 1990, Academic Press, pp. 91–
113. 21

[18] G. E. Coxson, Computing exact bounds on elements of an inverse interval matrix is
NP-hard, Reliable Computing, 5 (1999), pp. 137–142. 20

[19] G. E. Coxson and C. L. DeMarco, Computing the real structured singular value is NP-
hard, Report ECE-92-4, Department of Electrical and Computer Engineering, Univer-
sity of Wisconsin, Madison, 1992. 25

[20] G. Dantzig, Linear Programming and Extensions, Princeton University Press, Prince-
ton, 1963. 49

[21] A. Deif, Sensitivity Analysis in Linear Systems, Springer-Verlag, Berlin, 1986. 44

[22] J. W. Demmel, The componentwise distance to the nearest singular matrix, SIAM
Journal on Matrix Analysis and Applications, 13 (1992), pp. 10–19. 25

[23] J. C. Doyle, Analysis of feedback systems with structured uncertainties, IEE Proceed-
ings, Part D, 129 (1982), pp. 242–250. 25

[24] A. Frommer and G. Mayer, A new criterion to guarantee the feasibility of the interval
Gaussian algorithm, SIAM Journal on Matrix Analysis and Applications, 14 (1993),
pp. 408–419. 40

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979. 13

[26] J. Garloff, Totally nonnegative interval matrices, in Interval Mathematics 1980,
K. Nickel, ed., New York, 1980, Academic Press, pp. 317–327. 23, 40

[27] D. Gay, Solving interval linear equations, SIAM Journal on Numerical Analysis, 19
(1982), pp. 858–870. 40

[28] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, 1996. 29

68

[29] E. Hansen, On linear algebraic equations with interval coefficients, in Topics in Interval
Analysis, E. Hansen, ed., Oxford, 1969, Oxford University Press, pp. 33–46. 40

[30] E. Hansen, On the solution of linear algebraic equations with interval coefficients, Lin-
ear Algebra and Its Applications, 2 (1969), pp. 153–165. 40

[31] E. R. Hansen, Bounding the solution of interval linear equations, SIAM Journal on
Numerical Analysis, 29 (1992), pp. 1493–1503. 40, 41

[32] G. Heindl, Some inclusion results based on a generalized version of the Oettli-Prager
theorem, Zeitschrift für Angewandte Mathematik und Mechanik, Supplement 3, 76
(1996), pp. 263–266. 40

[33] G. Heindl, An improvement of the componentwise error estimate corresponding to a
well-known inclusion result for solutions of systems of linear equations, in Recent Ad-
vances in Numerical Methods and Applications, O. P. Iliev, ed., Singapore, 1999, World
Scientific, pp. 355–361. 40

[34] J. Herzberger and D. Bethke, On two algorithms for bounding the inverse of an interval
matrix, Interval Computations, 1 (1991), pp. 44–53. 21

[35] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia,
1996. 13

[36] K.-U. Jahn, Eine Theorie der Gleichungssysteme mit Intervallkoeffizienten, Zeitschrift
für Angewandte Mathematik und Mechanik, 54 (1974), pp. 405–412. 40

[37] C. Jansson, Zur linearen Optimierung mit unscharfen Daten, PhD thesis, University
of Kaiserslautern, 1985. 50

[38] C. Jansson, A self-validating method for solving linear programming problems with
interval input data, Computing Supplementum, 6 (1988), pp. 33–46. 50

[39] C. Jansson, On self-validating methods for optimization problems, in Topics in Vali-
dated Computations, J. Herzberger, ed., Amsterdam, 1994, North-Holland, pp. 381–
438. 50

[40] C. Jansson, Calculation of exact bounds for the solution set of linear interval systems,
Linear Algebra and Its Applications, 251 (1997), pp. 321–340. 37, 38

[41] C. Jansson and J. Rohn, An algorithm for checking regularity of interval matri-
ces, SIAM Journal on Matrix Analysis and Applications, 20 (1999), pp. 756–776.
http://www.cs.cas.cz/˜rohn/publist/95.ps 17, 55

