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ABSTRACT

The paper deals with the transmission of monetary policy within the financial
sector. The objective is to link an optimizing stochastic model of portfolio decisions
by a representative financial institution with a number of features that this
optimizing behavior implies for monetary transmission and credit conditions in a
transitional economy. The main example is the intermediation performance of
Czech financial sector in the years 1993 to 1999.

In the theoretical part, I introduce a discrete time model of portfolio optimizing
under uncertainty extended to cover the case of cash flow constraints imposed on
a financial intermediary. The current utility is liquidity-dependent. It also depends
on a variable that measures the momentary assessment of future cash flows
generated by the current items in the balance sheet. This specification has
consequences for asset valuation, the term structure of interest rates and the
uncovered return parity property of the expected exchange rate. In particular,
monetary policy impulses receive different responses than in standard optimizing
models, which are reflected either by the term structure of interest rates or by
interest rates on new credit.

In the empirical part, I analyze a number of observations about the function of the
Czech financial intermediation during transition and identify those that are relevant
for the transmission mechanism.

I undertake some simple comparisons of the effects predicted by the model with
the available Czech data. Where possible, I also provide a projection of the
models inferences for the Austrian banking sector. The proposed model provides
two main lessons for the monetary authorities in transitional economies. First, the
credit channel, whose specific evaluation measure is proposed, cannot be ignored.
Second, in the pursuit of conventional inflation and quantity-of-money goals, the
central bank must tune its key rate decisions to the asset-liability management
objectives of the financial sector and the current dynamics of the term structure of
interest rates.

The author wishes to thank the Foreign Research Division of the Oesterreichische
Nationalbank for the partial institutional and financial support of this research. The

standard disclaimer applies.

The views and opinions expressed in this study are those of the author
and are not necesarilly of the Czech National Bank.
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1 Introduction

Two links of the monetary policy transmission chain are hidden in the function

of the financial sector: first, the transmission of the central bank key rate decisions

into the money market and to other fixed income interest rates and second, the

transmission of money market rate movements into the rates of lending to nonbanks.

The two additional questions often invoked in the monetary transmission context are

the importance of autonomous factors in the quantity of money growth, and the

money market rate's impact on the exchange rate.

As could be expected, the effects of changes in monetary policy on the

interaction between the financial and the real sectors in the Czech economy are very

poorly explained by macroeconomic models of the VAR type (see Kodera and

Mandel, 1997, and Izák, 1998, for an empirical overview). Nor is the Neo-Kenesian

�extended IS-LM� approach initiated by Bernanke and Blinder, 1988, very helpful,

since its core assumption � the posited interest rate-driven demand for credit � refers

to the factors lying outside the financial sector. Especially troubling for policymakers

are the many observed periods when the credit conditions for the nonbanking public

were reluctant to react logically to central bank key rate decisions. This reality calls

for an extension of the presently existing models of the financial sector able to

account for the specific features of transitional economies. In particular, the models

should accommodate such phenomena as autonomous behavior of the monetary

aggregates, volatility at the long end of the yield curve, credit crunches, the behavior
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of the forward premium on the national currency in the forex market, etc. In a

transitional economy like the Czech Republic, the need for a new modeling approach

is especially strong. For one thing, the Czech financial markets are still far less

transparent than those of the leading industrial countries, for which modern

international finance theory has been created, or even those of other Visegrad

countries. For another thing, the Czech post-reform development shows that the

formal process of financial liberalization and capital market evolution conceals deep

structural deficiencies. Even an attempt to understand the true reasons of many

seemingly illogical processes in the Czech financial sector, let alone guide these

processes in the sense of a gradual convergence to the industrial world standard,

calls for a synthesis of many existing formal approaches. A synergy of financial

market microstructure theory, stochastic finance and international macroeconomics

would be desirable. The present paper constitutes a move in the direction of such a

synthetic approach.

Juxtaposing the available evidence about the monetary transmission between

the central bank, commercial banks and private customers with the existing views on

optimizing investor behavior, one soon arrives at the need to focus on one distinctive

motive of the behavior of financial intermediaries. That is, one models an agent who

is acting in two financial market segments, the interbank money market and the

market for private securities. At the same time, the financial firm invests funds it does

not own, i.e. the deposits of the public, which means that it is subject to unpredicted

infusion and withdrawal of those funds. Therefore, the flow of earnings must be

managed in such a way as to absorb uncertain shocks to liquidity at all future dates.

