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The Application of Structured Feedforward Neural Networks to the Modelling

of Daily Series of Currency in Circulation

Marek Hlaváček, Michael Koňák and Josef Čada∗

Abstract

One of the most significant factors influencing the liquidity of the financial market is
the amount of currency in circulation. Although the central bank is responsible for the
distribution of the currency it cannot assess the demand for the currency, as that demand
is influenced by the non-banking sector. Therefore, the amount of currency in circula-
tion has to be forecasted. This paper introduces a feedforward structured neural network
model and discusses its applicability to the forecasting of currency in circulation. The
forecasting performance of the new neural network model is compared with an ARIMA
model. The results indicate that the performance of the neural network model is better
and that both models might be applied at least as supportive tools for liquidity forecast-
ing.

JEL Codes: C45, C53.
Keywords: Neural network, seasonal time series, currency in circulation.
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Nontechnical Summary

Central banks have recently been maintaining price stability through a set of monetary policy
instruments. To pursue its objectives effectively, a central bank needs an accurate estimate of
money market liquidity. However, this liquidity is influenced by several autonomous factors
that are not under the full control of the central bank. One of the most important autonomous
factors is currency in circulation, which is quite difficult to assess, as it is strongly influenced
by many seasonal factors.

To get over the problem, central banks such as the Federal Reserve System, the European
Central Bank and other central banks within the European Monetary Union already use math-
ematical models of currency in circulation at least as supportive tools. Most of them use linear
ARIMA models, but they are simultaneously developing non-linear models to describe the
seasonal influence more accurately.

This paper follows the idea of non-linear model applications and investigates the applicabil-
ity of a new neural network-based model on the Czech series of currency in circulation. It
introduces a special kind of neural network model which has not been used for time series
forecasting before. The new model is compared with an ARIMA model with respect to out-
of-sample forecasting performance. It is shown that both models outperform the currently
used expert forecasts and that the neural network model is more accurate than the ARIMA
model. Moreover, the comparison yields several suggestions for improving the neural network
model’s forecasting accuracy.



The Application of Structured Feedforward Neural Networks 3

1. Introduction

Nowadays, central banks control the economic conditions mainly indirectly. Central banks
pursue their statutory objective of maintaining price stability or exchange rate stability through
different sets of monetary policy instruments. They usually endeavour to steer money market
interest rates through proper liquidity management. Therefore, an accurate estimate of money
market liquidity is essential for effective monetary policy implementation.

Although only transactions with the central bank have an impact on money market liquidity,
some of them are out of the central bank’s control. These factors are called autonomous
factors. One of the most important autonomous factors is currency in circulation (CIC). The
demand for CIC is influenced by the non-banking sector, which means it is rather volatile and
depends on various seasonal factors. The influence of seasonal factors make the assessment of
the demand for CIC very knotty.

For that reason, central banks employ various mathematical models to deal with this typical
seasonal time series. Most of the models used are based on the principles of the Box-Jenkins
methodology (Box and Jenkins, 1976) and on the subsequent improvements made to it (e.g.
Hamilton (1994), Gourieroux (1997)). Recently, however, banks have also been developing
new non-linear models that are supposed to approximate seasonal patterns with higher accu-
racy than linear models.

This paper follows the idea of non-linear model applications and investigates the applicability
of a special neural network model called the structured feedforward neural network. This
neural network model is derived from networks with switching units originally developed
as data classifiers (Bitzan, Šmejkalová, Kučera (1995), Hakl, Hlaváček and Kalous (2003)).
However, experiments with time series forecasting have shown that the model can be applied
to time series forecasting as well. The comparison with the ARIMA model presented later on
shows that the out-of-sample forecasting performance of the neural network is better, although
the neural network model could be further developed with respect to time series forecasting.

The working paper is organised as follows: First, the paper briefly summarises the basic ideas
of liquidity management and describes the CIC series in sections 2 and 3 respectively. Then,
the two models are defined separately in sections 4 and 5. Finally, a comparison of the models
follows in section 6

2. Liquidity Management

This and the following section sketch the main ideas of liquidity management from the Czech
National Bank’s point of view and summarise the necessary background to the development
of the Czech CIC model.