[42] C. Jansson and S. M. Rump, Rigorous solution of linear programming problems with
uncertain data, ZOR-Methods and Models of Operations Research, 35 (1991), pp. 87–
111. 50

[43] W. C. Karl, J. P. Greschak, and G. C. Verghese, Comments on “A necessary and suffi-
cient condition for the stability of interval matrices”, International Journal of Control,
39 (1984), pp. 849–851. 32

69

http://www.cs.cas.cz/~rohn/publist/95.ps�

[44] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinator-
ica, 4 (1984), pp. 373–395. 49

[45] B. Kelling, Methods of solution of linear tolerance problems with interval arithmetic, in
Computer Arithmetic and Enclosure Methods, L. Atanassova and J. Herzberger, eds.,
Amsterdam, 1992, North-Holland, pp. 269–277. 44

[46] B. Kelling, Geometrische Untersuchungen zur eingeschränkten Lösungsmenge linearer
Intervallgleichungssysteme, Zeitschrift für Angewandte Mathematik und Mechanik, 74
(1994), pp. 625–628. 44

[47] B. Kelling and D. Oelschlägel, Zur Lösung von linearen Toleranzproblemen, Wis-
senschaftliche Zeitschrift TH Leuna-Merseburg, 33 (1991), pp. 121–131. 44

[48] L. G. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademii
Nauk SSSR, 244 (1979), pp. 1093–1096. 49

[49] J. Końıčková, Optimalizačńı úlohy s nepřesnými daty, PhD thesis, Charles University,
Prague, 1996. 50

[50] J. Końıčková, Solution of systems of interval linear equations, Zeitschrift für Ange-
wandte Mathematik und Mechanik, Supplement 3, 80 (2000), pp. S807–S808. 40

[51] J. Końıčková, Sufficient condition of basis stability of an interval linear programming
problem, Zeitschrift für Angewandte Mathematik und Mechanik, Supplement 3, 81
(2001), pp. S677–S678. 50

[52] R. Krawczyk, Fehlerabschätzung bei linearer Optimierung, in Interval Mathematics,
K. Nickel, ed., Lecture Notes in Computer Science 29, Berlin, 1975, Springer-Verlag,
pp. 215–222. 50

[53] R. Krawczyk, Intervalliterationsverfahren, Bericht 186, Mathematisch-Statistische Sek-
tion im Forschungszentrum Graz, Graz, 1982. 40

[54] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Fea-
sibility of Data Processing and Interval Computations, Kluwer Academic Publishers,
Dordrecht, 1998. 30

[55] I. Kuperman, Approximate Linear Algebraic Equations and Roundoff Error Estimation,
PhD thesis, University of Witwatersrand, Johannesburg, 1967. 40

[56] J. Kuttler, A fourth-order finite-difference approximation for the fixed membrane eigen-
problem, Mathematics of Computation, 25 (1971), pp. 237–256. 24

[57] A. V. Lakeyev, Vychislitel’naya slozhnost’ ocenivaniya obobshchennykh mnozhestv resh-
eniy interval’nych lineynykh sistem, in Trudy XI mezhdunarodnoi Baikalskoi shkoly-
seminara “Metody optimizacii i ich prilozheniya”, Irkutsk, 1998, pp. 115–118. 43

[58] A. V. Lakeyev and S. I. Noskov, On the set of solutions of a linear equation with
intervally defined operator and right-hand side (in Russian), Siberian Mathematical
Journal, 35 (1994), pp. 1074–1084. 44, 45

70

[59] B. Machost, Numerische Behandlung des Simplexverfahrens mit intervallanalytischen
Methoden, Berichte der GMD, GMD, Bonn, 1970. 50

[60] M. Mansour, Robust stability of interval matrices, Proceedings of the 28th Conference
on Decision and Control, Tampa, FL, (1989), pp. 46–51. 32

[61] G. Mayer, Epsilon-inflation in verification algorithms, Journal of Computational and
Applied Mathematics, 60 (1995), pp. 147–169. 40

