

Measuring and explaining inflation persistence

Babetskii, Ian; Coricelli, Fabrizio; Horváth, Roman 2007 Dostupný z http://www.nusl.cz/ntk/nusl-123977

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL). Datum stažení: 04.06.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

WORKING PAPER SERIES 1

Ian Babetskii, Fabrizio Coricelli and Roman Horváth: Measuring and Explaining Inflation Persistence: Disaggregate Evidence on the Czech Republic

WORKING PAPER SERIES

Measuring and Explaining Inflation Persistence: Disaggregate Evidence on the Czech Republic

Ian Babetskii Fabrizio Coricelli Roman Horváth

1/2007

CNB WORKING PAPER SERIES

The Working Paper Series of the Czech National Bank (CNB) is intended to disseminate the results of the CNB's research projects as well as the other research activities of both the staff of the CNB and collaborating outside contributor, including invited speakers. The Series aims to present original research contributions relevant to central banks. It is refereed internationally. The referee process is managed by the CNB Research Department. The working papers are circulated to stimulate discussion. The views expressed are those of the authors and do not necessarily reflect the official views of the CNB.

Printed and distributed by the Czech National Bank. Available at http://www.cnb.cz.

Reviewed by: Petr Král Harald Stahl Gerdie Everaert (Czech National Bank) (Deutsche Bundesbank) (University of Gent)

Project Coordinator: Vladislav Flek

© Czech National Bank, September 2007 Ian Babetskii, Fabrizio Coricelli, Roman Horváth

Measuring and Explaining Inflation Persistence: Disaggregate Evidence on the Czech Republic

Ian Babetskii, Fabrizio Coricelli and Roman Horváth*

Abstract

The paper provides an empirical analysis of inflation persistence in the Czech Republic using 412 detailed product-level consumer price indexes underlying the consumer basket over the period from 1994:M1 to 2005:M12. Subject to various sensitivity tests, our results suggest that raw goods and non-durables, followed by services, display smaller inflation persistence than durables and processed goods. Inflation seems to be somewhat less persistent after the adoption of inflation targeting in 1998. There is also evidence for aggregation bias, that is, aggregate inflation is found to be more persistent than the underlying detailed components. Price dispersion, as a proxy for the degree of competition, is found to be *negatively* related to inflation persistence, suggesting that competition is not conducive to reducing persistence.

JEL Codes:D40, E31.Keywords:Inflation dynamics, inflation targeting, persistence.

Fabrizio Coricelli, European Bank for Reconstruction and Development and CEPR.

^{*} Ian Babetskii, Czech National Bank, Czech National Bank; CES, University of Paris-1 Sorbonne and CERGE-EI, Charles University (e-mail: ian.babetskii@cnb.cz).

Roman Horváth, Czech National Bank; Institute of Economic Studies, Charles University (e-mail: roman.horvath@cnb.cz).

This work was supported by Czech National Bank Research Project No. E5/2005.

We thank Oxana Babetskaia, Martin Čihák, Oldřich Dědek, Tomáš Holub, Vladislav Flek, Michal Franta, Ondřej Kameník, Evžen Kočenda, Kateřina Šmídková and the seminar participants at the Czech Economic Association annual conference, the European Economic Association annual congress, Deutsche Bundesbank, Charles University (Prague) and Czech National Bank for valuable comments. We are grateful to Robert Murárik for providing us with some of the data we used. This research was supported by a grant from the CERGE-EI Foundation under a programme of the Global Development Network. All opinions are those of authors and have not been endorsed by CERGE-EI or the GDN. All remaining errors are entirely our own. The views expressed in this paper are not necessarily those of the Czech National Bank or the European Bank for Reconstruction and Development.

Nontechnical Summary

In this paper, we present evidence on disaggregate inflation persistence in the Czech Republic, exploring data from 412 individual narrowly defined products and 9 broader sectors from 1995:M1 to 2005:M12. First, we provide a statistical description of the data, such as those related to the distribution of inflation persistence across the sectors, aggregation bias stemming from cross-sectional averaging of individual price indexes and the supposed fall in the degree of inflation persistence following the adoption of inflation targeting. Second, we make an attempt to identify the determinants of inflation persistence. Notably, we analyze the role of the degree of competition, as proxied by price dispersion, on inflation persistence. Third, we construct an alternative measure of core inflation, with the weights of individual price indexes derived from its inflation persistence, and evaluate its predictive ability in comparison with more standard core inflation measures.

The results suggest that inflation persistence decreased somewhat after the adoption of inflation targeting. The results also unambiguously point to the presence of aggregation bias, that is, aggregate inflation is more persistent than the mean of the underlying disaggregated components. This result is robust to the choice of disaggregation level and weighting scheme, to the choice of inflation persistence estimation technique, and to the choice of period.

We find that competition is not conducive to reducing inflation persistence. Price dispersion, as a proxy for the degree of competition, is *negatively* related to inflation persistence. This finding confirms Calvo (2000), who shows that as the level of competition increases, the firm's pricing strategy is influenced more by the average pricing strategy in the market. The costs of charging a different price for identical products increase with higher competition. As a result, a more inertial response to shocks can take place in a more competitive environment.

Lastly, we find that adjusted inflation (headline inflation excluding regulated prices, fuel and food prices and changes in indirect taxes) is the best predictor of future inflation trends in our set of core inflation measures over the horizons of 6, 12 and 18 months. One of our proposed measures – persistence expenditure-weighted core inflation – may be viewed as an equally good predictor as adjusted inflation for the 6-month horizon, but its predictive ability worsens over longer time periods.

1. Introduction

The sensitivity of aggregate inflation to various macroeconomic disturbances has been traditionally at the focus of attention of monetary authorities. Indeed, the transmission of monetary policy actions to prices depends on a number of factors, including *inter alia* the degree of nominal rigidities. Consequently, in the last 20 years or so, there has been substantial research investigating the macroeconomic consequences of nominal rigidities for the working of an economy in response to various shocks and for the design of monetary policy rules. The result of this effort has been a number of micro-founded models with price or wage stickiness which predict various types of inflation dynamics. Nevertheless, two standard models in their original versions, Calvo (1983) and Taylor (1980), imply no role for the backward-looking dimension of inflation. These models, while assuming price stickiness, do not imply intrinsic inflation stickiness.¹

Several models address this issue by introducing the lagged value of inflation into a new Keynesian Phillips curve. The rationale behind the inclusion of the lagged value differs across the models. Apart from simply assuming rule of thumb behavior (Galí and Gertler, 1999), Fuhrer and More (1995) suggest that the relative wage structure might be a reason for the backward-looking nature of inflation. Mankiw and Reis (2002) stress the significance of information processing lags in price setting mechanisms. In addition, Erceg and Levin (2003) and Orphanides and Williams (2003) explain persistence with adaptive learning of agents in response to changes in monetary policy regime. In consequence, the ability of monetary policy to anchor long-term inflation expectations induces agents to rely on past inflation to a lesser extent. In this regard, Sargent (1999) studies extensively the interactions between the conduct of monetary policy and inflation persistence. Nimark (2005) suggests that optimal price setting with firm-specific marginal cost rationalizes the link between past and current inflation. Calvo, Celasun and Kumhof (2002) show that in an environment of high steady state inflation, firms not only choose their price today, but also set the rate at which they will update prices in the future (the firm-specific inflation rate). Under a monetary policy shock, some firms will not reset their inflation rate (and prices) and this gives rise to inflation inertia.

Recent empirical research has shown that inflation persistence is generally much lower than previously thought (e.g. Cecchetti and Debelle, 2006). This is mainly associated with two factors. First, inflation persistence did indeed decline in the 1990s as compared to the 1970s and 1980s (O'Reilly and Whelan, 2005). Second, greater care has been undertaken in econometric work. Levin and Piger (2004) find that inflation persistence falls considerably when structural breaks are accounted for. Next, stability of the monetary policy regime and central bank credibility help to anchor long-run inflation expectations and reduce the extent of backward-looking behavior. Levin *et al.* (2004) find that the adoption of an explicit inflation target² significantly reduces the extent

¹ Assuming the Galí and Gertler (1999) hybrid New Keynesian Phillips curve specification for inflation dynamics, Angeloni *et al.* (2006) distinguish between various sources of inflation persistence and label them accordingly. They define *intrinsic inflation persistence* as the persistence originating in past inflation, *extrinsic inflation persistence* as the persistence role of the persistence as the persistence as the persistence as the persistence role of the persistence as the persistence of the persistence as the persistence as the persistence role of the persistence as the persistence of the persistence as the persistence of the persistence of the persistence of the persistence as the persistence of the persistence

² See Kotlán and Navrátil (2003) on the design of the inflation targeting regime in the Czech Republic, and Jonas and Mishkin (2003) on the inflation targeting experience of transition countries in general.

to which economic agents use backward-looking information in terms of their inflation forecasting and thus puts downward pressure on the persistence of inflation.

There are various reasons why it is vital to study inflation persistence at a disaggregated level. Disaggregated analysis generally uncovers smaller inflation persistence across the individual/sectoral price indexes compared to aggregate inflation. This suggests that inflation persistence observed at the aggregate level may arise due to aggregation bias (see Granger, 1980, and Zaffaroni, 2004) and due to the fact that idiosyncratic shocks will tend to disappear when a substantial number of series are aggregated (Altissimo, Mojon and Zaffaroni, 2007). Disaggregate analysis is also fruitful for understanding which components of various price indexes exhibit greater inflation persistence. In addition, the role of structural breaks in estimating inflation persistence can be tackled in a fuller manner.

Additionally, several studies have raised the issue of which factors lie behind the fact that the inflation process is relatively persistent. Cournede et al. (2005) argue that the lower responsiveness of aggregate inflation to output developments in the euro area in comparison to the U.S. is caused by more rigid structural policy settings and relate it to trade barriers in the European services sector. Analogously, European Commission (2003) points out that low competition in services enhances the sector's inflation inertia as measured at the aggregated level. On the other hand, studies employing disaggregated data, such as Lunnemann and Matha (2005) for several EU countries and Clark (2006) for the U.S., find little evidence that services display greater inflation persistence than goods. Similarly, Coricelli and Horvath (2006) report results for Slovakia indicating that inflation inertia in the services sector is even lower than for goods and put forward an explanation of why (labor intensive) services, where the degree of competition is typically lower as services are often not exposed to international competition, may in fact exhibit smaller persistence. The argument is based on Calvo (2000), who shows that greater competition in the market may actually slow down the adjustment to shocks, as the degree of strategic complementarity increases with higher competition. All these aforementioned issues give further impetus for individual or sectoral level analysis of inflation persistence.

One of the interesting applications of inflation persistence analysis at the disaggregate level is provided by Cutler (2001). Cutler constructs an alternative measure of core inflation – persistence-weighted core inflation. The measure is constructed in a way giving larger weights to items exhibiting higher inflation persistence. Using UK data, Cutler finds that in terms of ability to predict headline inflation this measure outperforms some other standard measures of core inflation, such as those using a trimmed mean or weighted median or those excluding food and energy prices.³

In addition, it is noteworthy that there is still very little evidence on price setting behavior in the New EU Member States (NMSs). Typically, the few available studies focus on aggregate inflation dynamics. More detailed evidence on price setting is provided by Ratfai (2006), who studies the linkages between individual price dynamics and aggregate inflation with Hungarian data. Additionally, Konieczny and Skrzypacz (2005) analyze the price dynamics of about 50 products in Poland. Among other things, they show that more intense search is associated with smaller price dispersion. Coricelli and Horvath (2006) give evidence on the empirical stylized features of

³ Notice that in general the forecasting ability of persistence-weighted measures of inflation may depend on the monetary regime and the degree of inflation persistence. For a discussion, see Smith (2004, 2005).

price setting behavior in Slovakia using a large micro-level dataset underlying the Slovak CPI. Recently, inflation persistence at the aggregate level for the EU new members has also been studied by Franta *et al.* (2007).

Therefore, a novel contribution of this study lies in exploring inflation persistence at the disaggregate level in the Czech Republic using rich data collected by the Czech Statistical Office, which cover about a thousand product categories over 1994–2005 (accounting also for structural breaks). Furthermore, our study goes beyond a simple statistical description of the data and makes an attempt to identify the determinants of inflation persistence. Of particular interest is the examination of the so-called "services inflation persistence puzzle", namely that more labor intensive categories such as services often exhibit smaller persistence as compared to goods (see, for example, Altissimo, Mojon and Zaffaroni, 2007; Clark, 2006; Coricelli and Horvath, 2006). Finally, we construct "persistence-weighted" core inflation in line with Cutler (2001) and propose a "persistence of an individual product and its weight in the CPI basket, with the objective of assessing its predictive performance (ability to capture inflation trends) compared to other alternative approaches for core inflation measurement.

The paper is organized as follows. After this introduction to the subject and overview of the key literature, the second section describes how inflation persistence is measured in practice, formulates the research hypotheses and explains the estimation methodology. The third section presents the data set used in the study. The fourth section provides the results. The last section concludes and draws policy implications. An Appendix with additional results and sensitivity checking follows.

2. Estimating Inflation Persistence

The literature generally applies two statistical approaches to estimating inflation persistence – parametric and non-parametric. The parametric approach is more extensively applied in empirical studies (Cecchetti and Debelle, 2006; Clark, 2006; Levin and Piger, 2004; Levin, Natalucci and Piger, 2004). As advocated by Andrews and Chen (1994), the best scalar measure of persistence is the sum of autoregressive coefficients in the dynamic equation for inflation:

$$\pi_{t} = \mu + \sum_{j=1}^{K} \alpha_{j} \pi_{t-j} + \mathcal{E}_{t}, \qquad (1)$$

where π_i stands for the yearly inflation rate, μ and α_j are parameters, and \mathcal{E}_i is the whitenoise disturbance. The lag length *K* is determined based on information criteria. Typically, $\sum_{i=1}^{k} \alpha_i$

is interpreted as the measure of inflation persistence. Specification (1) may be labeled as naïve, because it does not account for potential structural breaks. A number of recent studies apply various tests for structural breaks (e.g. Cecchetti and Debelle, 2006; Levin and Piger, 2004).

A non-parametric approach has been recently put forward by Marquez (2004). This approach builds on the idea that less persistent inflation is more likely to cross the long-run mean of the inflation rate (or possibly the time-varying mean). Consequently, inflation persistence, φ , is measured as $\varphi = 1 - n/T$, where *n* is the number of times inflation crosses its equilibrium

value and T is the number of observations. Dias and Marquez (2005) derive the finite sample and asymptotic properties of this non-parametric measure. They also conduct Monte Carlo simulations and find that the bias of the estimate of persistence based on the non-parametric approach is smaller for any sample size, as compared to the parametric measure from equation (1). In addition, they argue that the non-parametric measure is more robust to structural breaks. Nevertheless, the properties of this measure are investigated only for covariance stationary processes.

Despite the potential attractiveness of the approaches described above, in our case we find that most individual inflation rates follow an I(1) process (even if we control for structural breaks). For such a case, the properties of the non-parametric approach have not been investigated yet. Analogously, in the case of a parametric measure – e.g. the sum of autoregressive coefficients – it is well known that non-stationarity of the variables would result in spurious regression. Therefore, we do not report these measures and propose a different measure of the persistence of inflation.⁴

Given the non-stationarity of inflation series, we opt for an examination of the degree of inflation persistence using the complementary unit root and stationarity tests. Specifically, we use the augmented Dickey-Fuller test (Dickey and Fuller, 1981), Phillips-Perron test (Phillips and Perron, 1988) and KPSS test (Kwiatkowski *et al.*, 1992). Given that our data come from a former transition country, we test the robustness of the results by carrying out a unit root test with a structural break (Saikkonen and Lütkepohl, 2002, and Lanne *et al.*, 2002, labeled as the LLS test hereinafter).

For the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests, the probability of rejecting the null hypothesis of a unit root will be reported. The probability can vary from 0 to 1. Higher values thus correspond to more persistence. For example, a probability higher than 0.10 means that the null of a unit root cannot be rejected at the 10% significance level. For the KPSS stationarity test, the t-statistic will be reported: higher t-statistic values increase the probability of rejecting the null hypothesis of stationarity and hence characterize more persistence in the underlying series.

The number of lags in the aforementioned tests for each product is determined according to the Akaike information criterion. We address the sensitivity of the results by estimating persistence first for the full sample and then for the restricted sample, i.e. using data only after the introduction of inflation targeting in 1998.