The Czech National Bank (CNB) pursues its statutory objective of maintaining price stability
through a set of monetary policy instruments. The instruments steer money market interest
rates and thus control the monetary conditions for economic agents.
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The most significant monetary policy instruments used by the Czech National Bank are open
market operations, in particular repo tenders with a duration of 14 days. The repo tenders are
the main tools for managing the liquidity of the banking sector, which means the amount of
reserves. The reserves are money deposited by banks on their clearing accounts with the CNB.
Reserve money is used for settling banks’ transactions and for covering their cash currency
operations with the central bank.

The CNB endeavours to ensure that the actual aggregate amount of the reserves corresponds
to banks’ needs, meaning that there is neither a deficit nor a surplus of liquidity. The banks’
demand for reserve money is determined by the minimum reserve requirements imposed on
them by the central bank.

The actual aggregate amount of reserves is determined by transactions between banks and
the central bank, since only the central bank can issue reserve money. For example, buying
foreign currency by the central bank implies issuing its equivalent in domestic currency to the
clearing accounts of the banks involved in the trade, i.e. the issuance of reserve money. Open
market operations have the same impact on banks’ reserves, hence they can be used to control
the aggregate amount of reserve money so that it is in equilibrium with the minimum reserve
requirements or meets the CNB’s objectives.

The basic mechanism is very simple. When the actual amount of the reserves equals banks’
needs, there is no need for significant deviations of short-term money market rates from the
desired level. In the case of a large liquidity deficit, banks would demand the necessary funds
and market rates would rise significantly. And vice versa, in the case of a liquidity surplus
market rates would decline. This basic idea indicates that it is crucial to have the most accurate
possible estimates of the amount of reserve money the banks have at their disposal in order to
determine the amount of repo tenders fitting the balance of banking sector as a whole from a
liquidity point of view.

Although only transactions with the central bank have an impact on banks’ reserves, some
of them are out of the control of central bank management of liquidity and its counterparts.
These are called autonomous factors. The most important autonomous factors are net foreign
assets, government deposits and currency in circulation. While net foreign assets are quite
easily predicted, based on data from the Interventions Division, and the cash management of
the State Treasury Account has substantially improved the forecast of government deposits,
the CIC factor remains rather volatile. Therefore, it is important to forecast the actual volume
of CIC to minimise the errors in liquidity management.

The CNB conducts repo tenders daily at the beginning of the trading day, hence one-step-ahead
liquidity forecasts are sufficient for setting the tender volume. The forecasts are currently
estimated by experts according to historical values, the current money market situation and, in
particular, the experts’ experience.

Although the performance of these forecasts is quite good, it strongly depends on the expe-
rience of the particular expert, and that is undesirable. Moreover, the performance of these
estimations goes down rapidly at the longer forecast horizon that is necessary for potentially
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Figure 3.1: Currency in Circulation
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reducing the frequency of the tenders. These are the main reasons for the need for a mathe-
matical model that should systemise the forecasting process and that might also improve the
forecasting performance.

3. Currency in Circulation

The volume of currency in circulation is one of the most important factors in the liquidity
forecasting process. Unfortunately, the CIC volume is out of the control of the central bank,
hence it cannot be determined exactly. Therefore, it is necessary to approximate the behaviour
of CIC using a mathematical model. The volume of currency in circulation is a typical seasonal
time series which is significantly influenced by numerous seasonal factors (see fig. 3.1). A
description of CIC behaviour and a summary of all the factors that influence the CIC follow.

3.1 Stochastic Behaviour of Currency in Circulation

For the purposes of this paper, currency in circulation is defined as banknotes and coins held
outside the central bank. The distribution of banknotes and coins to the non-banking system
is mainly carried out by commercial banks. They have to supply their branches and ATM
networks, as clients assume that any nearby ATM is always ready and full of banknotes, and
no one can even imagine it being impossible to withdraw cash from a bank branch—unless
something has gone wrong.
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Commercial banks are allowed to withdraw cash from their accounts with the central bank1.
However, such a cash withdrawal (or deposit) influences the liquidity of the bank and thus of
the banking sector as a whole, as it is a transaction between a commercial bank and the central
bank. Therefore, changes in the total amount of currency in circulation directly influence the
liquidity of the banking sector.