[62] G. Mayer and J. Rohn, On the applicability of the interval Gaussian algorithm, Reliable
Computing, 4 (1998), pp. 205–222. http://www.cs.cas.cz/˜rohn/publist/mayer.ps 40

[63] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966. 40

[64] R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied
Mathematics, SIAM, Philadelphia, 1979. 40

[65] F. Mráz, Úloha lineárńıho programováńı s intervalovými koeficienty. West Bohemian
University, 1993. Habilitationsschrift. 50

[66] F. Mráz, Calculating the exact bounds of optimal values in LP with interval coefficients,
Annals of Operations Research, 81 (1998), pp. 51–62. 50

[67] J. Nedoma, Vague matrices in linear programming, Annals of Operations Research, 47
(1993), pp. 483–496. 40, 50

[68] A. Nemirovskii, Several NP-hard problems arising in robust stability analysis, Mathe-
matics of Control, Signals, and Systems, 6 (1993), pp. 99–105. 32

[69] A. Neumaier, Linear interval equations, in Interval Mathematics 1985, K. Nickel, ed.,
Lecture Notes in Computer Science 212, Berlin, 1985, Springer-Verlag, pp. 109–120.
40

[70] A. Neumaier, Tolerance analysis with interval arithmetic, Freiburger Intervall-Berichte
86/9, Albert-Ludwigs-Universität, Freiburg, 1986. 44

[71] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge, 1990. 37, 38, 40

[72] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure
for linear interval equations, Reliable Computing, 5 (1999), pp. 131–136. 40, 41

[73] K. Nickel, Die Überschätzung des Wertebereichs einer Funktion in der Intervallrech-
nung mit Anwendungen auf lineare Gleichungssysteme, Computing, 18 (1977), pp. 15–
36. 40

[74] S. Ning and R. B. Kearfott, A comparison of some methods for solving linear interval
equations, SIAM Journal on Numerical Analysis, 34 (1997), pp. 1289–1305. 40, 41

[75] E. Nuding and J. Wilhelm, Über Gleichungen und über Lösungen, Zeitschrift für Ange-
wandte Mathematik und Mechanik, 52 (1972), pp. T188–T190. 44

71

http://www.cs.cas.cz/~rohn/publist/mayer.ps�

[76] W. Oettli, On the solution set of a linear system with inaccurate coefficients, SIAM
Journal on Numerical Analysis, 2 (1965), pp. 115–118. 38

[77] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides, Numerische Mathematik,
6 (1964), pp. 405–409. 37, 43

[78] M. Padberg, Linear Optimization and Extensions, Springer-Verlag, Berlin, 1999. 49

[79] S. Poljak and J. Rohn, Radius of nonsingularity, Research Report, KAM Series 88–
117, Faculty of Mathematics and Physics, Charles University, Prague, December 1988.
http://www.cs.cas.cz/˜rohn/publist/38.doc 25

[80] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Mathematics of Con-
trol, Signals, and Systems, 6 (1993), pp. 1–9. http://www.cs.cas.cz/˜rohn/publist/63.doc
25

[81] K. Reichmann, Abbruch beim Intervall-Gauss-Algorithmus, Computing, 22 (1979),
pp. 355–361. 40

[82] J. Renegar, Some perturbation theory for linear programming, Mathematical Program-
ming, 65 (1994), pp. 73–91. 50

[83] G. Rex and J. Kupferschmidt, What is the radius of singularity of a real matrix?,
Zeitschrift für Angewandte Mathematik und Mechanik, 81 (2001), pp. 985–986. 25

[84] G. Rex and J. Rohn, Sufficient conditions for regularity and singularity of interval
matrices, SIAM Journal on Matrix Analysis and Applications, 20 (1999), pp. 437–445.
http://www.cs.cas.cz/˜rohn/publist/94.ps 26