Next, we also run a unit root test with a structural break. Given a relatively short time series, we test for only one structural break on an unknown date (Lanne *et al.*, 2002). As we find that most of the time series exhibit a structural break around 1998–1999 (shortly after the adoption of inflation targeting), we decided to employ a unit root test where we impose the break (captured by the shift dummy) in 1998:1.⁵ The rationale for imposing the break is to ensure that we subject each time series to the identical testing procedure and consequently to allow cross-sectional comparability of our results. We take the t-value from this test as the measure of the persistence of the series, with

⁴ A straightforward application of the non-parametric method to our data does not bring any meaningful insight: the degree of persistence across all sectors is found to be very similar.

⁵ Therefore, we estimate the LLS test only for our full sample (1995–2005) and do not estimate the test for the restricted sample (1998–2005, i.e. the inflation targeting period), as we do for the ADF, PP and KPSS tests.

a more negative value indicating less persistence (increasing the probability of rejecting the null hypothesis of a unit root process).

Furthermore, one can put forward a critique that p-values might not generally serve as a universal measure for the degree of inflation persistence.⁶ Therefore, we also measure persistence by simply running the aforementioned stationarity and unit root tests and examining whether we can reject the corresponding null hypothesis at a reasonable level of significance.⁷ We then use the following coding to assess the degree of persistence: 1 if the series is found to contain a unit root, and 0 if the series is stationary. Subsequently, we calculate the share of unit root processes for particular sectors. As a result, this exercise provides an additional sensitivity check of our results. Obviously, the drawback of this measure is that it is not possible to evaluate the extent of aggregation bias.

It is also vital to note that we use year-on-year inflation rates, for the following reasons. Other possibilities, such as using month-on-month and quarter-on-quarter changes in the price level, are associated with seasonality, which may contaminate the true extent of persistence. In addition, these two aforementioned changes are typically not monitored by economic agents such as households or unions. Most importantly, central banks set their inflation targets in year-on-year changes in the price level. In addition, Aron and Muellbauer (2006) claim that year-on-year inflation rates also capture the dynamics of month-on-month inflation.⁸

3. Data

The Czech Statistical Office included 1,022 narrowly defined products in the consumer basket between 1994 and 2005 on a monthly frequency. Nevertheless, prices of many products were not tracked over the whole sample period. Typically, the whole consumer basket includes about 700 products on any given date. As a result, we were able to identify 412 individual products for which the price indexes are available for the whole period spanning from 1994:M1 to 2005:M12. The selected 412 products represent 64% of the CPI basket for 2005.

As a benchmark, we construct sample inflation as a weighted average of 412 individual price indices (year-on-year percentage changes). Figure 1 shows the official CPI inflation and our sample inflation over 1995–2005 at monthly frequency. The high similarity between the two series suggests that our sample of 412 products is fairly representative in terms of inflation dynamics. On average, annual CPI inflation in the Czech Republic was about 4.3% over the period 1994–2005. Prior to 1998, inflation fluctuated around 10%, while successful disinflation policy resulted in average inflation of around 3% during 1999–2005.

⁶ Given that p-values are affected by the standard errors of the estimated coefficients, the distribution of p-values is also influenced by the sample size. Hence, p-values cannot be used to compare persistence in, for example, very short versus large samples. Since in our case the sample size is the same for all products (about 100 observations), p-values can be informative in characterizing the non-stationarity properties of the underlying series.

⁷ More specifically, we use the 5% and 10% significance levels.

⁸ Nevertheless, for the purposes of sensitivity checking, we replicate our analysis on month-on-month inflation rates (the results are available upon request). We find that in such case inflation exhibits less persistence compared to the yearly base. A similar observation was pointed out by Altissimo, Ehrmann and Smets (2006): the same series is found to be less persistent if considered in quarter-on-quarter changes compared to year-on-year changes.

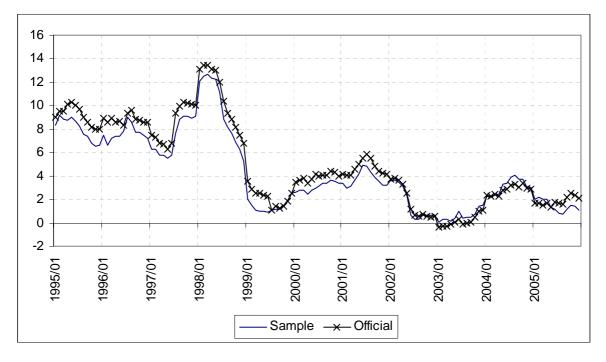


Figure 1: Official CPI Inflation and Sample Inflation, 1995–2005

To facilitate interpretation, the individual 412 products are further grouped into several broader categories according to their characteristics (in line with the Czech National Bank internal classification of products for reporting sectoral inflation rates). These are: tradables, non-tradables, durables, regulated goods and services, non-regulated services, raw goods and processed goods. Products are also classified by the statistical office into 12 main categories according to the classification of individual consumption by purpose (COICOP). These categories are food and non-alcoholic beverages; alcoholic beverages and tobacco; clothing and footwear; housing, water, gas, and electricity; furnishings and maintenance of the house; health care expenses; transport; communications; leisure and culture; education; hotels, cafés, and restaurants; and miscellaneous goods and services.

4. Results

In the first part, we perform product-specific estimates of inflation persistence using the unit root (ADF, PP, LLS) and stationarity (KPSS) tests. Then we examine the effect of aggregation on inflation persistence and analyze whether inflation persistence changes over time. The second part is devoted to an assessment of the determinants of inflation persistence. Finally, we evaluate the predictive ability of persistence-weighted core inflation.

4.1 Inflation persistence estimates

The overall distribution of inflation persistence across product categories is summarized in Figure 2 below. The degree of persistence is depicted on the horizontal axis, while the vertical axis displays the kernel density. Several stylized facts follow from Figure 2.

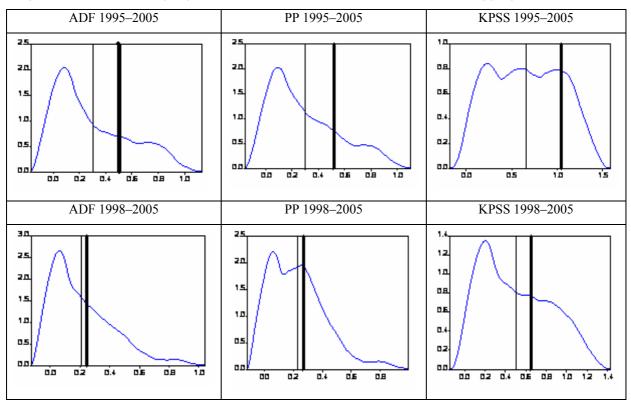


Figure 2: Distribution of Inflation Persistence Across 412 Products and Aggregation Bias

Notes: Vertical bold lines denote the persistence of aggregate CPI inflation; simple vertical lines represent the mean of disaggregate inflation persistence. The horizontal axis characterizes the level of inflation persistence (higher values mean more persistence). For all the measures of persistence displayed, higher values mean more persistent inflation. For the ADF and PP unit root tests, the probability of rejecting the null hypothesis of a unit root is reported. The probability can vary from 0 to 1. Higher values correspond to more persistence. For example, a probability higher than 0.10 means that the null of a unit root cannot be rejected at the 10% significance level. For the KPSS stationarity test, the t-statistic is reported. Higher t-statistic values increase the probability of rejecting the null hypothesis of stationarity and hence characterize more persistence in the underlying series.

All three tests suggest that aggregate inflation exhibits significantly higher persistence than the average inflation persistence as measured at the disaggregate level for the whole sample as well as for the 1998–2005 sub-period⁹ (the results of Altissimo, Mojon and Zaffaroni, 2007, and Clark, 2006, for example, also indicate this discrepancy). Generally, there are two possible explanations for this phenomenon. First, Granger (1980) showed that cross-sectional aggregation of (even simple) time series may result in complex, often more persistent processes (i.e. aggregation bias). Typically, the aggregation bias is likely to be greater when there is large heterogeneity in the product-level inflation persistence. As a result, the estimated persistence of aggregate inflation may change due to changes in sectoral heterogeneity. Second, it may also reflect the fact that idiosyncratic shocks vanish due to aggregation. Next, we assess the robustness of these findings by also running an LLS unit root test with a structural break (Saikkonen and Lütkepohl, 2002, and

⁹ The results are valid regardless of whether the sample aggregate inflation is constructed using the mean, weighted mean or median. The gap between aggregate inflation and the average inflation across the disaggregated components is different from zero at the 1% significance level, as suggested by the t-test. However, this significance may be overestimated since the conventional t-test is applied to the test statistics, not to the raw data.

Lanne *et al.*, 2002). The break is captured by the shift dummy in 1998:M1. The results from this test confirm the presence of aggregation bias (see Figure A.2 in the Appendix).

One can also observe a noticeable reduction in overall CPI inflation persistence for the sub-period 1998–2005 (i.e. the inflation targeting period), while the sample aggregate inflation persistence has decreased rather marginally (see the lower part of Figure 2). We find that it was the persistence of tradables (especially durable goods) inflation rather than that of non-tradables that declined after the adoption of inflation targeting.

Sector	No. of	Sample	Measures of persistence					
	products	weights	ADF	PP	KPSS	LLS		
Tradables	311	0.59	0.31 (0.29)	0.31 (0.27)	0.69** (0.39)	-2.35 (1.12)		
Non-tradables	101	0.41	0.24 (0.21)	0.22 (0.20)	0.55** (0.30)	-2.32 (1.03)		
Services	96	0.40	0.24 (0.21)	0.22 (0.20)	0.56** (0.30)	-2.30 (1.05)		
Non-reg.serv.	74	0.30	0.24 (0.21)	0.21 (0.19)	0.56** (0.30)	-2.32 (1.00)		
Regulated	27	0.11	0.23 (0.21)	0.24 (0.20)	0.53** (0.28)	-2.32 (1.13)		
Durables	164	0.21	0.44 (0.29)	0.43 (0.28)	$0.90^{***}(0.34)$	-1.86 (0.92)		
Non-durables	152	0.39	0.16 (0.20)	0.18 (0.18)	0.46* (0.31)	-2.88** (1.05)		
Raw goods	42	0.11	0.07 (0.13)	0.09 (0.11)	0.24 (0.19)	-3.43** (1.13)		
Processed goods	370	0.89	0.32 (0.28)	0.31 (0.26)	0.71** (0.36)	-2.22 (1.02)		
Total prod. level	412	1.00	0.29 (0.28)	0.29 (0.26)	0.66** (0.38)	-2.35 (1.09)		
Aggr. inflation	1	1	0.48	0.49	1.03***	-1.80		

Table 1: Inflation Persistence, yearly inflation, 1995–2005 (132 obs.)

Notes: The pairs (tradables, non-tradables) and (raw goods, processed goods) make up a total of 412 products. Durables do not include regulated prices, while processed goods do. For all the measures of persistence displayed, higher values mean more persistent inflation. For the ADF and PP unit root tests, the probability of rejecting the null hypothesis of a unit root is reported. The probability can vary from 0 to 1. Higher values correspond to more persistence. For example, a probability higher than 0.10 means that the null of a unit root cannot be rejected at the 10% significance level. Standard deviations are shown in parentheses. For the KPSS stationarity test, the t-statistic is reported. Higher t-statistic values increase the probability of rejecting the null hypothesis of stationarity and hence characterize more persistence in the underlying series. *, **, and *** denote the 10%, 5% and 1% asymptotical significance levels for rejection of the statistic values increase the probability of rejecting the null hypothesis. Standard deviations are shown in parentheses. For the LLS (Lanne *et al.*, 2002) unit root test in the presence of a structural break, the t-statistic is reported. More negative t-statistic values increase the probability of rejecting the null hypothesis. so far a unit root and thus characterize less persistence in the underlying series. *, **, and *** denote the probability of rejecting the null hypothesis of a unit root and thus characterize less persistence in the underlying series. *, **, and *** denote the 10%, 5% and 1% asymptotical significance levels for rejection of the statistic values increase the probability of rejecting the null hypothesis of a unit root and thus characterize less persistence in the underlying series. *, **, and *** denote the 10%, 5% and 1% asymptotical significance levels for rejection of the unit root hypothesis.

Similar evidence of aggregation bias is observed when comparing inflation persistence for the aggregate CPI and nine sectors (see Table 1 and Table 2; note that the results are obtained by aggregating the product-specific estimates). Overall, the results in Table 1 and 2 seem to indicate that inflation persistence in the Czech Republic is higher compared to the euro area members. While for the Western European countries there are relatively few cases of I(1) processes at sectoral and even aggregate levels (European Central Bank, 2005), and while the results of stationarity and unit root tests are often inconclusive¹⁰ (Gadea and Mayoral, 2006), the results for the Czech Republic are much more clear-cut. Czech inflation follows a unit root process for most

 $^{^{10}}$ In other words, Gadea and Mayoral find that many sectoral inflation series are fractionally integrated, i.e. follow a process between I(0) and I(1).

of the sectors. On the other hand, Franta *et al.* (2007) find that aggregate inflation persistence in the new EU member states tends to be lower than in the euro area when allowing for the time-varying inflation target.

Moreover, in the Czech case the results of the unit root and stationarity tests are quite similar at the sectoral level (the test performance at the product level is assessed in the next paragraph). For example, considering the period from 1995 to 2005 (Table 1), the results of the unit root and stationarity tests give the same picture: 8 out of the 9 sectors exhibit a unit root process at the 10% significance level; raw goods (line 8) are the only sector which is stationary at the 10% level, as supported by both the unit root (ADF/PP) and stationarity (KPSS) tests. This similarity between unit root tests and stationarity tests gives support for I(1) behavior of sectoral inflation rates. Note that these results are obtained assuming no trend in inflation. The incorporation of a time trend in the inflation dynamics or accounting for a time-varying inflation target could be further investigated.

In terms of ranking the persistence across sectors, we find that raw goods consistently exhibit the smallest inflation persistence. On the other hand, durables inflation seems to be the most inertial. Interestingly, services and regulated products do not display greater persistence. This finding is also robust to our alternative indicator of inflation persistence – the share of unit roots. The attendant results are available in Table A.1 in the Appendix.

Sector	No. of	Sample		Measures of pers	istence
	products	weights	ADF	PP	KPSS
Tradables	311	0.59	0.21 (0.21)	0.23 (0.19)	0.52** (0.35)
Non-tradables	101	0.41	0.23 (0.19)	0.22 (0.17)	$0.46^{*}(0.28)$
Services	96	0.40	0.24 (0.19)	0.22 (0.17)	0.47** (0.29)
Non-reg. serv.	74	0.30	0.27 (0.19)	0.25 (0.16)	0.46** (0.27)
Regulated	27	0.11	0.12 (0.17)	0.14 (0.16)	$0.47^{*}(0.31)$
Durables	164	0.21	0.24 (0.24)	0.26 (0.23)	0.70** (0.32)
Non-durables	152	0.39	0.16 (0.15)	0.20 (0.14)	0.31 (0.25)
Raw goods	42	0.11	0.12 (0.14)	0.15 (0.13)	0.16 (0.12)
Processed goods	370	0.89	0.22 (0.21)	0.24 (0.19)	0.54** (0.33)
Total prod. level	412	1.00	0.21 (0.20)	0.23 (0.19)	0.50** (0.33)
Aggr. inflation	1	1	0.26	0.27	0.63**

Table 2: Inflation Persistence, yearly inflation, 1998–2005 (96 obs.)

Notes: As for Table 1.

In addition, our results suggest that inflation persistence has decreased in the post-1998 period, i.e. since inflation targeting was adopted. Vega and Winkelried (2005) find that inflation targeting helps in reducing the volatility of inflation; however, the effect on inflation persistence is rather ambiguous. On the other hand, the results of Levin *et al.* (2004) indicate that inflation targeters indeed exhibit smaller inflation persistence. Likewise, Yigit (2006) documents that the adoption of an inflation target provides a coordinating effect on the inflation expectations of economic agents and therefore puts downward pressure on inflation persistence.