Moreover, it is evident that commercial banks aim to return spare cash to the central bank
as soon as possible, because cash in an ATM or a safe cannot be further invested. In other
words, banks flexibly follow clients’ requirements and hence the demand for cash is mainly
influenced by the non-banking sector, including businesses and households. This means that
the changes in the volume of currency in circulation are caused by an enormous number of
factors and circumstances that are obviously uncontrollable. Thus it is impossible to assess the
exact volume of CIC and it has to be estimated without prior knowledge of all the factors and
circumstances.

To deal with the influence of the non-banking sector it is possible to assign the superposition
of all the uncontrollable factors to stochastic and seasonal behaviour of the CIC volume. This
interpretation means that the CIC volume is supposed to be a random variable following a
compound process with seasonal and stochastic components.

3.2 Factors with an Impact on the CIC Volume

Both the models described and compared later on in this paper express the series of the CIC
volume as a function of historical values and several seasonal and shock factors. The iden-
tification of all significant seasonal patterns and shocks and the choice of the correct form
for their description proved to be crucial to the models’ forecasting performance. The choice
of seasonal factors was predominantly motivated by a ECB working paper (Cabrero, Camba-
Mendez, Hirsch and Nieto, 2002). However, the experience of CNB experts responsible for
liquidity forecasting was also considered.

Exogenous factors are included in the models in two different forms, following the idea pre-
sented by Bell and Hillmer (1983). The first type of seasonal factor is a superposition of
goniometric functions and the second is a lagged polynomial of the indicator function. The
approximation of the seasonal influence in both models is then based on linear combination of
all the factors included.

A seasonal factor expressed as a superposition of goniometric functions has the form:

dt,i =

p∑
j=1

(
ai,j sin

(
2jπmi, t

Mi,t

)
+ bi,j cos

(
2jπmi,t

Mi,t

))
, (3.1)

where dt,i is the value of the ith factor at time t, Mi,t is the length of the current cycle (for
example the length of the month) and mi,t is the position in the current cycle at time t (the cur-
rent day in the month). Finally, the positive number p sets the number of different frequencies

1 The Czech National Bank uses so-called cash deposit and withdrawal accounts.
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Table 3.1: Seasonal factors and shocks

seasonal factors, order of Γ power F number of
shocks frequencies

intra-monthly effect — — 8

day of week 3 0 —

Easter 10 5 —

fixed holiday 10 5 —

non-working days 10 5 —

Christmas 15 5 —

New Year 5 5 —

bank failure 15 5 —

Y2K 10 5 —

forming the factor. Naturally, the more frequencies are considered the better the approxima-
tion is. However, it is also necessary to keep the number of model parameters low, hence the
number of frequencies p has to be chosen carefully.

The second group of seasonal factors is mostly applied to model-isolated events such as na-
tional holidays or shocks and is of the form:2

dt,i = Γi (B) B−Fiτi (t) , (3.2)

where B is the backshift operator (Byt = yt−1), Γi is a polynomial in B and τi is the seasonal
indicator function (τi (t) = 1 if the ith season occurs at time t and τi (t) = 0 otherwise). Fi-
nally, Fi is a positive power of B. The combination of the polynomial Γi and B−Fi guarantees
that particular seasons can influence future and past observations.

Finally, all the factors described below were included in both models in the initial set of ex-
planatory variables. A brief overview of all the factors, together with the numbers of lags, is
then summarised in table 3.1.

Intra-monthly Effect The only seasonal effect of the form (3.1) included in the model is the
intra-monthly effect. The monthly cycle is particularly influenced by salary payments. This
means that the demand for cash is higher around pay day and then decreases until salaries are
paid again. For the intra-monthly effect, Mi,t from formula (3.1) is the number of working days
in the corresponding month, while mi,t from the same formula is the order of the working day
in the month. To describe the intra-monthly effect, eight different frequencies were considered.
2 The form of the lagged seasonal indicator is the only difference between the ARIMA models presented herein
and in Cabrero et al. (2002), where the lag operator Γ i is supposed to be a fraction with a first-order polynomial
as the denominator too.
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Day of Week The day of the week effect is similar to the intra-monthly effect. Again,
the demand oscillates during the week and reaches a maximum before the weekend as the
ATM network has to withstand all the shopping activity. However, the seasonal indicator
function is used instead of the approximation via goniometric functions. The indicator function
corresponds to Friday and three lags to Tuesday, Wednesday and Thursday. The effect of the
weekday is then measured as the difference between the effect of Monday and the given day.

