
Engineering Distributed Adaptive Systems using Components

Keznikl, Jaroslav
2012

Dostupný z http://www.nusl.cz/ntk/nusl-125230

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 08.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-125230
http://www.nusl.cz
http://www.nusl.cz


Jaroslav Keznikl Engineering Distributed Adaptive Systems Using Components

Engineering Distributed Adaptive Systems
Using Components

Post-Graduate Student:
MGR. JAROSLAV KEZNIKL

Supervisor:
RNDR. TOMÁŠ BUREŠ, PH.D.

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

keznikl@cs.cas.cz bures@cs.cas.cz

Field of Study:
Software Systems

The work was partially supported by the EU project ASCENS 257414, the Grant Agency of the Czech Republic project
P202/11/0312. The work was partially supported by Charles University institutional funding SVV-2012-265312.

Abstract

One of the major issues in the domain of
dynamically evolving distributed systems com-
posed of autonomous and (self-) adaptive com-
ponents is the task of systematically addressing
the design complexity of their communication
and composition. This is caused mainly by the
inherent dynamism of such systems, where com-
ponents may appear and disappear without anti-
cipation. Addressing this issue, we employ se-
paration of concerns by introducing a mecha-
nism of implicit communication over implicit
bindings, enabling components to dynamically
form implicitly interacting groups – ensembles.
Specifically, we present the DEECo component
model, which based on this mechanism.

1. Introduction

Traditional software engineering methodologies toge-
ther with related programming paradigms have long
been guiding the procedure of building software systems
through the requirements and design phase to testing and
deployment. In particular, engineering paradigms based
on the notion of components [1] have gained a lot of po-
pularity as they support separation of concerns – extre-
mely valuable when dealing with systems of high com-
plexity.

It seems, though, that these traditional methodologies
and paradigms are not sufficient when exploited in the
domain of continuously changing, massively distribu-
ted and dynamic systems, such as the ones we explore
in the ASCENS project [2]. These systems need to ad-
just to changes in their architecture and environment se-
amlessly or, even better, acknowledge the absence of

absolute certainty over their (constantly changing) ar-
chitecture and environment. An appealing research di-
rection seems to be the decomposition of such sys-
tems into components able to operate upon temporary
and volatile information in an autonomous [3] and self-
adaptive fashion [4]. From the software engineering per-
spective, two main challenges arise:

• What are the correct low-level abstractions (mo-
dels, resp. paradigms) that will allow for sepa-
ration of concerns?

• How can we devise a systematic approach for de-
signing such systems, exploiting the above abs-
tractions?

In response, we propose the DEECo component model
(stands for Dependable Emergent Ensembles of Compo-
nents) [5]. The goal of the component model is to allow
for designing systems consisting of autonomous, self-
aware, and adaptable components, which are implicitly
organized in groups called ensembles. To this end, we
propose a slightly different way of perceiving a compo-
nent; i.e., as a self-aware unit of computation, relying
solely on its local data that are subject to external modi-
fication during the execution time. The whole communi-
cation process relies on automatic data exchange among
components, entirely externalized and automated within
the DEECo runtime framework. This way, the compo-
nents have to be programmed as autonomous units, wi-
thout relying on whether/how the distributed communi-
cation is performed, which makes them very robust and
suitable for rapidly-changing environments.

The rest of the paper is organized as follows. In
Section 2 the main concepts of the DEECo component
model are presented. Section 3 evaluates the presented
concepts by giving an example based on the ASCENS

PhD Conference ’12 28 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0211486



Jaroslav Keznikl Engineering Distributed Adaptive Systems Using Components

cloud case study. Section 4 discusses the related work,
while Section 5 concludes the paper and presents future
work ideas.

2. DEECo Component Model

DEECo is based on two concepts: component and en-
semble. Stemming from the ASCENS project, these con-
cepts closely reflect fundamentals of the SCEL specifi-
cation language [6] and are in detail elaborated in the
rest of this section.

2.1. Component

A component is an autonomous unit of deployment and
computation. Similar to SCEL, it consists of:

• Knowledge

• Processes

Knowledge contains all the data and functions of the
component. It is a hierarchical data structure mapping
identifiers to (potentially structured) values. Values are
either statically typed data or functions. Thus DEECo
employs statically-typed data and functions as first-class
entities. We assume pure functions without side effects.