Accordingly, should the model elucidate the actions of the financial intermediary, it

seems reasonable that the gaps between future in- and outgoing payments (to be

referred to as cash flow constraints below) be reflected by the set of restrictions

entering its optimization problem. This is why the model that I introduce in the paper

describes the behavior of a financial institution facing two types of constraints: the

liquidity constraint and the cash flow constraint.

A convenient consequence of the abovementioned constraints is that the

model generates a demand for securities which is not entirely determined by the

standard risk-sharing reasons, but also reflects the current asset-liability

management considerations. Due to this, monetary policy plays a role in the model
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regardless of whether its changes are expected or not, which is an ideal feature for

the transmission mechanism applications that I am studying.

The model works with the concept of the financial system represented by a

single firm, which is a competitive price taker in the asset markets. Modeling the

behavior of the financial sector in this way might have become too complex had one

dealt with the matters like deposit market structure, optimal corporate liability design

and other microfinance problems. However, the topic of this study � the relevance of

asset-liability management decisions by financial firms for credit creation and

monetary policy transmission � can, if necessary, be viewed from a strictly

macroeconomic perspective. The fact that the results do not involve the exercise of

market power by the firms in the financial services industry justifies the

representative agent simplification.

The most important concept which arises in the solution of the model is that of

so-called shadow asset prices. They are generated by the co-state variables of the

individual optimization problem, provided that the available asset holdings are

regarded as state variables. In the present discrete time and time-separable utility

setting, I do not need to invoke the co-states explicitly to derive the first-order

conditions of optimality. Therefore, in this paper, in a slight abuse of terminology, I

call the shadow security price a variable equal to the ratio of its �true� shadow price to

the shadow price of cash. The correct names of the variables can easily be regained

by treating the same problem in the Lagrange multiplier form. In the present

understanding, the shadow price has the property of clearing the market under the

representative investor assumption and no outside supply or demand for the asset in

question. Put differently, if the actual price is equal to the shadow price, the agents

have no incentive to transact. As it turns out, the shadow prices satisfy the

conventional no-arbitrage relationships regardless of the degree to which the actual

prices of the same assets are distorted by the presence of transaction costs,

information asymmetries and other microstructural effects. All of the named factors

are summarized in the model under concept of the transaction function of the

corresponding market segment, making the portfolio reshuffling cost an increasing,

strictly convex function of the transaction volume.

One of the principal consequences of the selected approach is the derivative

notion of the shadow interest rate on a loan granted by the financial institution to a

nonbank. One obtains this rate by first deriving the shadow price of said loan as if it
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were one of the regularly traded assets. The actual price of the loan contract must be

equal to unity at the date of issue, meaning that one looks at a loan with unit

principal. On the other hand, the already mentioned no-arbitrage relations between

the shadow prices of traded assets allow the loan, viewed as a temporal sequence of

the coupon and the principal payments, to be linked to the shadow prices of discount

bonds traded in the money market. The result is the shadow rate � the coupon rate at

which the financial institution is willing to grant the loan of the desired amount of

unity. More generally, the shadow rate characterizes the lending conditions the

borrower would have to observe if he abided by the preferred loan size and only

negotiated the interest rate. Since, in aggregate, the lender-borrower bargaining

should result in a joint determination of both the loan amount and the lending rate,

the shadow rate very seldom coincides with the actual one. Instead, it provides a

measure of the current credit conditions: Its growth indicates a contraction, its fall a

relaxation of the credit channel of monetary policy transmission. (The main, or money

channel, condition corresponds to the general level of money market rates.)

The selected inferences of the model have the objective of covering the four

already named aspects of the monetary transmission in an open economy, namely

the propagation of the central bank rate changes along the zero coupon yield curve,

the impact of the money market rates on the lending rates to nonbanks, controllability

of monetary aggregates and the exchange rate effects of the key rate changes. All

four aspects are analyzed by comparing the inferences of the model with the

available Czech data.

By way of international comparison, I had a valuable opportunity to collect

some data on the Austrian banking sector and take a look at them in the context of

the findings for the Czech Republic.

The paper is structured as follows. In section 2, I define the model of an

optimizing financial intermediary (subsections 2.1 to 2.3), the method of solving the

optimization problem for optimal investment/lending policies involving the concept of

shadow asset prices (subsection 2.4) and discuss the equilibrium (subsection 2.5).