[85] H.-G. Rex, Zur Lösungseinschließung linearer Gleichungssysteme, Wissenschaftliche
Zeitschrift, Technische Hochschule Leipzig, 15 (1991), pp. 441–447. 40

[86] J. Rohn, Input-output planning with inexact data, Freiburger Intervall-Berichte 78/9,
Albert-Ludwigs-Universität, Freiburg, 1978. http://www.cs.cas.cz/˜rohn/publist/11.doc
44

[87] J. Rohn, Duality in interval linear programming, in Interval Mathemat-
ics 1980, K. Nickel, ed., New York, 1980, Academic Press, pp. 521–529.
http://www.cs.cas.cz/˜rohn/publist/12.doc 50

[88] J. Rohn, Interval linear systems, Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-
Universität, Freiburg, 1984. http://www.cs.cas.cz/˜rohn/publist/25.doc 50

[89] J. Rohn, Inner solutions of linear interval systems, in Interval Mathematics 1985,
K. Nickel, ed., Lecture Notes in Computer Science 212, Berlin, 1986, Springer-Verlag,
pp. 157–158. http://www.cs.cas.cz/˜rohn/publist/31.doc 44

[90] J. Rohn, Inverse-positive interval matrices, Zeitschrift für Angewandte Mathematik
und Mechanik, 67 (1987), pp. T492–T493. http://www.cs.cas.cz/˜rohn/publist/32.doc 24,
39

72

http://www.cs.cas.cz/~rohn/publist/38.doc�
http://www.cs.cas.cz/~rohn/publist/63.doc�
http://www.cs.cas.cz/~rohn/publist/94.ps�
http://www.cs.cas.cz/~rohn/publist/11.doc�
http://www.cs.cas.cz/~rohn/publist/12.doc�
http://www.cs.cas.cz/~rohn/publist/25.doc�
http://www.cs.cas.cz/~rohn/publist/31.doc�
http://www.cs.cas.cz/~rohn/publist/32.doc�

[91] J. Rohn, Nearness of matrices to singularity, Research Report, KAM Series
88–79, Faculty of Mathematics and Physics, Charles University, Prague, 1988.
http://www.cs.cas.cz/˜rohn/publist/37.doc 25

[92] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126
(1989), pp. 39–78. http://www.cs.cas.cz/˜rohn/publist/47.doc 14, 17, 18, 19, 20, 22, 23,
26, 38, 54

[93] J. Rohn, Characterization of a linear program in standard form by a family of lin-
ear programs with inequality constraints, Ekonomicko-matematický obzor, 26 (1990),
pp. 71–73. http://www.cs.cas.cz/˜rohn/publist/49.doc 46

[94] J. Rohn, An existence theorem for systems of linear equations, Linear and Multilinear
Algebra, 29 (1991), pp. 141–144. http://www.cs.cas.cz/˜rohn/publist/54.doc 46

[95] J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can
be made more efficient, Interval Computations, 4 (1993), pp. 13–21.
http://www.cs.cas.cz/˜rohn/publist/69.ps 21, 40, 41

[96] J. Rohn, Interval matrices: Singularity and real eigenvalues, SIAM
Journal on Matrix Analysis and Applications, 14 (1993), pp. 82–91.
http://www.cs.cas.cz/˜rohn/publist/61.doc 18, 26, 27, 28

[97] J. Rohn, Inverse interval matrix, SIAM Journal on Numerical Analysis, 30 (1993),
pp. 864–870. http://www.cs.cas.cz/˜rohn/publist/65.doc 20, 22

[98] J. Rohn, Stability of the optimal basis of a linear program under uncertainty, Operations
Research Letters, 13 (1993), pp. 9–12. http://www.cs.cas.cz/˜rohn/publist/64.doc 50

[99] J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is
NP-hard, Commentationes Mathematicae Universitatis Carolinae, 35 (1994), pp. 795–
797. http://www.cs.cas.cz/˜rohn/publist/74.ps 29, 31, 32, 33