Processes, each of them being essentially a “thread”,
operate upon the knowledge of the component. A pro-
cess employs a function from the knowledge of the com-
ponent to perform its task. As any function is assumed
to have no side effects, a process defines mapping of
the knowledge to the actual parameters of the employed
function (input knowledge), as well as mapping of the
return value back to the knowledge (output knowledge).
A process can be either periodic or triggered. A process
can be triggered when its input knowledge changes or
when a given condition on the component’s knowledge
(guard) is satisfied.

2.2. Component Composition

In DEECo, component composition is captured by me-
ans of ensembles. Composition is flat, expressed im-
plicitly via a dynamic involvement in an ensemble.
An ensemble consists of multiple member components
and a single coordinator component. The only allowed
form of communication among components is commu-
nication between a member and the coordinator in an
ensemble. This allows the coordinator to apply various
communication policies.

Thus, an ensemble is described pair-wise, defining the
couples coordinator – member. An ensemble definition
consists of:

• Required interface of the coordinator and a mem-
ber

• Membership function

• Mapping function

Interface is a structural prescription for a view on a
part of the component’s knowledge. An interface is as-
sociated with a component’s knowledge by means of
duck typing; i.e., if the component’s knowledge has the
structure prescribed by the interface, then the compo-
nent reifies the interface. In other words, an interface re-
presents a partial view on a component’s knowledge.

Membership function declaratively expresses the con-
dition, under which two components represent the pair
coordinator-member of an ensemble. The condition is
defined upon the knowledge of the components. In the
situation where a component satisfies the membership
functions of multiple ensembles, we envision a mecha-
nism for deciding whether all or only a subset of the
candidate ensembles should be applied. Currently, we
employ a simple mechanism of a partial order over the
ensembles for this purpose (the “maximal” ensemble of
the comparable ones is selected, the ensembles which
are incomparable are applied simultaneously).

Mapping function expresses the implicit distributed
knowledge exchange between the coordinator and a
member of an ensemble. It ensures that the relevant
changes in knowledge of one component get propaga-
ted to the other component. However, it is up to the
DEECo runtime framework when/how often the map-
ping function is invoked. We assume a separate mapping
for each of the directions coordinator-member, member-
coordinator.

The important idea is that the components do not per-
ceive the existence of ensembles (including their mem-
bership in an ensemble). They operate only upon their
own local knowledge, which might get implicitly up-
dated by the DEECo runtime framework whenever the
component is part of an ensemble.

2.3. Execution Model

The DEECo execution model is based on asynchronous
knowledge exchange and process execution, stemming
from the asynchronous nature of the target dynamic dis-
tributed systems. Specifically, the component processes
execute in parallel as independent threads either peri-
odically, when triggered by modification of (a part of)
their input knowledge, or whenever the process guard
is satisfied. Similarly, a component binding of compo-
nent forming an ensemble is accomplished by a separate

PhD Conference ’12 29 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0211486



Jaroslav Keznikl Engineering Distributed Adaptive Systems Using Components

activity, evaluating the mapping function (again either
periodically or when triggered).

Due to the asynchrony, it is necessary to ensure that
knowledge is accessed consistently. Thus, at its start,
a process is atomically provided with a copy of its
input knowledge so that its computation is not affec-
ted by later-occurring knowledge modifications. When
finishing, the process atomically updates its output
knowledge. The same atomic copy-on-start and update-
on-return semantics also applies to the membership and
mapping functions of ensembles. Technically, this se-
mantics can be implemented for instance via messaging.

Consequently, based on the computational model, an en-
semble is created when the ensemble condition starts to
hold, and is discarded when the condition gets violated.
Technically, as the whole system is asynchronous and
potentially distributed, techniques for handling inherent
delays, while creating/discarding ensembles, have to be
carefully chosen.

3. Evaluation

To evaluate and illustrate the above-described concepts,
we’ll give an example from the Science Cloud case-
study [12]. In this scenario, several interconnected hete-
rogeneous network nodes (execution nodes, storage no-
des) run a cloud platform, on which 3rd-party services
are being executed. Moreover, the nodes can dynami-
cally enter/leave the network. Provided an external me-
chanism for migrating a service from one (execution)
node to another, the goal is to ”cooperatively distribute
the load of the overloaded (execution) nodes in the ne-
twork”.

3.1. Solution in a Nutshell

Before describing the solution in DEECo concepts, we
will give an outline of the final result. Basically, for the
purpose of this evaluation, we consider a simple solu-
tion, where each of the nodes tracks its own load and
if the load is higher than a fixed threshold, it selects a
set of services to be migrated out. Consequently, all the
nodes with low-enough load (determined by another fi-
xed threshold) are given information about the services
selected for migration, pick some of them and migrate
them in using the external migration mechanism.