Section 3 gives some applications of the model, including the term structure of

interest rates (subsection 3.1), shadow and actual pricing of private sector debt

contracts (subsection 3.2) and the uncovered return parity condition on the exchange

rate (subsection 3.3). Next, selected phenomena of the Czech financial markets and

monetary transmission are related to the distinctive elements of the model. In this
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context, I discuss the propagation of the central bank key rate shocks along the yield

curve in section 4. Private sector credit conditions and their dependence on the term

structure of interest rates are dealt with in section 5. The autonomous behavior of the

monetary aggregates and the forward premium for the exchange rate are briefly

touched upon in section 6. Section 7 concludes with some observations on the

relevance of the paper's findings for Czech monetary policy.



12



13

2 Optimizing by a Financial Institution
    under Cash Flow Constraints

The objective of sections 2 and 3 is to develop a formal framework to study the

channels of monetary policy transmission within the financial sector of a transition

economy, based upon individual optimization under uncertainty. The model proposed

to this end departs from the conventional view of the representative financial firm as

a classic portfolio optimizer under uncertainty by adding an additional variable to its

current utility function. Said variable expresses, for the given moment, the

assessment of netting asset incomes and liability service payments at all subsequent

moments in the future, assuming that the asset and liability holdings are frozen at the

levels attained at the moment of measurement. The proposed approach to the

preference structure captures the spirit of the capital adequacy requirements

imposed on banks and other financial intermediaries by regulatory authorities. A

rationale for this seemingly �subrational� asset-liability management (ALM) argument

in financial firm utility can be found, along with other capital market imperfections, in

the fact that a number of assets in its portfolio are illiquid. The market participants are

aware that the firm is unable to become 100% liquid on short notice. Therefore,

agents must take into account the costs and benefits of firm ownership regardless of

whether the company can be marketed immediately or not. Specifically, in transitional

economies, a cash flow valuation of the mentioned form may express the high cost
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uncertainty about the future access to the markets, or it may be a substitute for the

termination value component of standard portfolio optimization. Indeed, in the

mainstream finance literature, the termination possibility is dealt with by means of the

liquidation price of the firm based on the resale value of its assets at a random

stopping time (see Karatzas et al., 1987). The asset-liability manager in a transition

economy, however is forced to keep in mind a continuously updated measure of

readiness to decisively redefine the company�s activities or, at least, some form of

profound restructuring of the company. Under such circumstances, the resale

possibility may be either nonexistent or prohibitively expensive, and the direct cash-

flow measure seems to be the sole tangible alternative. Nevertheless, the definition

to be given will be consistent with the resale alternative in an efficient capital market

where, after all, the asset price should be fully reflected by future cash flows.

Another specific feature of period utility used in the model is its dependence

on the current liquidity variable. This dependence serves as a substitute for a hard

no-bankruptcy constraint (the same approach for continuous time portfolio

optimization is discussed in Derviz, 1999a). The additional arguments in the period

utility function, i.e. the current cash level variable and the future cash flow

assessment variable, constitute two state variable constraints in the �soft� form.

Among other things, this specification helps to restrict the optimal behavior of the

financial intermediary to the paths with nonexplosive short positions.

Naturally, the additional elements in period utility described above entail

several other important consequences for optimal investment and the overall

outcome of the model. The fact will become clear as soon as the basic result of the

optimal demand for new corporate securities is compared with the monetary policy

impact on discount bond prices.

In the chosen definition of utility, I avoid any explicit measure of inflation. The

decision-maker can take it into account by discounting all arguments of the utility

function � dividends, current cash and future cash flows � by a common inflationary

multiplier. Then, just as in standard portfolio optimizing models with money, the

inflation factor will appear in all asset pricing results that involve marginal utilities and

pricing kernels. In the present setting, however, the object of interest is the totality of

"ALM effects," which will be shown to involve only marginal utility ratios. The common

inflationary multiplier cancels out of such ratios, making the most important ALM

effects inflation-neutral. Thus, the inflationary effects, although implicitly present and
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easily recovered if necessary, are played down in the notations, so that the focus of

the paper on nominal asset-liability constraints is not unduly blurred.

2.1 The Model

Consider a financial company which can trade in N securities of domestic or

foreign origin comprising the set N. The bulk of these securities are corporate stocks

and commercial paper. Time is discrete and changes take place between 0 and

infinity. The number of shares/bonds of security k held by the company at time t is

denoted by k
tx , its price� by k

tP  (k=1,...,N). A negative value of xk means that the

company has a liability in the kth security.