In this regard, while we find that there are 314 categories out of 412 for which we cannot reject the null of a unit root based on the ADF test in the 1995–2005 sample at the 5% significance level, there are 256 such categories in 1998–2005 (note that for the PP test the figures are 339 and 322 categories, respectively). In the case of the KPSS test, we reject the null of stationarity at the 5% significance level for 269 categories over 1995–2005 and 207 categories for 1998–2005. These results suggest that inflation persistence may be somewhat lower after the adoption of inflation targeting in 1998; however, this should be taken with caution, as the power of the tests may decrease for the shorter sample. Table A.1 presents the detailed results on the (both simple and consumption-weighted) share of unit root processes, including the LLS test.

We also find that the estimated inflation persistence falls when we control for structural breaks. This is evident from comparing the ADF and LLS results. The construction of the LLS test implies that it is essentially the ADF test "adjusted" for the structural break. The results presented in Table A.1 indicate that the share of unit root processes is indeed smaller for the LLS test as compared to the ADF test. The results thus comply with Levin and Piger (2004).

At the individual product level, the link between the various tests is illustrated in Figure A1 in the Appendix. The correlation of the LLS test with the ADF, PP and KPSS tests stands at 0.76, 0.75 and 0.5, respectively. The P-values of the ADF and PP tests are closely related: the corresponding correlation coefficient is 0.94 for 1995–2005 and 0.87 for 1998–2005. The correlation between the unit-root tests and the KPSS test for stationarity is fairly high (0.63 and 0.67, respectively) for 1995–2005, and much lower (0.31 and 0.31, respectively) for 1998–2005.

Such a difference over the two periods is likely to be due to the following reasons. First, as the number of observations decreases the tests lose their power to reject the null hypothesis – that of an I(1) process for the ADF/PP tests, and of an I(0) process in the case of the KPPS. Second, as inflation itself has decreased over time, it becomes more difficult to distinguish whether the series follow an I(0) or I(1) process; the series may become fractionally integrated, as is the case for disaggregate inflation in West European countries (see Gadea and Mayoral, 2006). In other words, the growing differences between the unit root and stationarity tests may capture the effect of structural changes in the Czech Republic and give further indirect support for our supposition that inflation persistence decreased after the adoption of inflation targeting.

4.2 Explaining Inflation Persistence

Once the disaggregate estimates of inflation persistence are obtained, we test them for any significant determinants. In particular, we analyze the ability of product characteristics to explain the cross-sectional variation in persistence across 412 individual products. In addition, we analyze the so-called "service inflation persistence puzzle": several studies have revealed that (labor-intensive) services, which are typically not subject to international competition, surprisingly display smaller persistence than goods (see, for example, Altissimo, Mojon and Zaffaroni, 2007; Clark, 2006; and Coricelli and Horvath, 2006). Thus, our results will add a piece of evidence on this "service inflation persistence puzzle". More generally, we analyze the implications of the degree of competition for inflation persistence.

One hypothesis to explain the variation in inflation persistence is that it differs across sectors. Concerning the sectoral categories, raw goods indeed demonstrate the lowest inflation persistence (and the lowest dispersion) among the nine sectors considered. Non-durables have the secondlowest persistence and dispersion of inflation. Apart from aggregate inflation, the sector with the highest inflation persistence (and also dispersion) is durables, followed by processed goods and tradables.

It is interesting to note that services are typically non-tradable and more labor-intensive, i.e. their prices are likely to be set in a less competitive environment than that for goods. Naturally, the incentives for price revision for services should then be weaker and thus the convergence to frictionless equilibrium slower. Consequently, one would expect services prices to display greater inertia. However, our results – like the empirical evidence – do not support this reasoning. We find that inflation in services exhibits lower persistence, although for the post-1998 period this difference diminishes and becomes sensitive to the choice of test. Similarly, Clark (2006) for the U.S. as well as Coricelli and Horvath (2006) for Slovakia report smaller inflation persistence in services than for manufacturing using micro level data. Lunnemann and Matha (2004) find that in about 5 out of 15 EU countries the persistence in services inflation is smaller than the persistence of the overall HICP.

In this regard, Coricelli and Horvath (2006) put forward an explanation for the finding that services inflation is often found to exhibit smaller persistence than goods. Typically, it is assumed that higher competition increases the incentives for price revisions and the market has a tendency to adjust faster. On the other hand, Calvo (2000) shows that a greater degree of competition may increase the inertia rather than decrease it. This is because when markets are highly competitive, it is more likely that individual prices will not diverge far from the average (firms "follow the pack")¹¹, otherwise the firm would be pushed out of the market. In other words, the degree of strategic complementarity among price setters increases with higher competition and individual pricing decisions will be more affected by the average pricing strategy in the market. Consequently, greater competition reduces price dispersion; however, it does not have to decrease persistence.

_	1995–2005					1998-200)5
	ADF	PP	KPSS	LLS	ADF	PP	KPSS
Price dispersion	-0.25	-0.28	-0.32	-0.18	-0.08	-0.09	-0.27
Durables	0.44	0.45	0.53	0.36	0.13	0.12	0.47
Goods	0.10	0.14	0.14	-0.01	-0.08	0.01	0.05
Non-durables	-0.37	-0.33	-0.42	-0.37	-0.20	-0.11	-0.43
Non-tradables	-0.11	-0.16	-0.16	0	0.06	-0.02	-0.07
Processed goods	0.28	0.27	0.37	0.34	0.08	0.07	0.34
Raw goods	-0.28	-0.27	-0.37	-0.34	-0.08	-0.07	-0.34
Regulated products	-0.05	-0.06	-0.09	0	-0.12	-0.14	-0.08
Services	-0.11	-0.13	-0.11	0.02	0.05	-0.01	-0.05
Services – non-regulated	-0.10	-0.12	-0.08	0.02	0.13	0.09	-0.02
Tradables	0.1	0.16	0.16	0	-0.06	0.02	0.07

Table 3: Correlation Matrix – Inflation Persistence and Product Characteristics

Note: Correlation coefficients greater than 0.08 in absolute terms are significant at the 5% level.

¹¹ Note also that deviation from the price of competitors has been found to be one of the most important obstacles to price adjustment in surveys of euro area firms (see Fabiani *et al.*, 2006).

Price dispersion can be interpreted as a measure of market competition. Consequently, this allows us to test the aforementioned supposition that the degree of competition may indeed be positively related to inflation persistence. We measure price dispersion as the standard deviation of price indexes within an individual COICOP category normalized to one in the initial period. The resulting COICOP-specific measure of price dispersion is obtained by averaging the standard deviations over time.

First, simple pair-wise correlations are illustrated in Table 3. Particularly strong correlations are detected for the categories of durables and raw goods. We also find a significantly negative correlation between our measure of price dispersion and inflation persistence. This is robust to the measure of inflation persistence as well as the sample period.

Next, we present our results on the determinants of inflation persistence using here the KPSS testbased estimates of persistence in Table 4. The results suggest that greater price dispersion, a measure of competition, is associated with smaller inflation persistence, implying that competition is not conducive to reducing persistence. This finding holds for both our estimation periods (the full sample, 1995–2005, and the inflation targeting-restricted sample, 1998–2005), when controlling for product characteristics and altering our estimation technique (OLS vs. GMM), and, on top of that, is largely unaffected by the measure of persistence (see Tables A.2, A.3 and A.4 for the results based on targeting-restricted ADF, PP and LLS test-based estimates of persistence). In addition, we present a logit estimation of the inflation persistence determinants, which further confirms our findings. Our dependent variable is coded one if the product inflation is found to follow an I(1) process at the 10% significance level¹², and zero otherwise. The results are available in Table A.5 in the Appendix.

		1995-2005	5		1998-200	5
	KPSS	KPSS	KPSS	KPSS	KPSS	KPSS
Price dispersion	-1.25***	-10.4***	-2.57***	-0.91***	-9.23***	-1.71***
_	(0.18)	(3.85)	(0.18)	(0.17)	(3.53)	(0.53)
Non-durables			-0.17**			-0.17***
			(0.08)			(0.06)
Raw goods			-0.31***			-0.24***
			(0.10)			(0.07)
Adj. R-squared	0.11			0.07		
Estimation method	OLS	GMM	GMM	OLS	GMM	GMM
		0.2			1.5	
Sargan test (p-value)		(0.15)	0.4 (0.40)		(0.23)	0.9 (0.33)
Observations	412	412	412	412	412	412

Table 4: Determinants of Inflation Persistence

Note: Heteroscedasticity robust standard errors are shown in parentheses. The list of instruments for price dispersion is as follows: non-regulated services, non-durables, raw goods and regulated prices dummies. ***, **, and * denote significance at 1%, 5%, and 10%, respectively. P-value in brackets for the Sargan (overidentifying restrictions) test.

We report both the OLS and GMM estimates to check the robustness of the results. While OLS may be subject to endogeneity bias, it is known that GMM may give biased results for a smaller

¹² The 5% significance level was used as the cut-off point for coding the dependent variable as well. The results remained largely unaffected.

sample. Next, we also control for product characteristics (two products with high correlation with inflation persistence) and present the results for two sample periods. The Appendix also contains Table A.6, where we study the impact of product characteristics on inflation persistence. We find that raw goods as well as non-durables exhibit smaller inflation persistence. There is some evidence that inflation in the services sector exhibits smaller persistence.

To further support our results that competition is likely to be negatively related to inflation persistence, we present the determinants of price dispersion. Here we expect that non-tradables/services, as they are typically not subject to international competition, will exhibit greater price dispersion. Controlling for other product characteristics, the results in Table 5 indicate that the degree of non-tradability of a product, as captured by the services dummy, is positively linked to price dispersion (see also Crucini *et al.*, 2005).

			Price dis	persion	
Services – non-regulated	0.06***	0.09***	0.07***	0.09***	0.11***
_	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Non-durables		0.07***		0.07***	0.08***
		(0.01)		(0.01)	(0.01)
				-	
Raw goods			0.03***	0.001***	-0.001
			(0.01)	(0.001)	(0.001)
Regulated					0.17***
					(0.02)
Adj. R-squared	0.06	0.15	0.06	0.15	0.15
Estimation method	OLS	OLS	OLS	OLS	OLS
Observations	412	412	412	412	412

Table 5: Determinants of Price Dispersion

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

4.3 Predictive Ability of Persistence-Weighted Core Inflation

In order to improve inflation forecasts, a number of core inflation measures have been developed to capture underlying inflation trends. Generally, the measures remove or reweight the most volatile categories of inflation, such as energy prices. Smith (2004) notes that core inflation measures typically exploit cross-sectional information, while time-series information has been much less noted. In line with this, we construct a measure of core inflation, I_t^{core} , based on product-level inflation rate persistence, giving a greater weight to categories exhibiting greater persistence, and examine its predictive ability by comparison with other measures of core inflation as well as various inflation forecasts.

The underlying idea is that the more persistent components of headline inflation may do a good job in capturing inflation trends. In this context, Cutler (2001) finds that in the case of U.K. data, persistence-weighted core inflation outperforms other core inflation measures. Cutler (2001) argues that the exclusion of certain products from the basket in the construction of core inflation can be arbitrary, and what is more, she finds that certain non-seasonal food prices (food prices are

typically excluded from core inflation) exhibit relatively persistent inflation and thus their behavior may provide additional information for capturing trends in inflation series.

Our persistence-weighted core inflation, $\pi_t^{core,PW}$, is based on Cutler (2001) and is constructed as follows:

$$\pi_t^{core, PW} = \sum_{i=1}^{413} \theta_i \Delta p_{t,i}$$

where θ_i denotes the i-th product inflation persistence (normalized such that $\sum_{i=1}^{413} \theta_i = 1$) and $\Delta p_{t,i}$ is the i-th product yearly inflation rate at time t. As an alternative indicator, we combine information on the persistence of an individual product, θ_i , and the weight of that product in the CPI basket in the following way,

$$\pi_t^{core, PEW} = \sum_{i=1}^{413} \xi_i \Delta p_{t,i}$$

where ξ_i is the simple average of θ_i – the individual inflation persistence – and w_i is the sample weight of the i-th product in the CPI basket, where θ_i and w_i are normalized such that $\sum_{i=1}^{413} \theta_i = 1$

and $\sum_{i=1}^{413} w_i = 1$. Consequently, we label $\pi_t^{core, PEW}$ as the persistence expenditure-weighted core inflation.

We undertake a simple exercise here to evaluate the predictive ability of persistence-weighted core inflation vis-à-vis other (core) inflation measures. Specifically, we compare it with net inflation, median net inflation (the median net individual inflation rate), and so-called adjusted inflation (net inflation excluding food, beverages and tobacco) over the horizons of 6, 12 and 18 months. The mean square error (MSE) will be used to measure the forecast quality:

$$MSE = 1/T \sum_{t=1}^{T} \left(\prod_{t+h}^{CPI} - \prod_{t}^{CORE,i} \right)^{2},$$

where *T* is the number of observations, *h* is the time horizon in months and $\Pi_t^{CORE,i}$ is the selected core inflation measure.

Figure 3 depicts the predictive ability of the aforementioned core inflation measures. Here we used the persistence measure based on the ADF test on the 1995–2005 data.¹³ The results indicate that adjusted inflation exhibits the smallest MSE and thus is the best predictor of the core inflation measures considered. Net inflation, median net inflation and persistence-weighted core inflation, $\pi_t^{core,PW}$, do not perform particularly well. Current inflation and persistence-weighted core inflation, and persistence-weighted core inflation, $\pi_t^{core,PW}$, are relatively good predictors of inflation 6 months ahead, but their predictive ability worsens substantially over longer time periods.

¹³ The results based on other persistence measures (the PP, KPPS and LLS test-based measures for the full and restricted samples) are similar and available upon request.

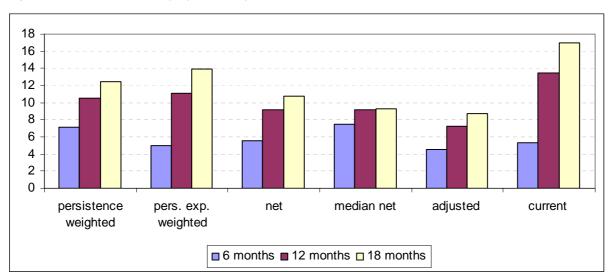


Figure 3: Predictive Ability of Core Inflation Measures, 1995–2005

Note: The mean square error is plotted on the vertical axis.

5. Conclusions

In this paper, we have presented evidence on disaggregate inflation persistence in the Czech Republic, exploring data from 412 individual narrowly defined products and 9 broader sectors from 1995:M1 to 2005:M12. The results suggest that inflation persistence decreased after the adoption of inflation targeting. A somewhat similar observation of falling rather than rising inflation persistence in the euro area countries over the past decade is reported by the Eurosystem Inflation Persistence Network (IPN).¹⁴ However, inflation persistence in the Czech Republic still remains relatively high compared to that in the euro area countries.

The results unambiguously point to the presence of aggregation bias, that is, aggregate inflation is more persistent than the mean of its underlying disaggregated components. This result is robust to the choice of disaggregation level (412 components or 9 sectors) and weighting scheme (simple mean, median, or weighted mean), to the choice of estimation technique (unit root ADF, PP, LLS, or stationarity KPSS tests), and to the choice of period (full sample versus post-1998 inflation targeting period).

We identify that the sectoral structure explains the estimated variation in inflation persistence to a certain extent. In particular, products belonging to the raw goods category exhibit smaller than sample average persistence, while durables have higher than average persistence. Concerning the "services inflation persistence puzzle", there is evidence that (labor-intensive) services are characterized by smaller persistence than goods for our 1995–2005 sample. However, the results are sensitive to the choice of estimation technique and period, i.e. using a shorter sample over 1998–2005 we do not find robust differences in terms of the persistence of goods and services. Nevertheless, the regression results show that the services dummy is negatively associated with inflation persistence.

¹⁴ A summary of the IPN's findings is provided by Altissimo, Ehrmann and Smets (2006).

We find that competition is not conducive to reducing inflation persistence. Price dispersion, as a proxy for the degree of competition, is negatively related to inflation persistence. This finding confirms the results of Calvo (2000), who shows that as the level of competition increases, the firm's pricing strategy is influenced more by the average pricing strategy in the market. The costs of charging a different price for identical products increase with higher competition. As a result, there can be a more inertial response to shocks in a more competitive environment.