Floating Holiday – Easter Easter is probably the trickiest season. Although Easter Monday
is always on a Monday, its date varies year by year. Hence it interferes with the intra-monthly
seasonality and it seems that the influence of the Easter holiday depends on its position in the
month. To catch the effect of Easter, the lagged polynomial of the Easter Monday indicator
function was included in the model.

Fixed Holiday Other national holidays are, unlike Easter, fixed to a particular date, hence
their positions in the month are given and do not change. On the other hand, their position in
the week is different year by year. The influence of national holidays is modelled using lagged
polynomials of the indicator functions.

Number of Non-working Days A national holiday falling on a Friday or a Monday might
influence the demand for CIC more than one falling midweek. This is the opinion of the CNB’s
experts, and it is also stated in Cabrero et al. (2002). Therefore, we tried to include also the
number of non-working days following the particular day as an explanatory variable. This
additional factor that might model the interference between weekends and fixed holidays is
also included with its lagged and future values.

Christmas and New Year The most significant season is around Christmas and New Year,
when shopping activity rises dramatically. The Christmas effect is again approximated by the
lagged polynomial of the indicator function, although more lags are considered to capture the
influence of the New Year, too.

Shocks Apart from the seasonal effects listed above, shocks were also modelled via indica-
tor functions. Two significant shocks were identified in the series. The first is the Y2K effect
and the second is a bank failure on 16 June 2000 preceded by significant growth in withdrawals.

To conclude the definition of the CIC data, the sample range should be specified. Data
from between January 1996 and June 2004 are used for the purposes of this paper. Both mod-
els were optimised on the observations up to June 2003 and the out-of-sample performance is
assessed on the rest of the sample.

4. Seasonal ARIMA Model

One of the most common classes of seasonal time series models is based on the methodology
proposed by Box and Jenkins (1976). Various generalisations of Box-Jenkins ARMA models
are widely approved, so an ARMA based model is employed as a benchmark model here.
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4.1 Box-Jenkins Methodology – Seasonal ARIMA Model

The Box-Jenkins methodology is based on Wold’s theorem (e.g. Hamilton (1994)), which says
that any weakly stationary process can be written as a superposition of autoregressive processes
and processes of moving averages3. These two basic kinds of weakly stationary processes are
in short called AR and MA processes, hence Box-Jenkins models are also referred to as ARMA
models. Specifically, a time series (yt)

∞
t=1 is an ARMA process of orders p and q, or, in short,

an ARMA(p,q) process, if it can be written in the following form:

yt =

p∑
i=1

αiyt−i +

q∑
i=1

βiεt−i + εt (4.3)

where α = (α1, . . . , αp) ∈ Rp, β = (β1, . . . , βq) ∈ Rq and (εt)
∞
t=1 is a process of independent,

identically distributed random variables usually called white noise. The first sum in equation
(4.3) is then the AR component, while the second one is the MA component.

The theory of ARMA processes has become very popular during recent decades and has been
further developed in many respects and applied in various branches. This progress has allowed
the Box-Jenkins methodology to be applied not only to weakly stationary processes, but also
to non-stationary processes that besides an ARMA process include various trends and seasonal
and other deterministic or stochastic components. Bell and Hillmer (1983) suggested using the
model (4.4) for series with calendar variations, which is a linear regression model with errors
following an ARIMA process:

yt = Dt,i +
Θ (B)

Φ (B)∆ (B)
εt. (4.4)

Here yt is the modelled series, Dt,i is the regression part, B is the backshift operator and Θ,
Φ, ∆ are polynomials in B. The polynomials Θ and Φ are moving-average and autoregressive
operators, respectively. The polynomial ∆ is a difference operator that can also include a
seasonal difference operator. The regression part Dt,i =

∑s
i=1 dt,i is the superposition of all

seasonal factors dt,i included in the model, as described in section 3.2.