Security k is characterized by the flow of dividends (coupons and the principal

if it is a bond), equal to Γk
t of units of account at time t. Of course, in reality, time

intervals between dividend payouts are long, so that this variable is different from

zero only for a small number of dates. However, dividends will receive an additional

characterization in the present model, which will be nontrivial in every period. At

every time t, the market participants form an assessment of security k payments in

the time moments following t: ( )s
t

kγ , s≥t+1. For common stock, these are beliefs

about future dividends; for fixed income securities, the known coupon and principal

payments over the security's lifetime, adjusted by the default risk, if relevant. The

definition should be appropriately modified to cover other security forms, e.g. indices

or derivatives.

The amount by which the company increases (decreases if negative) the

position in the kth security between times t-1 and t is denoted by k
tϕ : k

t
k
t

k
t xx ϕ+= −1 .

To shorten the notations, I will use symbols x, Γ, γs, ϕ  and P to denote the

vectors of security holdings, current payoffs, expected payoffs at time s,

sales/purchases and prices, respectively, with the current date in the subscript. The
security index k  will also be omitted wherever possible. In fact, many results below

can be formulated in an economy with only one composite security. Only some

examples will require partitioning the set N.
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Further, I introduce the notion of cash, or liquidity holdings of the company.

Namely, it is assumed that all transactions (a sale of one security and a purchase of

another) happen with the help of a liquid medium of exchange, whose current level in

the company�s till at time t is denoted by x0
t. At every time period, income is added to

the start-of-the-period level of x0 while expenditures are subtracted from it. That is, no

direct swaps of different securities are allowed, and the current level of cash

indicates how far into debt the company is allowed to go in exercising the

transactions (too negative cash levels are punished by disutility, see below).

In addition to the general security set N described above, there are pure

discount bonds, distinguished by maturity alone. A discount bond maturing at time s

pays one unit of account at that time. The time t-position in the s-discount bond will

be denoted by s
tΦ , s≥t+1, the current market price of one such bond by s

tB . Thus,

according to our definition, s
tΦ  is the totality of all discount bonds existing at time t

and maturing at time s, regardless of the issue date. Accordingly, at every time t

preceding the maturity they are priced equally (by s
tB ), so that all price deviations of

individual bonds are ignored. Specifically, there is no default risk, and the defined

discount bonds can be identified with the tools of the monetary policy traded in the

money market.

The amount by which the company increases (decreases if negative) the

position in the s-bond between times t-1 and t will be denoted by s
tϕ : s

t
s
t

s
t ϕ+Φ=Φ −1 ,

s≥t+1.

It is important to clarify what happens for s=t, i.e. how does one decide at time

t what amount shall become available in cash at time t+1 without investing infinitely in

the bonds maturing in the next period, i.e. 1+Φ t
t . The question is resolved by using a

one period ("overnight") interest rate it+1, at which the free end-of-period-t liquidity is

deposited. This cash becomes a part of the liquidity available at the beginning of
period t+1 for further transactions.

In some periods, the company is supposed to pay dividends out of its free

cash before making the overnight deposit. Just like the dividends or coupons it earns

on securities of other issuers, these dividends would be nonzero only at selected

predefined dates. However, to avoid cumbersome specifications of the payment

regime, I assume that a contribution ρt to the dividend fund is made in every period t.
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Looking at the specific situation of the deposit-taking financial institutions, i.e.

banks and mutual funds, one should recognize the demand deposits of the

nonbanking public as a special liability category in the model. For simplicity, I assume

that the interest paid on demand deposits is zero, and ignore the exact motives of the

public to hold them. The net increase in the deposit level at time t will be denoted by

Kt, and the time t-expected net deposit increase at date s≥t+1 � by s
tK . If the financial

company is not entitled to take deposits, variable K shall be understood as the

company-specific income term, which is not a function of the marketed securities'
characteristics. The presence of exogenous income shocks represented by K will

play no particular role in the present paper. It is, however, a convenient shortcut to

define and explain the nonzero volumes of security trade caused by agent

heterogeneity and should, therefore, be kept in mind when interpreting the results.