Lastly, we construct a persistence-weighted core inflation measure and evaluate its predictive ability by comparison with other available measures of core inflation over the period 1995–2005. Generally, we find that adjusted inflation (headline inflation excluding regulated prices, fuel and food prices and changes in indirect taxes) is the best predictor of future inflation trends in our set of core inflation measures over the horizons of 6, 12 and 18 months. Our proposed measure – persistence expenditure-weighted core inflation – may be viewed as an equally good predictor as adjusted inflation for the 6-month horizon, but its predictive ability worsens over longer time periods.

References

- ALTISSIMO, F., EHRMANN, M., AND F. SMETS (2006): "Inflation Persistence and Price Setting Behaviour in the Euro Area – A Summary of the IPN Evidence." European Central Bank Occasional Paper, No. 46.
- ALTISSIMO, F., MOJON, B., AND P. ZAFFARONI (2007): "Fast Micro and Slow Macro: Can Aggregation Explain the Persistence of Inflation?" European Central Bank Working Paper, No. 729.
- ANDREWS, D. AND W. K. CHEN (1994): "Approximately Median-Unbiased Estimation of Autoregressive Models." *Journal of Business and Economic Statistics*, 12, pp. 187–204.
- ANGELONI, I., AUCREMANNE, L., EHRMANN, M., GALÍ, J., LEVIN, A., AND F. SMETS (2006): "New Evidence on Inflation Persistence and Price Stickiness in the Euro Area: Implications for Macro Modeling." *Journal of the European Economic Association*, 4, pp. 562–574.
- ARON, J. AND J. MUELLBAUER (2006): "A Framework for Forecasting the Components of the Consumer Price Index: Application to South Africa." paper presented at the 21st Annual Congress of the European Economic Association, August 25, 2006.
- CALVO, G. (2000): "Notes on Price Stickiness: With Special Reference to Liability Dollarization and Credibility." University of Maryland, mimeo, available at <u>http://www.bsos.umd.edu/</u> <u>econ/ciecrp.htm</u>.
- CALVO, G. (1983): "Staggered Prices in a Utility Maximizing Framework." *Journal of Monetary Economics*, 12, pp. 383–398.
- CALVO, G., CELASUN, O., AND M. KUMHOF (2002): "A Theory of Rational Inflationary Inertia." in: P. Aghion, R. Frydman, J. Stiglitz and M. Woodford (eds.), Knowledge, Information and Expectations in Modern Macroeconomics: In Honor of Edmund S. Phelps. Princeton: Princeton University Press.
- CECCHETTI, S. AND G. DEBELLE (2006): "Has the Inflation Process Changed?" Third BIS Annual Conference, *Economic Policy*, pp. 311–352.
- CLARK, T. (2006): "Disaggregate Evidence on the Persistence in Consumer Price Inflation." Journal of Applied Econometrics, 21, pp. 563–587.
- CORICELLI, F. AND R. HORVÁTH (2006): "Price Setting Behaviour: Micro Evidence on Slovakia." *Centre for Economic Policy Research*, CEPR Discussion Paper No. 5445.
- COURNEDE, B., JANOVSKAIA, A., AND P. VAN DEN NOORD (2005): "Sources of Inflation Persistence in the Euro Area." OECD Economics Department Working Papers, No. 435.
- CRUCINI, M., TELMER, C. I., AND M. ZACHARIADIS (2005): "Understanding European Real Exchange Rates." *American Economic Review*, pp. 724–738.
- CUTLER, J. (2001): "Core Inflation in the UK." External MPC Unit Discussion Paper No. 3, Bank of England.
- DIAS, D. AND C. MARQUEZ (2005): "Using Mean Reversion as a Measure of Persistence." European Central Bank Working Paper, No. 450.

- DICKEY, D. A. AND W. A. FULLER (1981): "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root." *Econometrica*, 49, pp. 1057–1072.
- ERCEG, C. AND A. LEVIN (2003): "Imperfect Credibility and Inflation Persistence." *Journal of Monetary Economics*, 50(4), May, pp. 915–944.
- EUROPEAN COMMISSION (2003): The EU Economy: 2003 Review, Brussels.
- FABIANI, S., DRUANT, M., HERNANDO, I., KWAPIL, C., LANDAU, B., LOUPIAS, C., MARTINS, F., MATHA, T., SABBATINI, R., AND A. STOCKMAN (2006): "What Firms' Surveys Tell Us about Price-Setting Behavior in the Euro Area." *International Journal of Central Banking*, 2(3), pp. 3–47.
- FRANTA, M., SAXA, B., AND K. ŠMÍDKOVÁ (2007): "Inflation Persistence: Euro Area and New Member States." Czech National Bank, mimeo.
- FUHRER, J. C. AND G. MOORE (1995): "Inflation Persistence." *Quarterly Journal of Economics*, February, pp. 127–159.
- GADEA, M. D. AND L. MAYORAL (2006): "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach." *International Journal of Central Banking*, 2(1), pp. 52–103.
- GALÍ, J. AND M. GERTLER (1999): "Inflation Dynamics: A Structural Econometric Analysis." *Journal of Monetary Economics*, 44(2), pp. 195–222.
- GRANGER, C. (1980): "Long Memory Models and Aggregation of Dynamic Models." *Journal of Econometrics*, pp. 227–238.
- JONAS, J. AND F. MISHKIN (2003): "Inflation Targeting in Transition Countries: Experience and Prospects." National Bureau for Economic Research, WP No. 9667.
- KONIECZNY, J. AND A. SKRZYPACZ (2005): "The Behaviour of Price Dispersion in a Natural Experiment." *Journal of Monetary Economics*, pp. 621–632.
- KOTLÁN, V. AND D. NAVRÁTIL (2003): "Inflation Targeting as a Stabilization Tool: Its Design and Performance in the Czech Republic." *Finance a uver – Czech Journal of Economics* and Finance, 53, pp. 220–242.
- KWIATKOWSKI, D., PHILLIPS, P. C. B., SCHMIDT P., AND Y. SHIN (1992): "Testing the Null of Stationarity against the Alternative of Unit Root." *Journal of Econometrics*, 54, pp. 159– 178.
- LANNE, M., LÜTKEPOHL, H., AND P. SAIKKONEN (2002): "Comparison of Unit Root Tests for Time Series with Level Shifts." *Journal of Time Series Analysis*, 23, pp. 667–685.
- LEVIN, A., NATALUCCI, F., AND J. PIGER (2004): "Explicit Inflation Objectives and Macroeconomic Outcomes." European Central Bank Working Paper, No. 383.
- LEVIN, A. AND J. PIGER (2004): "Is Inflation Persistence Intrinsic in Industrial Countries?" The Federal Reserve Bank of Saint Louis, Working Paper No. 023E.
- LUNNEMANN, P. AND T. MATHA (2005): "Regulated and Services' Prices and Inflation Persistence." European Central Bank Working Paper, No. 466.

- MANKIW, N. AND R. REIS (2002): "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve." *Quarterly Journal of Economics*, 117(4), pp. 1295–1328.
- MARQUEZ, C. (2004): "Inflation Persistence: Facts or Artefacts?" European Central Bank Working Paper, No. 371.
- NIMARK, K. (2005): "Calvo Pricing and Imperfect Common Knowledge A Forward Looking Model of Rational Inflation Inertia." European Central Bank Working Paper, No. 474.
- O'REILLY, G. AND K. WHELAN (2005): "Has Euro-Area Inflation Persistence Changed Over Time?" *Review of Economics and Statistics*, 87(4), pp. 807–820.
- ORPHANIDES, A. AND J. WILLIAMS (2003): "Imperfect Knowledge, Inflation Expectations, and Monetary Policy." in: M. Woodford (ed.), *Inflation Targeting*, Chicago: University of Chicago Press.
- PHILLIPS, P. C. B. AND P. PERRON (1988): "Testing for a Unit Root in Time Series Regression." *Biometrika*, 75, pp. 335–346.
- RATFAI, A. (2006): "Linking Individual and Aggregate Price Changes." *Journal of Money, Credit and Banking*, 38(8), pp. 2199–2224.
- SAIKKONEN, P. AND H. LÜTKEPOHL (2002): "Testing for a Unit Root in a Time Series with a Level Shift at Unknown Time" *Econometric Theory*, 9, pp. 343–362.
- SARGENT, T. (1999): The Conquest of American Inflation. Princeton, Princeton University Press.
- SMITH, J. K. (2005): "Inflation Targeting and Core Inflation." *Canadian Journal of Economics* 38(3), pp. 1018–1036.
- SMITH, J. K. (2004): "Better Measures of Core Inflation?" Lafayette College Working Paper Series (September).
- TAYLOR, J. (1980): "Aggregate Dynamics and Staggered Contracts." *Journal of Political Economy*, 88, pp. 1–23.
- VEGA, M. AND D. WINKELRIED (2005): "Inflation Targeting and Inflation Behavior: A Successful Story?" *International Journal of Central Banking*, pp. 153–175.
- YIGIT, T. (2006): *Inflation Targeting: An Indirect Approach to Assess the Direct Impact*. Bilkent University, mimeo.
- ZAFFARONI, P. (2004): "Contemporaneous Aggregation of Linear Dynamic Models in Large Economies." *Journal of Econometrics*, 120, pp. 75–102.

Appendix 1

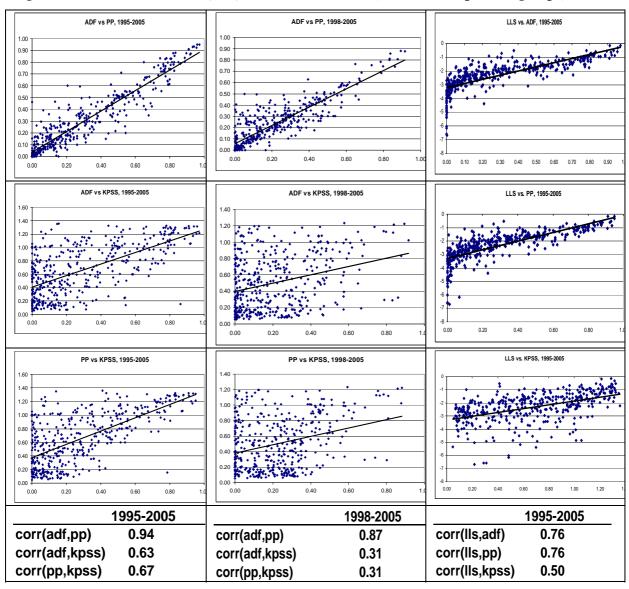
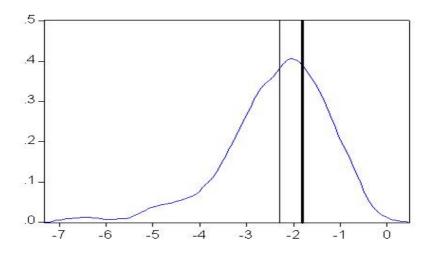



Figure A.1: Link between ADF, PP, KPSS and LLS tests (based on 412 product groups)

Notes: For the ADF and PP tests, the probability of rejecting the null hypothesis of a unit root is employed. The probability can vary from 0 to 1. Higher values correspond to more persistence. For example, a probability higher than 0.10 means that the null of a unit root cannot be rejected at the 10% significance level. For the KPSS stationarity test, the t-statistic is used (shown on the vertical axes). Higher t-statistic values increase the probability of rejecting the null hypothesis of stationarity and hence characterize more persistence in the underlying series. LLS test stands for the Lanne *et al.* (2002) unit root test with a structural break; the t-statistic is used in the Figure.

Figure A.2: Distribution of Inflation Persistence across 412 Products and Aggregation Bias; Results from Lanne et al. (2002) Unit Root test with Structural Break

Notes: The vertical bold line denotes the persistence of aggregate CPI inflation; the simple vertical line represents the mean of the disaggregate inflation persistence. The horizontal axis characterizes the level of inflation persistence (more negative values mean less persistence). Thus, the results are indicative of aggregation bias.

			1	995–20	005					
10% signi	ificance leve	2	Share of unit roots				Share of unit roots (weighted)			
	no_prod	sample_w	ADF	РР	KPPS	LLS	ADF_w	PP_w	KPPS_w	LLS_w
Tradables	311	0.59	0.66	0.72	0.73	0.63	0.62	0.71	0.67	0.63
Non_tradables	101	0.41	0.68	0.67	0.76	0.65	0.83	0.79	0.90	0.76
Services	96	0.40	0.70	0.66	0.77	0.67	0.83	0.79	0.90	0.76
Non_regul_serv	74	0.30	0.70	0.66	0.77	0.68	0.81	0.74	0.90	0.72
Regulated	27	0.11	0.63	0.70	0.74	0.59	0.89	0.94	0.91	0.85
Durables	164	0.21	0.85	0.86	0.90	0.82	0.89	0.89	0.80	0.86
Non_durables	152	0.39	0.45	0.57	0.55	0.42	0.47	0.61	0.60	0.51
Raw_goods	42	0.11	0.21	0.29	0.26	0.21	0.29	0.31	0.13	0.33
Processed	370	0.89	0.72	0.75	0.79	0.68	0.75	0.79	0.84	0.73
Total_prod_level	412	1.00	0.67	0.71	0.74	0.64	0.70	0.74	0.76	0.68
5% signi	ficance level	l	Sh	nare of	unit roo	ots	Shar	e of unit	roots (weig	nted)
	no prod	sample w	ADF	РР	KPPS	LLS	ADF w	PP w	KPPS w	LLS w
Tradables	311	0.59	0.76	0.82	0.67	0.73	0.76	0.84	0.62	0.75
Non tradables	101	0.41	0.76	0.80	0.60	0.76	0.86	0.88	0.54	0.82
Services	96	0.40	0.77	0.79	0.60	0.77	0.87	0.88	0.54	0.82
Non regul serv	74	0.30	0.74	0.78	0.61	0.76	0.82	0.85	0.59	0.76
Regulated	27	0.11	0.81	0.85	0.59	0.78	0.97	0.98	0.40	0.97
Durables	164	0.21	0.90	0.92	0.87	0.86	0.92	0.94	0.78	0.89
Non_durables	152	0.39	0.59	0.72	0.45	0.59	0.67	0.78	0.53	0.67
Raw_goods	42	0.11	0.36	0.50	0.14	0.38	0.43	0.62	0.09	0.44
Processed	370	0.89	0.80	0.85	0.71	0.78	0.85	0.88	0.65	0.82
Total prod level	412	1.00	0.76	0.82	0.65	0.74	0.80	0.86	0.59	0.78
			1	998–20)05					
								re of unit		
10% signi	ificance leve				it roots	1		(weighte	,	1
	no_prod	sample_w	ADF	PP	KPPS		ADF_w	PP_w	KPPS_w	
Tradables	311	0.59	0.59	0.70	0.60		0.62	0.73	0.55	
Non_tradables	101	0.41	0.69	0.77	0.53	1	0.82	0.84	0.72	
Services	96	0.40	0.73	0.78	0.55		0.83	0.84	0.73	
Non_regul_serv	74	0.30	0.82	0.88	0.54		0.94	0.95	0.68	
Regulated	27	0.11	0.33	0.48	0.52		0.52	0.56	0.84	
Durables	164	0.21	0.63	0.66	0.81		0.62	0.64	0.73	
Non_durables	152	0.39	0.54	0.73	0.36		0.61	0.79	0.45	
Raw_goods	42	0.11	0.38	0.57	0.07		0.45	0.70	0.02	
Processed	370	0.89	0.65	0.73	0.64		0.73	0.79	0.69	
TE (1 1 1 1	410	1 0.0	0.00	0 50	0 70	1	0 = 0	0 =0	0 10	1

0.72

0.58

0.62

Table A.1: Inflation	Persistence,	Share of	Unit Root Processes

5% sign	Share	e of uni	it roots		
	no_prod	sample_w	ADF	PP	KPPS
Tradables	311	0.59	0.70	0.77	0.52
Non_tradables	101	0.41	0.77	0.79	0.44
Services	96	0.40	0.79	0.80	0.46
Non_regul_serv	74	0.30	0.91	0.91	0.46
Regulated	27	0.11	0.41	0.48	0.37
Durables	164	0.21	0.71	0.74	0.75
Non_durables	152	0.39	0.68	0.80	0.26
Raw_goods	42	0.11	0.52	0.67	0.05
Processed	370	0.89	0.74	0.79	0.55
Total_prod_level	412	1.00	0.72	0.78	0.50

1.00

412

Total_prod_level

Share	of unit roots	(weighted)
Share	or unit roots	(weighted)

0.78

0.62

0.70

ADF_w	PP_w	KPPS_w
0.73	0.82	0.47
0.84	0.85	0.70
0.84	0.85	0.70
0.96	0.96	0.66
0.53	0.56	0.80
0.70	0.74	0.69
0.74	0.86	0.35
0.55	0.75	0.01
0.80	0.84	0.63
0.77	0.83	0.56

		1995-2005				
	ADF	ADF	ADF	ADF	ADF	ADF
Price dispersion	-0.73***	-6.66***	-1.63***	-0.17*	-2.08**	-0.58***
	(0.14)	(2.49)	(0.46)	(0.1)	(1.04)	(0.16)
Non-durables			-0.10**			-0.05*
			(0.05)			(0.02)
Raw goods			-0.16***			-0.002
			(0.04)			(0.04)
Adj. R-squared	0.07			0.01		
Estimation method	OLS	GMM	GMM	OLS	GMM	GMM
Sargan test (p-value)		1.8 (0.19)	1.5 (0.22)		0.1 (0.7)	5.2 (0.02)
Observations	412	412	412	412	412	412

Table A.2: Determinants of Inflation Persistence, ADF test

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively. P-value in brackets for the Sargan (overidentifying restrictions) test. The list of instruments for price dispersion is as follows: non-regulated services, non-durables, raw goods and regulated prices dummies.