The formula (4.4) defines a quite general model that might still be optimised by a least square
estimator as shown by Pierce (1971). However, to identify the model it is necessary to identify
the orders of the ARIMA process as well as the appropriate seasonal factors and their lags.
This cannot be done in one step, hence a more general methodology should be applied.

4.2 Seasonal ARIMA Model of Czech Currency in Circulation

The model described in this section was identified using the two-step approach proposed by
Koreisha and Pukkila (1998) repetitively. This means that the appropriate form of the differ-
ence operator ∆ was found first. Once the difference operator was known, the regression part
of the model was identified and after that the form of the autoregressive and moving averages

3 For any chosen order of AR process there exists an MA process of infinite order, such that the superposition of
these two processes is equal to the given weakly stationary process.
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operators was estimated. The last two steps were repeated until all the parameters included in
the model were not classified as insignificant.

According to the procedure outlined above, the sample autocorrelation and partial autocor-
relation functions (SACF, SPACF) were computed and investigated to specify the difference
operator. First, the correlogram of the series of the CIC volume indicated that the daily changes
in CIC have to be examined instead of the CIC volume. Peaks with one year frequency and lin-
early decreasing amplitude were then detected in the correlogram of the differenced series, so
the year difference was also applied. Altogether, the values of the SACF and SPACF indicated
∆ in the form:

∆ = (I − B)
(
I − B252

)

where
(
I − B252

)
is a first-order seasonal difference operator that corresponds to the one-year

difference.

Apart from the seasonal differencing, seasonal factors were included in the regression part of
the model to deal with the calendar variations. The factors included were selected from the
set of variables summarised in section 3.2. However, only factors that were not refused by a
significance test remained in the final model. An overview of the seasonal factors and their
lags that pass the tests is provided in table 4.1.

The number of subsequent non-working days was ultimately not included in the model. The
out-of-sample forecasting performance of the model with this dummy variable was the same as
without it. Therefore, we decided not to use this variable in the benchmark ARIMA model, as
it makes the interpretation of the influence of the number of non-working days more difficult.

The ARMA structure of the stochastic component was investigated simultaneously with the
identification of the appropriate set of seasonal factors. The lags of the MA and AR processes
were chosen with respect to the SACF and SPACF. Finally the autoregressive operator:

Φ =
(
I − B − B7 − B9

) (
I − B20

) (
I − B42

) (
I − B65

)

and the moving averages operator:

Θ =
(
I − B10 − B15

) (
I − B252

)

were identified.

The final ARIMA model is described by 71 parameters. The correlogram in figure 6.4 shows
that a tiny correlation still remained in the residuals. Also the Ljung-Box test (e.g. Hamilton
(1994)) indicates a higher correlation particularly around lags 60 and 252, although the addi-
tion of appropriate lags does not improve the forecasting performance of the model. Finally,
the Jarque-Bera test (e.g. Hamilton (1994)) disproved the normality of standardised residuals
and verified the difference of N(0, 1) density and the residuals histogram (see figure 6.1).
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Table 4.1: Seasonal factors and shocks included in the ARIMA model

seasonal factors, Γ (B)B−F sines / cosines number of
shocks frequencies parameters