The challenge here is to decide, which of the nodes the
service information should be given to and when, since
the nodes join and leave the network dynamically. In
DEECo, this is solved by describing such a node inter-
action declaratively, so that it can be carried out in an

automated way by the runtime framework when appro-
priate.

3.2. Realization in DEECo

Specifically, we first identify the components in the
system and their internal knowledge. In this exam-
ple, the components will be all the different nodes
(execution/storage nodes) running the cloud platform
(Figure 1). The inherent knowledge of execution nodes
is their current load, information about running servi-
ces (serviceInfo), etc. We expect an execution node
component to have a process, which determines the ser-
vices to be migrated in case of overload. Similarly, the
inherent knowledge of the storage nodes is their current
capacity, filesystem, etc.

Figure 1: Components representing the cloud nodes and their
inherent knowledge.

The second step is to define the actual component inter-
action and exchange of their knowledge. In this exam-
ple, only the transfer of the information about services
to be migrated from the overloaded nodes to the idle no-
des is to be defined. The interaction is captured in a form
of an ensemble definition (Figure 2), thus representing

Figure 2: Definition of an ensemble that ensures exchange of
the services to be migrated.

a “template” for interaction. Here, the coordinator, as
well as the members, has to be an execution node provi-
ding the load and serviceInfo knowledge entries.

PhD Conference ’12 30 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0211486



Jaroslav Keznikl Engineering Distributed Adaptive Systems Using Components

Having such nodes, whenever the (potential) coordina-
tor has the load above 90% and a (potential) member
has the load below 20% (i.e., the membership function
returns true), the ensemble is established and its map-
ping function is executed (possibly in a periodic man-
ner). The mapping function in this case ensures exchan-
ging the information about the services to be migrated
from the coordinator to the members of the ensemble.

When applied to the current state of the compo-
nents in the system, an ensemble – established ac-
cording to the above-described definition – ensures
an exchange of the service-to-be-migrated information
among exactly the pairs of components meeting the
membership condition of the ensemble (Figure 3).

Figure 3: Application of the ensemble definition from Figure
2 to the components from Figure 1.

According to the exchange of service information, the
member nodes then individually perform service mi-
gration via the external (i.e., outside of DEECo) mi-
gration mechanism.

3.3. Runtime Framework Implementation

Currently, we work on a prototype of the DEECo run-
time framework implementation, based on distributed
tuple spaces and implemented in Java. The sources, as
well as documentation and examples, can be found at
https://github.com/d3scomp/JDEECo.

4. Related Work

The task of achieving autonomy and (self-) adaptation
has been partially addressed by agent-based approa-
ches [7, 8], where actors leveraging on messaging es-
tablish explicit bindings for data and code exchange.
Jade [7] is a complete framework for building, run-
ning and managing distributed multi-agent systems. Si-
milarly, X-Klaim [8] is a complete framework based on
a domain-specific language for capturing agent-based

systems, where both data and processes are subjects to
mobility. In general, agent-based frameworks themsel-
ves do not provide any higher abstractions for implicit
grouping of components; however, due to their relative
maturity, such frameworks could represent a suitable mi-
ddleware for implementing the knowledge exchange in
the DEECo runtime framework (as a replacement of dis-
tributed tuple spaces).

As for coping with dynamism of component bindings,
techniques utilizing implicit bindings while focusing on
explicit communication have been proposed. In iPojo [9]
– a component system built upon the Felix OSGi imple-
mentation – each component binding is determined by
a declarative specification associated with component
interfaces. In [10], the idea of agent self-organization
based on declarative conditions is presented. Specifi-
cally, the agents organize themselves into groups accor-
ding to their spatial distribution and reorganization rules,
communicating explicitly via a shared tuple space.

Finally, separation of concerns was to some extent
achieved by introducing implicit communication (dri-
ven by a third-party entity) [11]. However, the commu-
nication is usually carried-out via explicit bindings.

5. Conclusion and Future Work

We assume that DEECo will be employed in the de-
sign of systems of autonomous self-adaptive compo-
nents, such as a self-managing cloud platform and self-
organizing car sharing [12], where it aims at simplify-
ing the design process. Specifically, we expect DEECo
to effectively handle knowledge exchange among the
components, emphasizing separation of concerns. Al-
though similar to software connectors [13], DEECo en-
sembles capture component composition implicitly and
thus allow for handling of dynamic changes in an au-
tomated way. Similar benefits result from the implicit
knowledge exchange.