[100] J. Rohn, A perturbation theorem for linear equations, Commentationes Mathematicae
Universitatis Carolinae, 35 (1994), pp. 213–214. http://www.cs.cas.cz/˜rohn/publist/77.ps
40

[101] J. Rohn, Positive definiteness and stability of interval matrices, SIAM
Journal on Matrix Analysis and Applications, 15 (1994), pp. 175–184.
http://www.cs.cas.cz/˜rohn/publist/68.doc 30, 31, 32, 33

[102] J. Rohn. E-mail letter to S. P. Shary and A. V. Lakeyev of November 18, 1995.
http://www.cs.cas.cz/˜rohn/publist/LettShaLak.ps 43

[103] J. Rohn, Checking properties of interval matrices, Technical Report 686, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague, September
1996. http://www.cs.cas.cz/˜rohn/publist/92.ps 29

[104] J. Rohn, Enclosing solutions of overdetermined systems of linear interval equations,
Reliable Computing, 2 (1996), pp. 167–171. http://www.cs.cas.cz/˜rohn/publist/88.ps 34

73

http://www.cs.cas.cz/~rohn/publist/37.doc�
http://www.cs.cas.cz/~rohn/publist/47.doc�
http://www.cs.cas.cz/~rohn/publist/49.doc�
http://www.cs.cas.cz/~rohn/publist/54.doc�
http://www.cs.cas.cz/~rohn/publist/69.ps�
http://www.cs.cas.cz/~rohn/publist/61.doc�
http://www.cs.cas.cz/~rohn/publist/65.doc�
http://www.cs.cas.cz/~rohn/publist/64.doc�
http://www.cs.cas.cz/~rohn/publist/74.ps�
http://www.cs.cas.cz/~rohn/publist/77.ps�
http://www.cs.cas.cz/~rohn/publist/68.doc�
http://www.cs.cas.cz/~rohn/publist/LettShaLak.ps�
http://www.cs.cas.cz/~rohn/publist/92.ps�
http://www.cs.cas.cz/~rohn/publist/88.ps�

[105] J. Rohn, Complexity of some linear problems with interval data, Reliable Computing,
3 (1997), pp. 315–323. http://www.cs.cas.cz/˜rohn/publist/96.ps 13

[106] J. Rohn, Bounds on eigenvalues of interval matrices, Zeitschrift für Ange-
wandte Mathematik und Mechanik, Supplement 3, 78 (1998), pp. S1049–S1050.
http://www.cs.cas.cz/˜rohn/publist/97.ps 29

[107] J. Rohn, Computing the norm ‖A‖∞,1 is NP-hard, Linear and Multilinear Algebra, 47
(2000), pp. 195–204. http://www.cs.cas.cz/˜rohn/publist/norm.ps 13

[108] J. Rohn, Systems of interval linear equations and inequalities (rectangular case), Tech-
nical Report 875, Institute of Computer Science, Academy of Sciences of the Czech
Republic, Prague, September 2002. http://www.cs.cas.cz/˜rohn/publist/chapters.ps 12,
13, 21, 37, 38, 40, 46, 47, 50

[109] J. Rohn, Solvability of systems of linear interval equations, SIAM Jour-
nal on Matrix Analysis and Applications, 25 (2003), pp. 237–245.
http://www.cs.cas.cz/˜rohn/publist/solvability.pdf 46

[110] J. Rohn and V. Kreinovich, Computing exact componentwise bounds on solutions of
linear systems with interval data is NP-hard, SIAM Journal on Matrix Analysis and
Applications, 16 (1995), pp. 415–420. http://www.cs.cas.cz/˜rohn/publist/72.ps 17, 38

[111] J. Rohn and J. Kreslová, Linear interval inequalities, Linear and Multilinear Algebra,
38 (1994), pp. 79–82. http://www.cs.cas.cz/˜rohn/publist/71.ps 47

[112] S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach to
Scientific Computation, U. Kulisch and W. Miranker, eds., New York, 1983, Academic
Press, pp. 51–120. 40

[113] S. M. Rump, On the solution of interval linear systems, Computing, 47 (1992), pp. 337–
353. 40