	1995–2005				1998-2005	
	PP	PP	PP	PP	PP	PP
Price dispersion	-0.73***	-5.66***	-1.51***	-0.17*	-0.87***	-0.49***
	(0.14)	(2.13)	(0.42)	(0.1)	(0.30)	(0.18)
Non-durables			-0.08*			-0.01
			(0.04)			(0.02)
Raw goods			-0.16***			-0.04
			(0.04)			(0.03)
Adj. R-squared	0.08			0.01		
Estimation method	OLS	GMM	GMM	OLS	GMM	GMM
Sargan test (p-value)		1.9 (0.17)	5.5 (0.02)		0.4 (0.82)	5.5 (0.02)
Observations	412	412	412	412	412	412

Table A.3: Determinants of Inflation Persistence, PP test

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively. P-value in brackets for the Sargan (overidentifying restrictions) test. The list of instruments for price dispersion is as follows: non-regulated services, non-durables, raw goods and regulated prices dummies.

	-		
		1995-2005	
	LLS	LLS	LLS
Price dispersion	-1.99***	-27.7***	-2.69**
	(0.49)	(11.1)	(1.24)
Non-durables			-0.57***
			(0.15)
Raw goods			-0.84***
-			(0.21)
Adj. R-squared	0.03		
Estimation method	OLS	GMM	GMM
Sargan test (p-value)		2.5 (0.11)	0.6 (0.46)
Observations	412	412	412

Table A.4: Determinants of Inflation Persistence, LLS test

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively. P-value in brackets for the Sargan (overidentifying restrictions) test. The LLS test is a unit root test with a structural break on an unknown date. The test was carried out only for the full sample, 1995–2005; see the main text for explanations. The list of instruments for price dispersion is as follows: non-regulated services, non-durables, raw goods and regulated prices dummies.

		1995-	-2005			1998–2005	
	ADF	PP	KPSS	LLS	ADF	PP	KPSS
Price dispersion	-3.68***	-2.90**	-2.59**	-3.45***	-1.37	-0.97	-3.11***
	(1.16)	(1.15)	(1.17)	(1.12)	(1.11)	(1.16)	(1.06)
Non-durables	-1.13***	-0.49*	-1.06***	-1.07***	-0.26	0.41	-1.04***
	(0.24)	(0.25)	(0.26)	(0.24)	(0.23)	(0.26)	(0.24)
Raw goods	-1.64***	-1.74***	-1.82***	-1.48***	-0.91***	-0.95***	-2.61***
	(0.41)	(0.37)	(0.42)	(0.40)	(0.57)	(0.37)	(0.63)
Pseudo R-squared	0.15	0.10	0.15	0.13	0.03	0.06	0.16
Estimation method	Logit	Logit	Logit	Logit	Logit	Logit	Logit
Observations	412	412	412	412	412	412	412

Table A.5: Determinants of Inflation Persistence, Logit estimates

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively. The LLS test is a unit root test with a structural break on an unknown date. The test was carried out only for the full sample, 1995–2005; see the main text for explanations.

		1995-	-2005		-	1998–2005	
	ADF	PP	KPSS	LLS	ADF	PP	KPSS
Non-durables	-0.24***	-0.20***	-0.34***	-0.79***	-0.08***	-0.04**	-0.32***
	(0.03)	(0.03)	(0.03)	(0.11)	(0.02)	(0.02)	(0.03)
Raw goods	-0.16***	-0.16***	-0.34***	-0.86***	-0.01	-0.02	-0.24***
	(0.02)	(0.02)	(0.05)	(0.16)	(0.03)	(0.03)	(0.04)
Services - nonregulated	-0.21***	-0.20***	-0.30***	-0.45***	0.02	0.01	-0.21***
	(0.03)	(0.03)	(0.04)	(0.14)	(0.03)	(0.03)	(0.04)
Regulated	-0.17***	0.17***	-0.33***	-0.38***	-0.011***	-0.11***	-0.25***
	(0.04)	(0.03)	(0.06)	(0.13)	(0.03)	(0.03)	(0.05)
Adj. R-squared	0.24	0.22	0.33	0.21	0.06	0.04	0.29
Estimation method	OLS	OLS	OLS	OLS	OLS	OLS	OLS
Observations	412	412	412	412	412	412	412

Table A.6: Determinants of Inflation Persistence, Product characteristics

Note: Heteroscedasticity robust standard errors are shown in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Bread, white	1 kg	0.07	0.36	0.41	0.19	-2.08	0.24	0.20	113.43
Bread, whole meal	1 kg	0.30	0.30	0.17	0.40	-2.36	0.17	0.26	94.57
Baguettes (white)	1 kg	0.01	0.33	0.31	0.11	-2.31	0.16	0.13	14.48
Pastry, cake	1 kg	0.19	0.08	0.49	0.09	-2.49	0.28	0.22	19.72
Puff pastry	1 kg	0.40	0.13	0.62	0.07	-1.70	0.39	0.12	5.78
Sponge cake	1 kg	0.47	0.13	0.99	0.38	-1.62	0.41	0.12	6.96
Biscuit dry	1 kg	0.16	0.41	0.49	0.65	-2.38	0.33	0.35	20.20
Biscuit with filling	1 kg	0.00	0.00	0.78	0.33	-3.42	0.00	0.00	20.20
Waffles	1 kg	0.03	0.01	0.79	0.70	-3.42	0.02	0.00	20.20
Wheat flour (impalpable powder)	1 kg	0.11	0.01	0.08	0.19	-2.35	0.15	0.34	7.91
Wheat flour	1 kg	0.11	0.38	0.00	0.19	-2.51	0.13	0.46	13.79
Spaghetti, without eggs	1 kg	0.13	0.36	0.19	0.56	-1.84	0.24	0.28	4.55
Pasta, with eggs	1 kg	0.28	0.39	0.19	0.55	-2.02	0.33	0.35	11.93
Bread dumpling, powder	1 kg	0.01	0.01	0.26	0.09	-3.82	0.10	0.13	8.47
Pudding (powder)	10 pcs	0.46	0.00	0.86	0.23	-2.02	0.34	0.00	5.24
Rice, long-grain	1 kg	0.06	0.32	0.16	0.45	-2.88	0.10	0.26	13.25
Center loin roast	1 kg	0.08	0.27	0.17	0.08	-2.47	0.08	0.32	38.69
Boneless sirloin roast	1 kg	0.04	0.26	0.18	0.08	-2.86	0.04	0.31	38.39
Sirloin chop	1 kg	0.04	0.23	0.21	0.08	-2.74	0.06	0.31	24.34
Boneless blade roast	1 kg	0.07	0.30	0.27	0.08	-2.70	0.06	0.31	24.97
Belly-pork	1 kg	0.07	0.25	0.09	0.09	-2.71	0.09	0.30	21.86
Boneless rump roast	1 kg	0.00	0.00	0.49	0.13	-6.01	0.00	0.07	36.27
Boneless shoulder pot-roast	1 kg	0.00	0.05	0.58	0.14	-5.17	0.00	0.13	22.12
Fore shank	1 kg	0.00	0.08	0.37	0.13	-4.90	0.00	0.14	10.68
Minced meat	1 kg	0.00	0.27	0.34	0.08	-3.79	0.01	0.33	14.67
Liver, Pork	1 kg	0.00	0.16	0.13	0.09	-3.53	0.01	0.30	14.49
Rabbit	1 kg	0.13	0.42	0.73	0.36	-2.61	0.26	0.26	5.03
Veal leg	1 kg	0.02	0.19	0.82	0.52	-4.62	0.01	0.04	2.52

Table A.7: Detailed Product-Specific Results

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Small sausage	1 kg	0.04	0.29	0.14	0.09	-3.04	0.05	0.30	26.16
Sausage	1 kg	0.06	0.06	0.16	0.11	-2.71	0.06	0.25	26.16
Salami, Gothaj	1 kg	0.05	0.13	0.38	0.13	-2.46	0.06	0.27	26.16
Ring of Lyoner sausage	1 kg	0.06	0.17	0.15	0.13	-2.79	0.06	0.28	26.16
Salami (ham)	1 kg	0.01	0.00	0.31	0.13	-3.45	0.02	0.36	26.16
Sausage (pepper)	1 kg	0.01	0.02	0.54	0.08	-3.90	0.05	0.27	24.37
Salami, Polican	1 kg	0.09	0.01	0.24	0.14	-2.62	0.10	0.41	24.37
Ham (pork)	1 kg	0.01	0.21	0.19	0.11	-3.06	0.01	0.31	15.44
Sliced bacon	1 kg	0.01	0.11	0.68	0.17	-3.37	0.03	0.31	14.95
Liver pâté	1 kg	0.00	0.34	0.53	0.10	-4.28	0.02	0.25	9.62
Sausage (pork)	1 kg	0.09	0.25	0.59	0.08	-3.44	0.08	0.21	9.16
Sausage (poultry)	1 kg	0.08	0.06	0.56	0.11	-3.01	0.06	0.28	17.87
Luncheon meat	1 kg	0.21	0.32	0.52	0.13	-2.59	0.19	0.32	21.28
Beef (canned meat)	1 kg	0.00	0.18	0.52	0.10	-4.87	0.00	0.37	15.69
Chicken	1 kg	0.01	0.07	0.06	0.06	-3.16	0.09	0.25	67.93
Duck, without heart, liver and	1 kg								
gizzard		0.03	0.06	0.38	0.17	-3.34	0.11	0.13	7.47
Carp chilled, frozen	1 kg	0.72	0.27	0.77	0.73	-1.16	0.58	0.26	22.72
Salted herring	125 g	0.06	0.28	0.17	0.57	-3.06	0.09	0.28	19.53
Fresh chicken eggs	10 pcs	0.05	0.00	0.08	0.07	-3.34	0.06	0.16	47.16
Milk pasteurized (fat content	11								
1.5%)		0.18	0.11	0.61	0.12	-2.00	0.28	0.26	22.25
Milk, long life (fat content	11	0.04	0.05	0.16	0.00	2.10	0.07	0.14	((77
1.5%)	500 a	0.04	0.05	0.16	0.06	-3.12	0.07	0.14	66.77
Milk condensed, not sweetened	500 g	0.69	0.30	0.67	0.23	-1.53	0.45	0.20	5.46
Powdered milk, for babies	400 g	0.05	0.04	0.81	0.54	-2.41	0.19	0.15	9.08
Mellow cheese (Ermine)	1 kg	0.59	0.05	1.06	0.55	-1.63	0.55	0.06	12.21
Processed cheese (not flavored)	1 kg	0.71	0.18	0.97	0.25	-2.29	0.63	0.24	39.56
Cottage cheese (LUCINA)	1 kg 1 l	0.28	0.08	0.90	0.48	-1.57	0.32	0.18	5.33
Fermented milk products, liquid	11	0.56	0.12	0.86	0.14	-2.42	0.46	0.11	10.58
Cream, sweet		0.43	0.22	0.79	0.20	-1.93	0.38	0.20	28.88
Natural yoghurt, fat content low	150 g 150 g	0.62	0.31	0.66	0.18	-1.87	0.54	0.24	44.65
Fruit yoghurt	130 g	0.24	0.08	0.94	0.18	-2.12	0.23	0.08	66.97
Ice-cream		0.26	0.12	0.25	0.11	-2.19	0.17	0.40	24.86
Butter, unsalted	1 kg	0.10	0.29	0.17	0.32	-2.21	0.18	0.37	39.91
Pure lard	1 kg 1 l	0.00	0.27	0.08	0.09	-3.45	0.00	0.29	6.44
Olive oil	11	0.16	0.57	0.41	0.33	-2.36	0.30	0.58	2.19
Sunflower oil		0.07	0.07	0.69	0.53	-2.38	0.07	0.35	16.28
Margarine, type Hera	1 kg	0.08	0.12	0.59	0.29	-1.96	0.13	0.17	14.67
Margarine, type Planta	1 kg	0.27	0.59	0.94	0.80	-2.53	0.23	0.54	5.70
Fresh apples	1 kg	0.01	0.01	0.19	0.08	-3.10	0.05	0.10	32.28
Fresh peaches, nectarines	1 kg	0.00	0.00	0.17	0.25	-3.51	0.00	0.00	18.70
Fresh grapes	1 kg	0.00	0.00	0.15	0.08	-3.71	0.01	0.00	21.22
Fresh water melon	1 kg	0.02	0.06	0.10	0.16	-3.33	0.00	0.00	11.09
Fresh oranges	1 kg	0.00	0.00	0.22	0.13	-3.98	0.02	0.04	41.74
Fresh lemons	1 kg	0.00	0.02	0.20	0.15	-3.73	0.01	0.01	11.08
Fresh bananas	1 kg	0.00	0.04	0.20	0.24	-3.54	0.00	0.00	41.40
Fresh kiwis	1 kg	0.00	0.00	0.08	0.14	-3.16	0.02	0.08	6.21
Dried raisins	1 kg	0.09	0.07	0.11	0.29	-2.63	0.21	0.23	6.72
Potatoes	1 kg	0.00	0.02	0.22	0.11	-6.69	0.01	0.01	30.29
Frozen chipped potatoes	1 kg	0.00	0.00	0.09	0.28	-4.15	0.15	0.03	12.75