intra-monthly effect — 1
4π , 1

6π , 1
8π , 1

10π , 1
12π 7

1
2π , 1

4π

day of week ω0I + ω1B + ω2B2 + ω3B3 — 4

Easter (ω0I + ω2B2 + ω3B3 + ω4B4 — 8
+ω5B5 + ω6B6 + ω7B7 + ω8B8) B−4

fixed holiday (ω0I + ω2B2 + ω3B3 + ω4B4 — 9
+ω5B5 + ω6B6 + ω7B7

+ω8B8 + ω9B9) B−4

non-working days — — —

Christmas (ω0I + ω2B2 + ω3B3 + ω4B4 — 14
+ω5B5 + ω6B6 + ω7B7 + ω8B8

+ω9B9 + ω10B10 + ω11B11 + ω12B12

+ω13B13)B−3

New Year (ω0B0 + ω1B1 + ω2B2)B−3 — 3

bank failure (ω0I + ω1B1 + ω2B2 + ω3B3 — 13
+ω4B4 + ω5B5 + ω6B6 + ω7B7

+ω8B8 + ω9B9 + ω10B10 + ω11B11

+ω12B12)B−4

Y2K (ω0B0 + ω1B1 + ω4B4 + ω5B5)B−5 — 4

total — — 62

5. Neural Network Model

Since the ARIMA model is linear in seasonal effects, it might not sufficiently cover the cal-
endar variation. Therefore, the application of non-linear models has been increasingly investi-
gated recently. Unfortunately, the functions realised by typical neural networks such as MLP
or RBF networks are higher-order superpositions of non-linear functions with a large number
of parameters. Consequently, the application of neural networks raises many doubts, as they
are too complicated and dealing with them is like dealing with black boxes.

To avoid such doubts, the concept of neural networks with switching units was chosen as an
alternative approach. Switching units allow the use of linear transfer functions and the model
as a whole is then a combination of two common stochastic methodslinear regression and
cluster analysis. Such a model is relatively simple and can be further analysed using common
stochastic tools.
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Figure 5.1: Neural Network with Switching Units
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The feedforward structured neural network described in this section is derived from the neu-
ral network with switching units introduced in Bitzan, Šmejkalová, Kučera (1995). For the
purposes of this paper, this original model is referred to as the Basic String. The generalisa-
tion is based on the connection of more basic strings into a hyper structure. In the following
subsections the final neural network model is described step by step.

5.1 Neuron with Switching Unit

The main idea of a neuron with a switching unit is to control the flow of the input. Any neuron
with a switching unit consists of one switching unit and several computational units as shown
in figure 5.2(a). The switching units only choose which computational unit will process the
given input, while the computational units apply a transfer function to the inputs.

The switching unit splits the input space into several disjoint clusters. The number of clusters
is the same as the number of computational units, and each cluster is associated with a different
computational unit. Inputs from a cluster are processed only by the associated computational
unit. The clusters are found during the training process using cluster analysis methods. The
character of the clusters depends on the metric or pseudometric of the input space. This metric
or pseudometric, together with number of computational units, defines the switching unit.

Computational units are neurons in the common sense. They could be of any type, such as
a perceptron or RBF unit, but such a general case might lead again to a black-box model.
Therefore, only computational units with linear transfer functions are considered. The linear
transfer function is defined by the formula:

(y0, y1, . . . , yn) = (α0, α1x1, . . . , αnxn) (5.5)
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where y = (y0, . . . , yn) is an output, x (x1, . . . , xn) is an input, and parameter α = (α0, . . . , αn)

is estimated from the training set using the linear regression equation:

Y = Xα + ε. (5.6)

where Y is a column vector of the modelled quantity, X is a matrix of appropriate inputs, the
column vector α is the estimated parameter, and ε is the error or residuum. This implies that
the sum of the components of output y from (5.5) is the approximation or estimation of the
correct value of the modelled quantity. Nevertheless, the row vector y, instead of the sum of
its components, is the output of the neuron, because summing the components leads to the loss
of information contained in the vector.

5.2 Basic String

The original model of a neural network with switching units proposed in Bitzan, Šmejkalová,
Kučera (1995) is quite a simple one. It is referred to here as a basic string because of its
string topology. The topology is defined by a graph that is a path exactly. This means that
every neuron except the input and output ones has one parent and one child. The input neuron
is a neuron with a switching unit with a Euclidean norm and linear transfer function. The
output neuron only sums its inputs, and the rest are neurons with switching units with clusters
defined by the sum of the input components and with a linear transfer function. A sketch of the
string architecture is provided in figure 5.2(b). The Euclidean norm is used in the input neuron
because it reflects the original structure of the network input space. The rest of the neurons
split the inputs according to the expected output, as the sum of the input components is the
approximation of the modelled quantity.

Even though these models are simple, they are quite effective. From the theoretical point of
view, strings are capable, for example, of approximating any smooth or measurable function
(Hlaváček (2002)), and they can realise any AR process as well. The model has also been
applied to several problems with encouraging results (Hakl et al. (2003)). However, more
complicated problems need more complicated models. Therefore, more general models called
feedforward structured networks have been defined as models with a topology described by a
hyper-structure with basic strings as its nodes (see 5.2(c)).