[114] S. M. Rump, Verification methods for dense and sparse systems of equations, in Top-
ics in Validated Computations, J. Herzberger, ed., Amsterdam, 1994, North-Holland,
pp. 63–135. 40

[115] S. M. Rump, The distance between regularity and strong regularity, in Scientific Com-
puting and Validated Numerics, G. Alefeld, A. Frommer and B. Lang, eds., Mathe-
matical Research, Vol. 90, Berlin, 1996, Akademie Verlag, pp. 105–117. 25

[116] S. M. Rump, Bounds for the componentwise distance to the nearest singular matrix,
SIAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 83–103. 25

[117] S. M. Rump, Almost sharp bounds for the componentwise distance to the nearest sin-
gular matrix, Linear and Multilinear Algebra, 42 (1998), pp. 93–108. 25

[118] S. P. Shary, O nekotorykh metodakh resheniya lineinoi zadachi o dopuskakh, Preprint 6,
Siberian Branch of the Soviet Academy of Sciences, Krasnoyarsk, 1989. 44

74

http://www.cs.cas.cz/~rohn/publist/96.ps�
http://www.cs.cas.cz/~rohn/publist/97.ps�
http://www.cs.cas.cz/~rohn/publist/norm.ps�
http://www.cs.cas.cz/~rohn/publist/chapters.ps�
http://www.cs.cas.cz/~rohn/publist/solvability.pdf�
http://www.cs.cas.cz/~rohn/publist/72.ps�
http://www.cs.cas.cz/~rohn/publist/71.ps�

[119] S. P. Shary, A new class of algorithms for optimal solution of interval linear systems,
Interval Computations, 2 (1992), pp. 18–29. 40

[120] S. P. Shary, On controlled solution set of interval algebraic systems, Interval Compu-
tations, 6 (1992), pp. 66–75. 45

[121] S. P. Shary, Solving the tolerance problem for interval linear systems, Interval Compu-
tations, 2 (1994), pp. 6–26. 44

[122] S. P. Shary, Solving the linear interval tolerance problem, Mathematics and Computers
in Simulation, 39 (1995), pp. 53–85. 44

[123] S. P. Shary, Algebraic approach to the interval linear static identification, tolerance and
control problems, or One more application of Kaucher arithmetic, Reliable Computing,
2 (1996), pp. 3–33. 44, 45

[124] S. P. Shary, Algebraic solutions to interval linear equations and their applications, in
Numerical Methods and Error Bounds, G. Alefeld and J. Herzberger, eds., Mathemat-
ical Research, Vol. 89, Berlin, 1996, Akademie Verlag, pp. 224–233. 40

[125] S. P. Shary, A new approach to the analysis of static systems under interval uncertainty,
in Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer, and B. Lang,
eds., Berlin, 1996, Akademie Verlag, pp. 118–132. 43

[126] S. P. Shary, Controllable solutions sets to interval static systems, Applied Mathematics
and Computation, 86 (1997), pp. 185–196. 45

[127] S. P. Shary, A new technique in systems analysis under interval uncertainty and am-
biguity, Reliable Computing, 8 (2002), pp. 321–418. 40, 45

[128] V. V. Shaydurov and S. P. Shary, Resheniye interval’noi algebraicheskoi zadachi o do-
puskakh, Preprint 5, Siberian Branch of the Soviet Academy of Sciences, Krasnoyarsk,
1988. 44

[129] Y. I. Shokin, Interval’nyi analiz, Nauka, Novosibirsk, 1981. 40

[130] R. D. Skeel, Scaling for numerical stability in Gaussian elimination, Journal of the
ACM, 26 (1979), pp. 494–526. 40

[131] G. W. Stewart, Matrix Algorithms, Volume I: Basic Decompositions, SIAM, Philadel-
phia, 1998. 40

[132] A. A. Vatolin, On the linear programming problems with interval coefficients (in
Russian), Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 24 (1984),
pp. 1629–1637. 50

75