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Potato dumpling (powder)	1 kg	0.00	0.36	0.77	0.39	-2.98	0.46	0.32	3.00
Fresh white cabbage	1 kg	0.00	0.00	0.08	0.08	-3.75	0.05	0.08	8.28
Fresh cucumber	1 kg	0.00	0.00	0.17	0.11	-4.74	0.00	0.00	15.18
Fresh green peppers	1 kg	0.00	0.00	0.14	0.14	-3.93	0.00	0.00	22.46
Fresh tomatoes	1 kg	0.00	0.00	0.05	0.06	-5.35	0.00	0.00	23.74
Fresh cauliflower	1 kg	0.00	0.00	0.16	0.17	-4.34	0.00	0.00	10.04
Fresh carrots	1 kg	0.00	0.00	0.09	0.08	-4.53	0.01	0.02	5.42
Fresh celeriac	1 kg	0.00	0.00	0.12	0.17	-3.99	0.03	0.12	7.62
Fresh cultivated mushrooms	1 kg	0.33	0.10	0.41	0.14	-1.99	0.30	0.08	3.90
Garlic (dry)	1 kg	0.10	0.12	0.49	0.15	-2.29	0.10	0.28	10.32
Cabbage, jar	1 kg	0.03	0.15	0.20	0.47	-2.98	0.02	0.23	6.07
Pickled gherkins	1 kg	0.00	0.06	0.36	0.09	-4.65	0.00	0.26	4.97
Dried lentils	1 kg	0.10	0.27	0.14	0.19	-2.71	0.16	0.35	4.20
Jam, strawberry	1 kg	0.00	0.37	0.48	0.77	-6.16	0.07	0.41	0.40
Granulated sugar	1 kg	0.03	0.04	0.08	0.11	-3.04	0.17	0.15	31.13
Confectioner's sugar	1 kg	0.03	0.20	0.13	0.11	-3.09	0.19	0.13	8.68
Chocolate, milk	100 g	0.02	0.13	0.15	0.13	-2.18	0.03	0.17	34.97
Chocolate dessert	250 g	0.02	0.13	1.04	0.41	-2.27	0.24	0.17	32.68
Chocolate bar	100 g	0.15	0.04	0.13	0.10	-2.52	0.00	0.02	13.23
Fruit drops	100 g	0.19	0.04	1.16	0.73	-1.86	0.35	0.02	10.18
Chewing gum	1 pack	0.05	0.53	0.30	0.26	-2.78	0.04	0.30	10.39
Cake from egg yolk	10 pcs	0.54	0.32	0.91	0.17	-2.55	0.55	0.28	16.81
Sherbet	11	0.35	0.32	0.20	0.68	-1.81	0.29	0.28	10.92
Honey	1 kg	0.33	0.24	0.20	0.00	-2.01	0.39	0.00	0.97
Meat extract	100 g	0.05	0.00	0.43	0.12	-3.07	0.06	0.34	15.35
Delicious salad	1 kg	0.00	0.22	0.64	0.07	-3.70	0.00	0.11	9.31
Table salt	1 kg	0.59	0.14	0.70	0.29	-1.70	0.49	0.11	13.29
Black pepper	100 g	0.03	0.03	0.47	0.36	-3.02	0.17	0.23	9.39
Tomato ketchup	1 kg	0.00	0.03	0.14	0.11	-3.13	0.11	0.13	11.48
Mustard	1 kg	0.20	0.15	0.22	0.32	-1.89	0.43	0.52	13.05
Yeast	1 kg	0.27	0.00	0.35	0.30	-1.94	0.34	0.00	10.78
Roust coffee beans	100 g	0.00	0.57	0.29	0.18	-6.60	0.00	0.38	20.56
Instant coffee	100 g	0.00	0.00	0.70	0.55	-5.40	0.00	0.22	22.11
Black tea bags	100 g	0.08	0.00	0.49	0.71	-2.77	0.24	0.01	19.39
Green tea bags	100 g	0.00	0.00	0.37	0.54	-1.93	0.25	0.00	9.44
Coffee substitutes	100 g	0.21	0.00	0.58	0.36	-1.74	0.44	0.00	8.85
Fruity syrup	1 kg	0.07	0.15	0.19	0.85	-1.98	0.39	0.15	24.41
Orange juice	11	0.14	0.06	0.22	0.18	-2.08	0.15	0.06	27.11
Spring water	11	0.05	0.19	0.22	0.15	-2.80	0.01	0.07	43.21
Mineral water (fizzy)	11	0.10	0.03	0.87	0.21	-2.66	0.09	0.00	59.40
Coca-cola (Pepsi-cola)	11	0.00	0.00	0.08	0.15	-4.04	0.03	0.00	11.80
Rum (domestic production)	11	0.20	0.29	0.07	0.24	-3.00	0.06	0.10	39.33
Vodka (fine)	11	0.05	0.12	0.41	0.45	-3.50	0.07	0.19	31.05
Fernet stock (liqueur)	11	0.54	0.54	0.14	0.13	-1.64	0.20	0.30	70.74
Becher's (Carlsbad) liqueur	11	0.15	0.13	0.14	0.24	-2.32	0.25	0.19	42.80
Scotch whisky	11	0.61	0.13	0.67	0.85	-1.25	0.44	0.32	13.89
White wine (high quality)	11	0.61	0.00	0.98	0.85	-1.99	0.61	0.00	74.11
Red wine (high quality)	11	0.78	0.00	0.98	0.41	-1.51	0.68	0.00	69.88
Sparkling wine semi-dry	0,751	0.78	0.00	0.53	0.45	-3.09	0.08	0.23	38.17
Italian vermouth	11	0.03	0.01	0.96	0.00	-2.31	0.10	0.07	11.76
		5.20	2.07	2.20					
Bottled light beer	0,51	0.27	0.14	0.86	0.67	-1.72	0.36	0.19	232.41

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Bottled light lager	0,51	0.08	0.15	0.80	0.82	-3.07	0.23	0.29	57.37
	1								
PETRA (filter tipped cigarettes)	package	0.10	0.35	0.82	0.56	-2.50	0.14	0.44	221.14
SPARTA LIGHT (filter tipped	1								
cigarettes)	package	0.11	0.27	0.71	0.56	-2.62	0.17	0.40	147.43
START (filter tipped cigarettes)	package	0.10	0.22	1.01	0.77	-2.48	0.16	0.40	73.71
MARLBORO (filter tipped	1	0.10	0.22	1.01	0.77	-2.40	0.10	0.40	75.71
cigarettes)	package	0.01	0.09	0.76	0.50	-3.45	0.03	0.25	81.47
Clothing materials for business	1 m^2								
suit (wool)		0.46	0.48	0.74	0.56	-2.09	0.43	0.49	5.11
Briefs (for men)	1 pc	0.66	0.09	0.81	0.96	-1.20	0.40	0.09	13.02
Men's pajamas (cotton)	1 pc	0.95	0.59	1.20	1.03	-0.62	0.92	0.57	5.87
Men's shirt (classic)	1 pc	0.92	0.19	1.06	0.71	-0.62	0.87	0.20	20.53
Men's waistcoat	1 pc	0.96	0.92	1.31	1.02	-0.33	0.95	0.88	10.65
Men's sweatshirt	1 pc	0.82	0.12	1.22	1.02	-0.75	0.88	0.21	17.20
Panty made of cotton (ladies	1 pc	0.68	0.21	0.96	1.07	0.60	0.68	0.14	13.22
underwear) Bra	1 pc	0.68	0.21 0.01	1.13	0.80	-0.68 -0.93	0.68	0.14	13.22
Nightdress	1 pc	0.89	0.01	1.13	1.08	-0.93	0.80	0.01	7.38
Swimsuit	1 pc	0.81	0.59	1.28	1.08	-1.63	0.85	0.59	8.21
Ladies pullover – long-sleeved	1 pc	0.94	0.55	1.28	1.00	-0.87	0.93	0.63	16.23
Ladies tracksuit	1 pc	0.94	0.32	1.29	1.11	-0.15	0.93	0.30	5.83
Panty made of cotton (girl's	1 pc	0.71	0.52	1.27	1.11	-0.15	0.71	0.50	5.05
underwear)	r p•	0.62	0.68	0.70	0.97	-0.97	0.55	0.69	5.44
Children's pajamas (cotton)	1 pc	0.83	0.25	1.04	1.01	-0.77	0.73	0.24	6.02
Tracksuit	1 pc	0.90	0.61	1.29	0.99	-0.56	0.88	0.58	14.49
Children's sweatshirt (cotton)	1 pc	0.91	0.74	1.32	1.18	-1.07	0.91	0.75	13.69
Men's suit	1 pc	0.81	0.04	1.22	1.01	-0.84	0.80	0.04	7.87
Men's jacket (for summer)	1 pc	0.79	0.58	1.28	1.23	-1.11	0.80	0.59	6.93
Men's jacket (for winter)	1 pc	0.65	0.03	1.01	0.32	-1.52	0.65	0.03	18.67
Men's trousers	1 pc	0.80	0.01	1.20	1.10	-1.33	0.78	0.00	21.25
Men's jacket (leather)	1 pc	0.50	0.46	1.14	0.92	-2.28	0.51	0.45	5.42
Ladies overcoat	1 pc	0.05	0.26	1.23	0.88	-1.70	0.05	0.25	8.75
Ladies winter coat	1 pc	0.50	0.13	1.10	0.55	-1.41	0.52	0.13	17.42
Ladies windcheater (for winter)	1 pc	0.71	0.12	1.17	0.63	-1.35	0.76	0.14	18.41
Two-piece suit	1 pc	0.65	0.01	1.21	0.80	-1.14	0.43	0.04	22.86
Ladies jacket (for summer)	1 pc	0.11	0.01	1.27	0.92	-1.77	0.08	0.01	13.40
Ladies trousers (wool)	1 pc	0.93	0.36	1.17	0.77	-0.52	0.93	0.36	17.34
Dress (for summer)	1 pc	0.32	0.03	1.10	0.61	-3.05	0.31	0.03	21.72
Smock	1 pc	0.44	0.08	1.32	1.16	-1.21	0.43	0.06	31.14
Skirt	1 pc	0.14	0.02	1.35	1.13	-1.27	0.14	0.01	13.21
Dress (for girls)	1 pc	0.78	0.89	1.32	1.22	-0.53	0.83	0.88	5.73
Children's trousers (cotton)	1 pc	0.66	0.84	1.31	1.21	-1.89	0.67	0.86	18.22
Men's socks (cotton)	1 pair	0.73	0.09	1.05	0.48	-1.16	0.77	0.13	12.90
Ladies socks (cotton)	1 pair	0.54	0.08	0.78	0.15	-1.57	0.49	0.07	6.61
Ladies tights	1 pc	0.44	0.42	0.88	0.79	-1.55	0.52	0.41	14.86
Children's tights	1 pc	0.76	0.03	0.94	0.78	-0.99	0.77	0.02	5.38
Ladies neckerchief	1 pc	0.00	0.45	0.99	1.01	-4.23	0.00	0.45	4.53
Handkerchief	1 pc	0.47	0.34	0.65	0.29	-1.61	0.46	0.34	1.29
Men's leather gloves	1 pair	0.58	0.08	0.60	0.30	-1.76	0.54	0.03	5.25
Thread, sewing	500 m	0.02	0.05	0.36	0.64	-3.30	0.00	0.50	1.24
Knitting yarn	100 g	0.20	0.13	0.46	0.73	-2.10	0.18	0.35	2.84

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Zip fastener	1 pc	0.26	0.11	1.05	0.62	-3.10	0.26	0.24	2.61
Cleaning of overcoat	1 pc	0.35	0.14	0.67	0.02	-2.44	0.25	0.11	8.80
Shortening or elongation of coat	1 repair	0.05	0.12	1.00	0.32	-3.17	0.04	0.10	4.34
Men's footwear suitable for	1 pair	0.05	0.12	1.00	0.52	5.17	0.01	0.10	1.5 1
everyday (leather)	i pull	0.49	0.15	1.31	1.00	-1.57	0.50	0.16	21.31
Men's footwear suitable for	1 pair								
summer (leather)	-	0.77	0.09	1.30	1.11	-1.10	0.83	0.06	8.09
Men's footwear suitable for	1 pair								
winter (leather)		0.77	0.28	1.20	0.82	-1.24	0.73	0.27	13.15
Ladies footwear suitable for	1 pair	0.02	0.04	1.05	1.07		0.05	0.07	22.56
everyday (leather)	1	0.83	0.04	1.27	1.07	-0.77	0.85	0.06	33.56
Ladies footwear suitable for summer (leather)	1 pair	0.76	0.03	1.29	1.08	-1.23	0.79	0.01	23.05
Ladies footwear for home wear	1 pair	0.70	0.03	1.29	1.00	-1.23	0.79	0.01	23.03
(textile)	i pan	0.66	0.02	1.12	0.58	-1.72	0.67	0.02	6.47
Children's footwear suitable for	1 pair	0.00	0.02		0.00		0.07	0.02	0.17
everyday (leather)	I	0.83	0.18	1.30	1.18	-0.61	0.88	0.17	6.25
Children's footwear suitable for	1 pair								
summer (leather)		0.16	0.10	1.36	1.20	-2.20	0.41	0.12	6.07
Children's footwear for leisure	1 pair								
wear (leather)		0.75	0.17	1.20	0.73	-1.31	0.72	0.17	7.17
Children's footwear for leisure	1 pair	0.24	0.02	0.92	0.14	2.10	0.27	0.02	7 1 7
wear (textile) Children's footwear for home	1 pair	0.34	0.02	0.83	0.14	-2.19	0.37	0.02	7.17
wear (textile)	i pan	0.22	0.00	0.85	0.26	-3.49	0.18	0.00	4.60
Children's footwear suitable for	1 pair	0.22	0.00	0.05	0.20	5.15	0.10	0.00	1.00
winter (plastic)	i puii	0.50	0.19	0.98	0.28	-1.88	0.36	0.19	5.84
Repair of ladies heel (replace old	1 pair								
with new heels promptly)		0.56	0.02	0.80	0.92	-1.61	0.52	0.01	100.55
Actual rentals paid by tenants,	monthly								
first category – 3 rooms, rent					0.04		0.54	0.01	110.00
regulated by the government	(1.1	0.52	0.03	0.80	0.91	-1.62	0.51	0.01	118.25
Actual rentals paid by tenants, first category – 4 rooms, rent	monthly								
regulated by the government		0.53	0.03	0.80	0.91	-1.58	0.52	0.01	48.57
Actual rentals paid by tenants,	monthly	0.55	0.05	0.00	0.71	1.50	0.52	0.01	40.57
second category -2 rooms, rent	monuny								
regulated by the government		0.46	0.04	0.74	0.87	-1.71	0.45	0.02	20.07
Actual rentals paid by tenants,	monthly								
first category – 2 rooms,									
cooperative flat	.1.1	0.12	0.30	0.40	0.80	-1.11	0.10	0.25	79.91
Actual rentals paid by tenants,	monthly								
first category – 3 rooms, cooperative flat		0.31	0.51	0.42	0.91	-0.74	0.26	0.44	105.21
Actual rentals paid by tenants,	monthly	0.51	0.51	0.42	0.91	-0.74	0.20	0.44	105.21
first category – 4 rooms,	montiny								
cooperative flat		0.18	0.44	0.39	0.89	-1.36	0.15	0.40	26.76
Imputed rentals of owner-	monthly								
occupied flat – 2 rooms	-	0.24	0.49	0.61	1.01	-0.91	0.20	0.40	157.25
Imputed rentals of owner-	monthly								
occupied flat – 3 rooms		0.38	0.62	0.41	0.93	-0.53	0.32	0.60	393.47
Imputed rentals of owner-	monthly	0.40	0.00	0.49	0.00	1.22	0.20	0.50	717.00
occupied flat – 4 rooms	1 m^2	0.40	0.66	0.48	0.66	-1.33	0.29	0.59	717.89
Tiles		0.62	0.55	1.05	0.88	-1.43	0.54	0.49	17.69
Washbasin	1 pc	0.44	0.00	0.69	0.79	-1.28	0.43	0.00	13.54
Mixer tap	1 pc	0.38	0.08	0.60	0.54	-1.37	0.46	0.08	15.06
Decorator	1 m^2	0.47	0.18	0.55	0.33	-1.60	0.37	0.18	13.15