We envision that the component model outlined here
will serve as the basis for a design methodology that
will exploit the presented abstractions and help in bu-
ilding long-lasting systems of autonomous components
and component ensembles. Further, in order to support
controlled architecture evolution, we aim to incorporate
mechanisms for dynamic addition, modification, and re-
moval of ensemble prescriptions. In addition, we en-
vision supporting formal verification of DEECo appli-
cations. As for model checking of temporal properties,
we assume a mapping of applications to SCEL [6] and
intend to exploit its means [14] for this purpose. Mo-
reover, we anticipate also employing stochastic model

PhD Conference ’12 31 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0211486



Jaroslav Keznikl Engineering Distributed Adaptive Systems Using Components

checking [15, 16] for quantitative verification. Finally,
inspired by the cloud and e-mobility case studies, we in-
tend to introduce, in addition to abstractions for perfor-
mance awareness, other forms of implicit knowledge-
based communication such as distributed consensus.

References

[1] C. Szyperski, “Component Software: Bey-
ond Object-Oriented Programming” (2nd Edition)
(Hardcover), Addison-Wesley Professional, 2002.

[2] ASCENS [Online], http://www.ascens-ist.eu.

[3] J. O. Kephart, and D. M. Chess, “The vision of
autonomic computing”, Computer, vol. 36, IEEE
CS, 2003, pp. 41–50.

[4] R. N. Taylor, N. Medvidovic, and P. Oreizy, “Ar-
chitectural styles for runtime software adaptation”,
Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software
Architecture (WICSA/ECSA 2009), 2009, pp. 171–
180.

[5] J. Keznikl, T. Bures, F. Plasil, and M. Kit, “To-
wards Dependable Emergent Ensembles of Com-
ponents: The DEECo Component Model”, Joint
Working IEEE/IFIP Conference on Software Ar-
chitecture & European Conference on Software Ar-
chitecture (WICSA/ECSA 2012), Aug, 2012.

[6] R. De Nicola, G. Ferrari, M. Loreti , and
R.Pugliese, “Languages primitives for coordi-
nation, resource negotiation, and task description”,
ASCENS Deliv. D1.1, 2011, .

[7] F. Bellifemine, G. Caire, and D. Greenwood, “De-
veloping multi-agent systems with Jade”, John Wi-
ley & Sons, 2007.

[8] E. Gjondrekaj, M. Loreti, R. Pugliese, and F.
Tiezzi, “Modeling adaptation with a tuple-based

coordination language”, Proc. of 27th Symposium
on Applied Computing (SAC 2012), 2012.

[9] C. Escoffier and R. S. Hall, “Dynamically adap-
table applications with iPOJO service”, Software
Composition, 2007.

[10] C. Villalba, M. Mamei, and F. Zambonelli, “A
self-organizing architecture for pervasive ecosys-
tems”, Self-Organizing Architectures, volume
6090 of LNCS, pp. 275–300, 2010.

[11] A. Basu, M. Bozga, and J. Sifakis, “Mode-
ling heterogeneous real-time components in BIP”,
Proc. of Fourth IEEE International Conference
on Software Engineering and Formal Methods
(SEFM’06), 2006, pp. 3-12.

[12] N Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C.
Pinciroli, N. Hoch, and B. Werther, “Requirement
specification and scenario description”, ASCENS
Deliv. D7.1, November 2011.

[13] R.N. Taylor, N. Medvidovic, and E.M. Dashofy:
“Software architecture: foundations, theory, and
practice”, Wiley, 2010.

[14] L. Bettini et al., In global computing. Progra-
mming Environments, Languages, Security, and
Analysis of Systems, volume 2874 of LNCS, 2003,
pp. 88–150. “The Klaim project: theory and
practice”, Global Computing: Programming En-
vironments, Languages, Security, and Analysis of
Systems, volume 2874 of LNCS, 2003, pp. 88–150.

[15] M. Z. Kwiatkowska, G. Norman, D. Parker, and
H. Qu, “Assume-guarantee verification for proba-
bilistic systems”, Proc. of Tools and Algorithms
for Construction and Analysis of Systems (TACAS
2010), Springer, 2010, pp. 23–37.

[16] J. Barnat, L. Brim, I. Cerna, M. Ceska, and J.
Tumova: “ProbDiVinE, a parallel qualitative LTL
model checker”, Quantitative Evaluation of Sys-
tems (QEST 07), IEEE, 2007.

PhD Conference ’12 32 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0211486