The advantage of the hyper-structure is that the use of basic strings as nodes helps to define
and control the topology. This is particularly important in the context of genetic optimisation
(see Kalous (2004)), but also when the topology is defined according to the results of models
derived by an expert.

5.3 Feedforward Structured Neural Network for CIC Forecasting

The model used for CIC modelling is a simple feedforward structured network with the hyper-
structure described by a graph that is a path extended by additional connections between the
network input and each basic string as shown in figure 5.2(c). The main role of the additional
connections is to keep the original structure in the analysed data, because the input space
structure can be heavily damaged by non-invertible transfer functions. Although this model
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Table 5.1: Summary of final neural network model topology

string order string length number of string order string length number of
clusters clusters

1 1 4 6 3 3,3,1

2 4 2,2,2,2 7 2 4,3

3 1 4 8 3 2,2,2

4 4 2,3,2,2 9 3 3,2,2

5 1 3 10 2 2,2

still cannot realise an MA process, the additional connections allow the use of more neurons
effectively, hence better analysis of the input data is possible.

The number of strings in the network itself, their length, and the numbers of clusters in the
neurons can be chosen arbitrarily, and unfortunately no guidelines on how to choose the best
combination are available. The neural network model described here is a product of an iterative
process based on analysis and comparison of the derived models. First, a few randomly gen-
erated networks were analysed and, according to their performances, some restrictions were
applied. The length of the strings was limited to five neurons and the number of clusters per
neuron was restricted to between two and five. In line with these restrictions, ten networks
were randomly generated and then particular basic strings from the best four networks were
combined in different orders until the final topology described in table 5.1 was chosen as the
best one.

All the inputs summarised in table 3.1, together with the lagged values of CIC, comprise the
input to the neural network model. The lags included in the model were selected according
to the SACF and SPACF functions (see fig.6.5) using the same methodology as the one used
for the Box-Jenkins ARIMA model construction (Box and Jenkins (1976),Hamilton (1994)).
However, the inability of the neural network model to realise the MA process was also consid-
ered, and hence, for example, five lags around one year instead of a single one are used to deal
with the strong one-year correlation. Finally, the following lags were used: 1, 2, 5, 10, 15, 20,
21, 22, 250, 251, 252, 253 and 254.

The model was then applied to the series of daily changes and to its one-year seasonal differ-
ence. The daily changes were forecasted with significantly higher accuracy then the seasonally
differenced series. The probable explanation is that the seasonally differenced series contains
a prominent MA(252) component, which can be hard to approximate using the neural network.
On the other hand, the non-linear neural network model might stabilise the non-stationary se-
ries of CIC daily changes, as it approximates the seasonal character of the series with higher
accuracy than the linear regression model.
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Figure 6.1: ARIMA out-of-sample residuals
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Figure 6.2: Neural network out-of-sample residuals
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Anyway, the correlogram of the residuals (see fig. 6.5) does not suggest a strong correlation of
the residuals. As in the case of the ARIMA model, additional lags do not significantly improve
the model performance. Histogram in fig. 6.2) show the residuals are hardly normal which
was also confirmed by normality tests. Normality is also rejected even if the peaks around
zero are removed, as they are caused by clusters with only a few observations that might be
classified as outliers.

6. Comparison

Two models—an ARIMA one and a neural network one—were described in the previous sec-
tions 4 and 5. In addition to the model definitions and a description of their functionality, the
results of the in-sample residual analysis are presented there. Moving the analysis along, we
discuss and compare the out-of-sample forecasting performance and the general applicability
of the two models in this section. First, the forecasting performance is compared, and then a
discussion of the applicability follows.

The sample used for forecasting performance qualification is the one-year period from July
2003 to June 2004 and is the same for both models. The comparison is focused on one-step-
ahead forecasts, because experiments showed that the forecasting horizon does not affect the
relative performance of the models. The starting point for the analysis is the one-step-ahead
residual plots (see figures 6.1 and 6.2 respectively).
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Figure 6.3: Differences between the ARIMA and the NN model squared residuals
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Table 6.1: RMSE and Diebold-Mariano test results

horizon ARIMA RMSE NN RMSE D-M p-value

1 0.491 0.454 0.975

5 0.476 0.442 —

10 0.484 0.448 —

Figures 6.2 and 6.3 show that the neural network model badly miscalculates the forecast in a
few cases, particularly around Christmas. Focusing on these unfitted events, it was found they
all fell into a cluster with only a few observations in it. This means that the neural network
cannot be reliably applied to such sparse events, as it is strongly overlearned with regard to
them. However the table 6.1 shows that the neural network is more accurate on average for all
the horizons considered, although the Diebold-Mariano test (e.g. Hamilton (1994)) does not
classify the difference as significant (the test p-value is also reported in table 6.1).