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Painter	1 m^2	0.52	0.08	1.03	0.49	-1.64	0.53	0.10	13.61
Tiler	1 m^2	0.02	0.08	0.59	0.29	-3.24	0.03	0.07	26.89
Heating engineer	1 hour	0.47	0.01	0.87	0.50	-0.93	0.52	0.00	11.05
Paraffin oil	11	0.01	0.01	0.20	0.10	-3.62	0.07	0.10	0.40
Black coal	100 kg	0.02	0.38	0.73	0.66	-3.97	0.02	0.41	8.16
Brown coal	100 kg	0.37	0.43	0.73	0.69	-1.85	0.37	0.45	32.96
Briquettes (made from brown	100 kg	0.57	0.15	0.75	0.09	1.00	0.57	0.10	52.90
coal)	0	0.31	0.29	1.05	0.63	-1.84	0.35	0.31	3.13
Coke	100 kg	0.02	0.09	0.10	0.15	-2.97	0.08	0.25	3.37
Firewood	100 kg	0.26	0.01	0.86	0.38	-2.68	0.25	0.01	5.54
Heat for fuel and preparation of	1 GJ								
hot water		0.21	0.20	0.45	0.53	-1.54	0.18	0.20	523.14
Upholstered chair	1 pc	0.53	0.40	1.26	1.01	-2.33	0.51	0.39	14.13
Kitchen dining table	1 pc	0.00	0.00	1.05	0.79	-4.85	0.00	0.00	10.83
Wardrobe	1 pc	0.22	0.03	0.34	0.20	-2.08	0.16	0.03	26.31
Studio couch	1 pc	0.03	0.23	0.88	0.19	-3.21	0.05	0.18	32.78
Kitchen unit	1 set	0.00	0.13	1.01	1.19	-4.87	0.00	0.13	27.91
Wall system	1 set	0.33	0.48	1.14	0.72	-1.65	0.34	0.50	26.11
Table in the garden	1 pc	0.68	0.86	0.57	0.32	-1.82	0.35	0.74	4.69
Table lamp	1 pc	0.10	0.01	1.02	0.44	-2.35	0.11	0.05	31.21
Woven carpet	1 m^2	0.21	0.00	1.10	0.84	-1.63	0.27	0.00	32.15
Tufted carpet	1 m^2	0.16	0.00	0.87	0.10	-3.85	0.22	0.00	8.75
Upholstered armchair repair	1 repair	0.26	0.00	0.59	0.64	-2.13	0.28	0.00	5.92
Quilt	1 pc	0.08	0.13	0.71	0.76	-3.02	0.17	0.13	8.69
Blanket (synthetic fiber)	1 pc	0.13	0.12	0.64	0.51	-1.55	0.47	0.36	8.69
Decorative textile made of	1 m^2								
cotton		0.46	0.01	1.11	0.51	-1.85	0.61	0.01	14.97
Knitted synthetic curtains	1 m^2	0.37	0.26	0.57	0.79	-1.02	0.29	0.26	12.84
Bed linen (not crape)	1 set	0.24	0.00	0.47	0.67	-3.23	0.16	0.00	11.88
Bed linen (crape)	1 set	0.70	0.65	0.76	0.50	-1.36	0.43	0.48	11.88
Bed sheet made of cotton	1 pc	0.11	0.57	0.73	0.63	-2.04	0.27	0.49	6.79
Terry towel	1 pc	0.80	0.19	1.12	0.94	-0.89	0.66	0.44	7.34
Dishcloth	1 pc	0.80	0.11	1.08	0.63	-1.76	0.61	0.11	4.12
Refrigerator	1 pc	0.21	0.00	1.11	0.97	-2.26	0.60	0.00	8.09
Freezer	1 pc	0.21	0.00	0.75	0.73	-1.77	0.40	0.00	9.58
Washing machine	1 pc	0.82	0.02	1.25	1.18	-0.92	0.78	0.02	52.97
Dishwasher	1 pc	0.75	0.07	0.96	1.11	-1.02	0.75	0.09	17.93
Electric range (with a grill)	1 pc	0.97	0.83	1.21	1.12	-0.17	0.95	0.81	7.90
Microwave oven	1 pc	0.41	0.02	0.92	0.72	-1.72	0.47	0.04	20.84
Electric boiler	1 pc	0.59	0.23	0.60	0.73	-1.47	0.51	0.23	8.10
Vacuum cleaner	1 pc	0.85	0.06	1.22	0.88	-0.95	0.80	0.07	26.04
Sewing machine	1 pc	0.73	0.48	0.76	0.78	-1.05	0.69	0.44	3.10
Electric hand-held beater	1 pc	0.74	0.65	1.23	1.12	-1.23	0.83	0.76	8.44
Electric deep fryer	1 pc	0.54	0.57	0.25	0.59	-1.49	0.39	0.57	5.18
Iron	1 pc	0.28	0.03	1.03	1.07	-2.02	0.59	0.04	4.32
Repair of a refrigerator	1 repair	0.19	0.05	1.14	0.79	-2.10	0.07	0.12	14.01
Repair of a washing machine	1 repair	0.80	0.21	1.19	0.90	-0.92	0.74	0.29	16.37
Fireproof bowl	1 pc	0.77	0.67	1.18	0.83	-1.52	0.73	0.62	11.23
Mug (porcelain)	1 pc	0.81	0.01	1.04	0.81	-1.19	0.74	0.02	5.80
Plate (porcelain)	1 pc	0.76	0.60	1.13	0.86	-1.12	0.72	0.57	7.47
Cup and saucer (pottery)	1 pc	0.70	0.00	0.83	0.96	-1.54	0.57	0.00	5.30
Vase	1 pc	0.51	0.22	1.00	0.58	-2.12	0.49	0.21	13.66

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Frying pan	1 pc	0.08	0.45	1.20	0.85	-1.96	0.08	0.42	5.11
Cutlery	6 pcs	0.14	0.00	0.29	0.20	-2.88	0.04	0.00	3.30
Kitchen knife	1 pc	0.13	0.30	0.29	0.41	-2.68	0.10	0.30	3.71
Soup ladle	1 pc	0.17	0.12	0.93	0.20	-2.54	0.17	0.10	5.17
Mixing/wooden spoon	1 pc	0.26	0.26	0.75	0.69	-1.95	0.10	0.28	5.17
Kitchen scales	1 pc	0.54	0.39	1.05	0.90	-1.61	0.44	0.63	3.86
Bucket	1 pc	0.48	0.44	0.91	1.07	-1.98	0.22	0.51	5.19
Ironing board	1 pc	0.34	0.42	1.24	0.94	-1.28	0.44	0.46	3.27
Lawn mower (type: rotary	1 pc								
mower, electric)	1	0.47	0.00	1.03	0.91	-1.83	0.34	0.00	21.20
Electric drill	1 pc	0.36	0.01	0.71	0.08	-2.10	0.23	0.11	10.59
Screwdriver	1 pc	0.52	0.12	1.16	1.03	-1.35	0.51	0.06	8.33
Lawn rake (with wooden handle)	1 pc	0.14	0.10	0.86	0.48	-1.53	0.01	0.10	5.89
Rocker switch	1 pc	0.52	0.12	1.23	1.16	-1.00	0.71	0.10	3.47
Light bulb	1 pc	0.08	0.01	0.74	0.20	-2.71	0.15	0.03	8.95
AA battery 1.5 V	1 pc	0.01	0.04	0.89	0.66	-3.41	0.01	0.04	8.95
Nails	1 kg	0.03	0.04	0.23	0.40	-3.19	0.13	0.31	8.97
Detergent	1 kg	0.21	0.14	0.73	1.01	-2.28	0.28	0.38	66.95
Anticalcareous for washing	1 kg								
machine, powder		0.31	0.07	0.13	0.49	-2.30	0.27	0.09	3.65
Dish washing liquid	11	0.10	0.17	0.57	0.50	-2.58	0.24	0.35	13.59
Liquid scourer	11	0.20	0.30	0.28	0.41	-2.54	0.18	0.35	15.31
Furniture polish	11	0.57	0.22	0.94	0.95	-1.28	0.56	0.22	1.55
Broom	1 pc	0.00	0.51	0.91	0.80	-2.71	0.00	0.34	7.82
Insecticide	200 ml	0.06	0.22	1.14	0.86	-3.03	0.06	0.22	1.74
Adhesive	50 ml	0.22	0.26	0.43	0.36	-1.79	0.14	0.49	4.97
Paper napkin	100 pcs	0.03	0.35	0.49	0.22	-3.57	0.26	0.17	7.56
Plastic bag	50 pcs	0.00	0.48	0.31	0.64	-4.93	0.01	0.52	5.22
Aluminum foil	1 m^2	0.51	0.14	0.60	0.21	-1.69	0.38	0.10	3.47
Scissors	1 pc	0.33	0.27	1.14	0.68	-1.86	0.50	0.33	1.43
Carpet cleaning	1 m^2	0.13	0.02	0.13	0.35	-2.32	0.05	0.23	5.16
Laundry	1 amount	0.55	0.27	0.50	0.16	-1.80	0.35	0.20	4.34
ACYLPYRIN	10 pcs	0.12	0.06	0.56	0.34	-2.37	0.13	0.28	5.24
ATARALGIN	20 pcs	0.01	0.00	0.63	0.31	-2.98	0.13	0.00	5.78
CELASKON 250	30 pcs	0.06	0.08	0.13	0.09	-2.91	0.18	0.30	7.86
B KOMPLEX FORTE	20 pcs	0.01	0.04	0.24	0.36	-2.85	0.10	0.33	7.86
Chamomile	50 g	0.06	0.14	0.40	0.12	-2.65	0.16	0.27	5.93
Medical thermometer	1 pc	0.33	0.02	0.51	0.17	-1.84	0.18	0.01	1.35
Medical examination at the	1 service	0.44	0.00	0.07	0.74	1.00	0.20	0.00	1.20
request of a patient	1 service	0.44	0.00	0.27	0.74	-1.99	0.20	0.00	4.26
plastic surgery – eyelids Partly removable tooth		0.04	0.14	0.37	0.51	-3.04	0.03	0.10	10.00
replacement	1 pc	0.06	0.00	0.50	0.23	-2.71	0.12	0.00	13.79
Eye refraction	1 service	0.00	0.00	0.30	0.23	-2.49	0.12	0.00	12.97
Tire casing (bike)	1 pc	0.04	0.17	1.03	0.47	-2.49	0.00	0.17	10.31
Tire (radial) 165 R 13	1 pc	0.12	0.40	1.03	1.00	-1.22	0.12	0.45	22.00
Battery L1 12V	1 pc	0.03	0.43	0.25	0.19	-2.02	0.80	0.45	4.98
Petrol 95	11	0.20	0.34	0.23	0.19	-2.46	0.20	0.45	193.24
Petrol Super 98	11	0.20	0.46	0.07	0.10	-2.16	0.10	0.21	38.39
Diesel for car	11	0.16	0.40	0.07	0.12	-2.41	0.12	0.20	29.01
Engine oil	11	0.10	0.47	0.36	0.68	-1.81	0.10	0.50	8.84
Centering of rear wheel (bicycle)	1 repair	0.10	0.12	0.30	0.08	-2.30	0.30	0.35	7.83
Centering of real wheel (Dicycle)	riopan	0.10	0.47	0.40	0.49	-2.30	0.27	0.55	1.03

34 Ian Babetskii, Fabrizio Coricelli and Roman Horváth

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
	course								
Charge for driving licenses	fee	0.05	0.00	0.53	0.17	-1.77	0.30	0.10	32.29
Parking charge for cars	1 hour	0.13	0.57	0.50	0.39	-2.25	0.07	0.43	7.16
	annual								
Motorway tax disc	fee	0.30	0.11	0.69	0.41	-2.12	0.36	0.23	15.32
Individual fare in public urban	1 ticket								
transport by bus		0.38	0.30	0.55	0.34	-2.11	0.34	0.13	1.71
Payments for the delivery of a	1 pc	0.02	0.02	0.10	0.00	2.25	0.01	0.02	10.07
letter inland Payments for the delivery of a	1 pc	0.02	0.02	0.10	0.09	-3.35	0.01	0.02	10.87
parcel inland	i pe	0.06	0.03	0.47	0.14	-3.35	0.04	0.03	1.76
Installation costs of private	1 pc	0.00	0.05	0.17	0.11	5.55	0.01	0.05	1.70
telephone equipment	- P•	0.00	0.00	0.31	0.30	-6.59	0.00	0.00	2.49
Television set – color	1 pc	0.80	0.35	1.30	1.18	-0.78	0.83	0.38	12.73
Hi-fi music centre	1 pc	0.92	0.38	1.06	0.82	-0.83	0.87	0.36	4.69
Film for color prints (36	1 pc								
pictures)	_	0.25	0.48	1.07	0.89	-1.31	0.25	0.45	12.79
Repair of color TV set	1 repair	0.82	0.80	0.91	1.13	-0.83	0.80	0.75	26.25
Guitar (not electric and not for	1 pc		0.55				0		
children)	1	0.49	0.00	1.02	0.34	-1.76	0.52	0.00	10.95
Doll (from PVC)	1 pc	0.43	0.56	1.04	0.51	-1.56	0.42	0.56	5.49
Toy car (with an electric cell)	1 pc	0.89	0.79	1.29	1.14	-0.85	0.84	0.79	6.99
Building set (type Lego)	1 pc	0.77	0.44	1.24	1.08	-1.67	0.75	0.47	10.38
Soft toy	1 pc	0.48	0.10	1.07	0.52	-1.77	0.48	0.10	4.36
Inflatable ball	1 pc	0.50	0.02	1.01	0.53	-1.76	0.51	0.02	2.89
Baby carriage (toy)	1 pc	0.67	0.04	1.06	0.39	-1.54	0.67	0.04	1.64
Ball (for volleyball)	1 pc	0.07	0.38	1.02	0.28	-2.41	0.07	0.25	8.83
Tent	1 pc	0.30	0.88	1.15	0.83	-1.05	0.29	0.81	7.61
Rucksack	1 pc	0.22	0.29	0.72	0.97	-2.29	0.41	0.43	5.18
Carnation	1 pc	0.00	0.10	0.61	0.28	-2.94	0.00	0.11	11.22
Rose	1 pc	0.11	0.00	1.02	0.49	-2.43	0.15	0.01	11.22
Pot plants (type African violet)	1 pc	0.63	0.11	0.94	0.37	-1.56	0.51	0.09	5.76
Artificial flower	1 pc	0.01	0.21	0.67	0.76	-2.66	0.02	0.22	8.97
Outdoor plant – garden bush	1 pc	0.51	0.22	1.01	0.26	1.05	0.51	0.20	4.22
(rose) Dog-food, dried	500 g	0.51 0.19	0.23 0.47	1.01 0.31	0.36	-1.85 -2.24	0.51 0.21	0.20	4.22 38.77
	1service	0.19	0.47					0.43	
Veterinary service Ticket, ski lift	1 pc	0.17	0.22	0.12	0.14 0.19	-2.68 -2.95	0.07	0.18	8.11
Ticket, aerobics centre or fitness	1 hour	0.14	0.18	0.13	0.19	-2.93	0.11	0.23	16.36
centre	1 lioui	0.43	0.23	0.83	0.68	-1.83	0.41	0.24	9.50
Swimming pool, indoor	1 ticket	0.21	0.23	0.61	0.71	-1.52	0.28	0.24	9.09
Ticket, football game	average	0.32	0.41	0.42	0.89	-1.90	0.30	0.41	3.05
Charge for dancing lessons	course	0.52	0.11	0.12	0.09	1.90	0.50	0.11	5.05
(adolescent people)	fee	0.02	0.16	1.01	0.89	-4.04	0.02	0.13	3.92
Ticket, cinema	average	0.77	0.05	0.76	0.99	-0.96	0.74	0.02	10.41
Ticket, theatre	average	0.26	0.00	0.77	0.63	-2.49	0.15	0.00	16.48
Ticket, concert	average	0.01	0.10	0.37	0.60	-2.52	0.01	0.24	7.67
Lending fee, video cassette	24 hours	0.24	0.29	0.11	0.24	-2.49	0.15	0.22	5.89
Blow-up of a color picture	10 pcs	0.19	0.35	0.37	0.33	-2.51	0.13	0.30	21.91
Developing color film 36 prints	1 pc	0.14	0.27	0.15	0.09	-2.73	0.07	0.18	5.56
License for radio – monthly	monthly	0.09	0.01	0.43	0.33	-2.87	0.06	0.01	30.66
License for television – monthly	monthly	0.16	0.03	0.16	0.29	-2.61	0.12	0.03	68.37
Children's book (aged 9 years or	average								
less)		0.10	0.02	0.46	0.31	-2.11	0.15	0.02	13.25