Comparison with the CNB expert on the same data is not possible, as the ARIMA model was
already used as a supportive tool for the prediction. However, the RMSE for the period from
July 2002 to June 2003 was 0.66, while the forecasting performance of the neural network and
the ARIMA model was almost the same as presented in table 6.1.

The neural network model outperforms the ARIMA model particularly at the beginning of the
testing sample, where the neural network RMSE is really low. This can be viewed in figure
6.6, which shows the RMSE for the particular months. The figure 6.6 also indicates that the
average error changes during the forecasted period in both models. The growth of the error at
the end of the period is probably caused by obsolescence of the models, while the changes in
the middle of the period correspond to the Christmas season, whose effect might not be well
approximated.

Another interesting fact is that the forecast error does not increase with the forecast horizon.
On the contrary, the RMSE of both models for the five-day horizon is lower than that for
the one-day horizon. This apparent paradox means that the models cannot approximate intra-
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Figure 6.4: Correlogram of
ARIMA in sample residuals

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  50  100  150  200  250

Autocorrelation function

(a) Autocorrelation Function

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  50  100  150  200  250

Partial Autocorrelation Function

(b) Partial Autocorrelation Function

Figure 6.5: Correlogram of NN
in sample residuals
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Figure 6.6: RMSE in particular months
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weekly effects with sufficient accuracy. The reason is probably that the intra-weekly effect
changes a lot during the period.

Moving to the general point of view, the interpretability of the results is the next important
attribute of any model. The regression component of the ARIMA model (4.4) allows the ap-
proximation of the seasonal influence to be analysed effectively. This cannot be done easily
for the neural network model, as the influence of the given season might be modelled miscel-
laneously by different computational units. On the other hand, proper analysis of the neural
network model is also possible and might lead to more specific findings.

Conversely, the advantage of the neural network application is that it can easily be reoptimised
even if the set of exogenous factors changes. In the case of the ARIMA model, any change
in the set of inputs considered means that the model has to be rebuilt completely. However,
the topology of a neural network model can be preserved and it is only necessary to learn the
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network again using the new set of inputs. The learning process of a neural network is then a
fully automated compact algorithm that can be run without any expert.

7. Conclusion

The paper introduces a new kind of neural network model for currency in circulation forecast-
ing. A feedforward structured neural network model that might be suitable for the analysis of
arbitrary seasonal time series is compared with the more conventional Box-Jenkins ARIMA
model. The characteristic properties of both models were discussed, with an emphasis on
out-of-sample forecasting performance.

First it was found that both models are more stable and accurate than the forecasts of CNB
experts, although the in-sample residuals do not meet the standard conditions of normal dis-
tribution and a weak correlation still remains in the residuals. The analysis of out-of-sample
residuals then showed that the neural network model outperforms the ARIMA model on aver-
age and particularly in the first free month of the testing sample. However the Diebold-Mariano
test does not classify the difference as significant. On the other hand, the neural network model
badly fits a few observations in the testing sample, probably because the model is overlearned
in sparse observations. Nonetheless, the neural network model is a competitive alternative to
the Box-Jenkins ARIMA models and is worth improving.

Regarding the properties of the structured neural network model, a few improvements that
might improve the model are obvious. First, feedback would be included to deal with MA
processes. Second, the selection of relevant inputs could be improved through the application
of stochastic tests. Next, a more general network architecture might be considered simulta-
neously with the use of genetic algorithms for architecture optimisation. Finally, a tool for
analysing the network, data flows and other model properties might make the model more
transparent.

Although all these extensions would improve the model performance, applying the neural net-
work model in its current stage of development, or, better still, combining it with the ARIMA
model, is relevant at least as a supportive tool for liquidity forecasting.
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