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
Belles letters by domestic author	average	0.16	0.00	0.59	0.39	-2.37	0.08	0.00	11.66
Belles letters by worldwide-	average	0.10	0.00	0.57	0.57	2.57	0.00	0.00	11.00
known author	uveruge	0.15	0.10	0.17	0.17	-2.38	0.15	0.10	23.31
Daily newspaper MLADA	monthly								
FRONTA DNES	5	0.13	0.04	0.41	0.17	-2.77	0.14	0.05	12.55
Daily newspaper, tabloid –	monthly								
BLESK		0.12	0.12	0.33	0.55	-3.96	0.10	0.10	18.48
Daily newspaper – PRAVO	monthly	0.03	0.03	0.62	0.45	-2.83	0.03	0.03	13.68
Daily newspaper – LIDOVE	monthly								
NOVINY		0.48	0.28	0.44	0.11	-1.84	0.30	0.21	12.15
Picture postcard	10 pcs	0.14	0.00	0.32	0.22	-2.70	0.11	0.00	4.72
Desk calendar	1 pc	0.55	0.20	0.81	0.76	-1.71	0.55	0.21	5.96
Domestic recreation – stay in the	1 person								
mountains		0.22	0.01	0.94	0.34	-2.22	0.21	0.01	63.51
Spain	1 person	0.03	0.16	0.15	0.21	-3.18	0.03	0.11	65.08
	4	0.04							
Italy	persons	0.01	0.17	0.20	0.26	-3.07	0.00	0.00	20.62
School-fees at nursery school	monthly	0.48	0.57	1.15	0.99	-1.10	0.56	0.57	12.73
Tuition at private secondary	monthly	0.46	0.52	0.07	0.77	1.00	0.46	0.50	7.02
school		0.46	0.52	0.96	0.77	-1.69	0.46	0.50	7.83
School-fees at higher level than secondary school	yearly	0.06	0.06	0.19	0.75	-3.05	0.06	0.08	2.97
Examination fee for entrance to	fee	0.00	0.00	0.19	0.75	-5.05	0.00	0.08	2.97
university	ice	0.77	0.45	1.07	1.19	-0.97	0.77	0.45	1.81
Language teaching	1 hour	0.02	0.45	1.00	0.56	-3.59	0.01	0.43	15.20
School fees at art school (lower	yearly	0.02	0.24	1.00	0.50	-5.57	0.01	0.22	15.20
level)	yearry	0.17	0.12	1.03	0.54	-2.26	0.17	0.12	13.25
After-school care centre fee	monthly	0.50	0.83	0.49	0.29	-1.75	0.29	0.80	2.09
Thick soup	0,331	0.02	0.04	0.65	0.21	-3.73	0.17	0.04	4.45
Meat soup	0,331	0.02	0.25	0.70	0.11	-2.45	0.13	0.16	5.56
Roast sirloin in cream sauce	100 g	0.02	0.20	0.63	0.11	-4.21	0.02	0.30	27.05
Beef goulash	100 g	0.02	0.13	0.03	0.13	-4.92	0.02	0.13	34.49
Pork roast	100 g	0.00	0.13	0.49	0.14	-4.01	0.00	0.15	92.53
	100 g								
Schnitzel		0.02	0.45	0.33	0.48	-3.16	0.03	0.45	82.67
Pepper with minced meat filling	100 g	0.00	0.19	0.67	0.18	-4.53	0.02	0.18	24.98
Cheese deep fried in breadcrumbs	100 g	0.20	0.34	0.18	0.24	-2.34	0.15	0.27	10.32
Dumplings (side dish)	160 g	0.20	0.40	0.18	0.17	-2.82	0.13	0.27	36.30
	70 g	0.07	0.40	0.03	0.17	-2.82	0.08	0.27	13.11
Sliced ham – starter	100 g								
Pancake – warm dessert		0.13	0.35	0.10	0.16	-2.41	0.07	0.20	6.46
Coffee	1 portion	0.00	0.39	0.57	0.13	-4.53	0.02	0.20	18.38
Coke (Pepsi Cola) in a restaurant	0,21	0.04	0.25	0.18	0.34	-2.94	0.03	0.18	14.68
Draught beer – light	0,51	0.04	0.14	0.55	0.27	-2.78	0.10	0.21	47.21
Draught beer – light (lager)	0,51	0.19	0.17	0.13	0.37	-2.62	0.21	0.26	16.79
Light beer (lager)	0,51	0.02	0.08	0.13	0.09	-2.64	0.02	0.12	2.31
White wine	0,21	0.27	0.29	0.36	0.41	-1.75	0.36	0.29	10.19
Red wine	0,21	0.31	0.22	0.47	0.34	-1.63	0.33	0.25	7.45
Inland rum – dark	0,051	0.17	0.32	0.44	0.31	-2.01	0.13	0.35	1.57
Spirit, brandy – FERNET	0,051								
STOCK		0.34	0.28	0.59	0.35	-2.13	0.24	0.35	5.25
Spirit, Becher's (Carlsbad)	0,051								
liqueur		0.28	0.27	0.69	0.41	-2.09	0.37	0.37	2.05

Products	Units	ADF95	ADF98	KP95	KP98	LLS	PP95	PP98	Weights
A two or three-course meal	1 menu								
(lunch or supper) in canteens		0.10	0.45	0.36	0.18	-3.12	0.08	0.26	236.03
Lunch in canteens in schools –	1 menu								
pupils aged 7–10 years		0.30	0.44	0.61	0.52	-1.84	0.18	0.32	50.20
Lunch in canteens in schools –	1 menu								
pupils aged 11–14 years		0.35	0.47	0.66	0.53	-1.89	0.21	0.30	58.71
Lunch in canteens in (secondary)	1 menu								
schools – students aged 15 years or more		0.10	0.45	0.66	0.51	-2.04	0.18	0.30	33.58
	1 menu	0.10							
Lunch in canteens in universities Hotel ****	1 night		0.18	0.13	0.27	-2.36	0.17	0.33	13.84
	•	0.28	0.27	1.09	0.91	-1.00	0.41	0.45	2.22
Hotel ***	1 night	0.43	0.19	1.17	0.85	-1.59	0.15	0.12	8.94
Hostel	1 night	0.38	0.30	0.64	0.55	-1.67	0.35	0.32	3.97
Cottage	1 night	0.18	0.26	0.92	0.66	-1.70	0.28	0.26	7.40
Accommodation services of	monthly	0.07	0.70	0.15	0.20	0.00	0.70	0.00	7.20
universities	1	0.86	0.79	0.15	0.30	-0.98	0.79	0.68	7.38
Barber	1 service	0.11	0.00	0.46	0.15	-1.91	0.23	0.15	13.19
Hairdresser (for ladies)	1 service	0.31	0.34	0.52	0.15	-1.89	0.15	0.30	71.49
Deep complexion clearing incl.	1 service	0.70	0.42	0.00	0.44	1.20	0.(1	0.22	01.11
face pack	1	0.79	0.42	0.99	0.44	-1.30	0.61	0.32	21.11
Hair dryer	1 pc	0.65	0.00	0.98	0.56	-2.13	0.49	0.01	6.16
Electric razor	1 pc	0.35	0.48	1.04	0.92	-2.05	0.26	0.41	7.40
Toilet soap	100 g	0.69	0.49	1.14	0.99	-1.28	0.64	0.47	26.92
Toothpaste	75 ml	0.39	0.44	0.96	0.99	-1.30	0.29	0.42	27.87
Toilet paper	1 pc	0.01	0.25	0.18	0.52	-2.78	0.04	0.31	27.29
Toothbrush	1 pc	0.45	0.00	0.91	0.40	-3.10	0.35	0.00	10.87
Non-electrical razor	1 pc	0.17	0.19	0.51	0.65	-2.68	0.21	0.42	7.96
Hair shampoo	250 ml	0.79	0.43	1.10	0.87	-0.98	0.64	0.18	19.95
Cream NIVEA	150 ml	0.12	0.12	0.61	0.89	-2.33	0.12	0.14	30.73
Deodorant	100 g	0.29	0.50	0.95	0.69	-2.63	0.50	0.30	20.21
Lipstick	1 pc	0.63	0.46	0.81	1.08	-1.22	0.60	0.46	22.51
Ladies wrist watch	1 pc	0.08	0.07	0.58	0.61	-2.81	0.06	0.08	15.21
Wedding ring (gold)	1 pc	0.00	0.03	0.16	0.19	-3.46	0.01	0.03	20.48
Electronic wall clock	1 pc	0.21	0.22	0.97	0.50	-4.38	0.23	0.22	8.08
Ladies umbrella	1 pc	0.75	0.15	0.81	0.75	-1.04	0.55	0.38	5.27
Pram	1 pc	0.79	0.03	1.03	0.61	-1.02	0.64	0.32	1.53
Accommodation in old people's	r-	0.17	0.05	1.05	0.01	1.02	0.04	0.52	1.00
home	monthly	0.26	0.03	1.01	0.78	-2.17	0.35	0.03	63.31
Cremation	fee	0.12	0.22	0.15	0.16	NA	0.09	0.19	1.50
Registration fee for a dog	fee	0.12	0.21	0.45	0.35	-2.61	0.09	0.17	3.78

Note: Sample weight multiplied by 100.

CNB WORKING PAPER SERIES

1/2007	Ian Babetskii: Fabrizio Coricelli Roman Horváth	Measuring and explaining inflation persistence: Disaggregate evidence on the Czech Republic
13/2006	Frederic S. Mishkin: Klaus Schmidt- Hebbel	Does inflation targeting make a difference?
12/2006	Richard Disney: Sarah Bridges John Gathergood	Housing wealth and household indebtedness: Is there a household 'financial accelerator'?
11/2006	Michel Juillard: Ondřej Kameník Michael Kumhof Douglas Laxton	Measures of potential output from an estimated DSGE model of the United States
10/2006	Jiří Podpiera: Marie Raková	Degree of competition and export-production relative prices when the exchange rate changes: Evidence from a panel of Czech exporting companies
9/2006	Alexis Derviz: Jiří Podpiera	Cross-border lending contagion in multinational banks
8/2006	Aleš Bulíř: Jaromír Hurník	The Maastricht inflation criterion: "Saints" and "Sinners"
7/2006	Alena Bičáková: Jiří Slačálek Michal Slavík	Fiscal implications of personal tax adjustments in the Czech Republic
6/2006	Martin Fukač: Adrian Pagan	Issues in adopting DSGE models for use in the policy process
5/2006	Martin Fukač:	New Keynesian model dynamics under heterogeneous expectations and adaptive learning
4/2006	Kamil Dybczak: Vladislav Flek Dana Hájková Jaromír Hurník	Supply-side performance and structure in the Czech Republic (1995–2005)
3/2006	Aleš Krejdl:	Fiscal sustainability – definition, indicators and assessment of Czech public finance sustainability
2/2006	Kamil Dybczak:	Generational accounts in the Czech Republic
1/2006	Ian Babetskii:	Aggregate wage flexibility in selected new EU member states
14/2005	Stephen G. Cecchetti:	The brave new world of central banking: The policy challenges posed by asset price booms and busts
13/2005	Robert F. Engle: Jose Gonzalo Rangel	The spline GARCH model for unconditional volatility and its global macroeconomic causes
12/2005	Jaromír Beneš: Tibor Hlédik Michael Kumhof David Vávra	An economy in transition and DSGE: What the Czech national bank's new projection model needs
11/2005	Marek Hlaváček: Michael Koňák Josef Čada	The application of structured feedforward neural networks to the modelling of daily series of currency in circulation

10/2005	Ondřej Kameník:	Solving SDGE models: A new algorithm for the sylvester equation
9/2005	Roman Šustek:	Plant-level nonconvexities and the monetary transmission mechanism
8/2005	Roman Horváth:	<i>Exchange rate variability, pressures and optimum currency area criteria: Implications for the central and eastern european countries</i>
7/2005	Balázs Égert: Luboš Komárek	Foreign exchange interventions and interest rate policy in the Czech Republic: Hand in glove?
6/2005	Anca Podpiera: Jiří Podpiera	Deteriorating cost efficiency in commercial banks signals an increasing risk of failure
5/2005	Luboš Komárek: Martin Melecký	The behavioural equilibrium exchange rate of the Czech koruna
4/2005	Kateřina Arnoštová: Jaromír Hurník	The monetary transmission mechanism in the Czech Republic (evidence from VAR analysis)
3/2005	Vladimír Benáček: Jiří Podpiera	Determining factors of Czech foreign trade: A cross-section time series perspective
2/2005	Ladislav Prokop Kamil Galuščák: Daniel Münich	Structural and cyclical unemployment: What can we derive from the matching function?
1/2005	Ivan Babouček: Martin Jančar	<i>Effects of macroeconomic shocks to the quality of the aggregate loan portfolio</i>
10/2004	Aleš Bulíř: Kateřina Šmídková	Exchange rates in the new EU accession countries: What have we learned from the forerunners
9/2004	Martin Cincibuch: Jiří Podpiera	Beyond Balassa-Samuelson: Real appreciation in tradables in transition countries
8/2004	Jaromír Beneš: David Vávra	<i>Eigenvalue decomposition of time series with application to the Czech business cycle</i>
7/2004	Vladislav Flek, ed.:	Anatomy of the Czech labour market: From over-employment to under-employment in ten years?
6/2004	Narcisa Kadlčáková: Joerg Keplinger	Credit risk and bank lending in the Czech Republic
5/2004	Petr Král:	Identification and measurement of relationships concerning inflow of FDI: The case of the Czech Republic
4/2004	Jiří Podpiera:	Consumers, consumer prices and the Czech business cycle identification
3/2004	Anca Pruteanu:	The role of banks in the Czech monetary policy transmission mechanism
2/2004	Ian Babetskii:	EU enlargement and endogeneity of some OCA criteria: Evidence from the CEECs
1/2004	Alexis Derviz: Jiří Podpiera	<i>Predicting bank CAMELS and S&P ratings: The case of the Czech Republic</i>
12/2003	Tibor Hlédik:	Modelling the second-round effects of supply-side shocks on inflation

11/2003	Luboš Komárek: Zdeněk Čech Roman Horváth	ERM II membership – the view of the accession countries
10/2003	Luboš Komárek: Zdeněk Čech Roman Horváth	<i>Optimum currency area indices – how close is the Czech</i> <i>Republic to the eurozone?</i>
9/2003	Alexis Derviz: Narcisa Kadlčáková Lucie Kobzová	Credit risk, systemic uncertainties and economic capital requirements for an artificial bank loan portfolio
8/2003	Tomáš Holub: Martin Čihák	<i>Price convergence: What can the Balassa–Samuelson model tell us?</i>
7/2003	Vladimír Bezděk: Kamil Dybczak Aleš Krejdl	Czech fiscal policy: Introductory analysis
6/2003	Alexis Derviz:	FOREX microstructure, invisible price determinants, and the central bank's understanding of exchange rate formation
5/2003	Aleš Bulíř:	Some exchange rates are more stable than others: Short-run evidence from transition countries
4/2003	Alexis Derviz:	Components of the Czech koruna risk premium in a multiple- dealer FX market
3/2003	Vladimír Benáček: Ladislav Prokop Jan Á. Víšek	Determining factors of the Czech foreign trade balance: Structural issues in trade creation
2/2003	Martin Čihák: Tomáš Holub	<i>Price convergence to the EU: What do the 1999 ICP data tell us?</i>
1/2003	Kamil Galuščák: Daniel Münich	Microfoundations of the wage inflation in the Czech Republic
4/2002	Vladislav Flek: Lenka Marková Jiří Podpiera	Sectoral productivity and real exchange rate appreciation: Much ado about nothing?
3/2002	Kateřina Šmídková: Ray Barrell Dawn Holland	<i>Estimates of fundamental real exchange rates for the five EU pre-accession countries</i>
2/2002	Martin Hlušek:	Estimating market probabilities of future interest rate changes
1/2002	Viktor Kotlán:	Monetary policy and the term spread in a macro model of a small open economy

CNB RESEARCH AND POLICY NOTES			
2/2006	Garry J. Schinasi:	Private finance and public policy	
1/2006	Ondřej Schneider:	The EU budget dispute – A blessing in disguise?	
5/2005	Jan Stráský:	<i>Optimal forward-looking policy rules in the quarterly projection model of the Czech National Bank</i>	
4/2005	Vít Bárta:	Fulfilment of the Maastricht inflation criterion by the Czech Republic: Potential costs and policy options	
3/2005	Helena Sůvová: Eva Kozelková David Zeman Jaroslava Bauerová	Eligibility of external credit assessment institutions	
2/2005	Martin Čihák: Jaroslav Heřmánek	Stress testing the Czech banking system: Where are we? Where are we going?	
1/2005	David Navrátil: Viktor Kotlán	<i>The CNB's policy decisions – Are they priced in by the markets?</i>	
4/2004	Aleš Bulíř:	External and fiscal sustainability of the Czech economy: A quick look through the IMF's night-vision goggles	
3/2004	Martin Čihák:	Designing stress tests for the Czech banking system	
2/2004	Martin Čihák:	Stress testing: A review of key concepts	
1/2004	Tomáš Holub:	Foreign exchange interventions under inflation targeting: The Czech experience	
2/2003	Kateřina Šmídková:	Targeting inflation under uncertainty: Policy makers' perspective	
1/2003	Michal Skořepa: Viktor Kotlán	Inflation targeting: To forecast or to simulate?	

CNB ECONOMIC RESEARCH BULLETIN

November 2006	ERM II and Euro Adoption
August 2006	Research priorities and central banks
November 2005	Financial stability
May 2005	Potential output
October 2004	Fiscal issues
May 2004	Inflation targeting
December 2003	Equilibrium exchange rate

Czech National Bank Economic Research Department Na Příkopě 28, 115 03 Praha 1 Czech Republic phone: +420 2 244 12 321 fax: +420 2 244 14 278 http://www.cnb.cz e-mail: research@cnb.cz