All other loan and deposit types, i.e. those that cannot be withdrawn at sight,

are treated as regular securities belonging to the set N, as defined earlier. For

example, I include in N the taken (or granted) credit lines, in spite of their "duality"

with demand deposits, as pointed out by Kashyap et al., 1999.
Finally, I will need an auxiliary state variable xf to denote the current state of

financial technology available to the company. Without upgrading investment, the

financial technology becomes obsolete. The obsolescence rate f works as the

exponential decline rate of xf. To offset it, the company can invest in an upgrade rate

ρf. Altogether, the technology level follows the rule )(1 t
f

t
f

t
f

t fxx −= − ρ . By investing in

xf, the financial company prevents the administrative expenditure from becoming too

high. In other words, it reduces the future transaction costs, as explained below.

The sources of exogenous uncertainty in the model are discrete-time

stochastic processes Γ, K and f. They generate information filter F= ( ) 0≥ttF , so that Ft

denotes information publicly available at the beginning of day t. Symbol Et[...] denotes

the expectation conditional on Ft. The values Γt, Kt and ft are known to the decision-

maker at the start of period t, when he chooses the values of ρt, f
tρ , ϕt and s

tϕ ,

s≥t+1. Also, the optimizing financial firm is a price taker, so that the asset price vector

Pt applicable during period t is known at the start of that period (accordingly, process

P is adapted to filter F). Besides, the short-term interest rate it+1 is known at time t as

well. In order to make this assumption consistent with the requirement that all prices

and return rates in the model are endogenous, I adopt the natural convention
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1

1

1
1

+

+

+
=

t

t
t i

B . For reasonable preferences and transaction functions, this assumption

implies 1+t
tϕ =0. Indeed, while dealing in the overnight debt market is costly, the same

interest rate i can be earned costlessly if all the end-of-period-t-cash is deposited.

Note that the time t-assessments of date s-cash flows s
tγ , s

tK  and s
tΦ  are all known

at time t. Naturally, in the case of the former two, it does not mean that the

assessments are always correct, but rather that they are known to those who form

them. In the case of discount bonds, the certainty follows from the assumption of

zero default risk.

2.2 Transaction Costs

To generate nontrivial supply and demand schedules in the secondary

markets for securities, it is necessary to introduce nonlinearity in the transaction

variables ϕ and ϕ s. Logically, this nonlinearity can enter either the utility function or

the state-transition rules. I choose the latter variant, i.e. I introduce transaction costs

which are nonlinear functions of the corresponding position change variables.

Take security k from the set N first. Nonzero transaction costs mean that, in

order to add ϕ k>0 to the stock xk, one must spend the amount Pkjkϕ( k)>Pkϕ k.

Analogously, by selling  ϕ k<0 units of security k, one obtains the amount of cash

Pkjk(-ϕ k)<Pk(-ϕ k). Consequently, the transaction function jk can be defined as strictly

increasing and strictly convex, with the value of zero corresponding to the zero

transaction level. To accommodate the reduction effect of advanced technology on
transaction costs, I assume that jk is a strictly decreasing function of its second

argument, xf. So, the technology level attained in the previous period drives down the

cost level for the current transaction volume: jkt= ( )f
t

f
t

k xj ϕ,1− . Note the t subscript

replacing the full list of arguments � the shorthand notation to be frequently utilized

below. Another natural assumption is the zero marginal transaction cost at the origin:

1)0,( ≡xj k
ϕ  for all values of x (ϕ -subscript indicates partial derivative).

As the principal example to keep in mind I invoke the linear-quadratic transaction

function resembling the capital installation cost in Tobin�s q models:
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x
bxj

k
k

2
),(

2ϕϕϕ += ,

where bk is a positive constant. For the values of ϕ k/xf not exceeding a certain

negative level (i.e. for all but all too speedy sellouts), this functional form satisfies the

partial derivative sign and the convexity requirements stated above.

It is assumed that the same beginning-of-period financial technology level has

a reducing effect on transaction costs for trades in all securities in the current period.

Then, variable xf enters the transaction functions jk for all k and the analogously

defined transaction functions jb in the discount bond market, for all s:

),( 1
s
t

f
t

b
t

b xjj ϕ−= , s≥t+1. As regards the cost of technology upgrade itself, I assume

the existence of a strictly increasing and concave function υ  such that the upgrade at

rate ρf
t at time t costs )(1

f
t

f
tx ρυ− .

2.3 State-Transition Equations, Preferences and the
      Optimization Problem

Summing up the above definitions of incomes and expenditures, we are able

to formulate the state transition equation for the liquidity variable, x0, together with the

remaining variables, i.e. x, Φs and xf:

t
f

t
f

ttt
t
tttt Kxxxix +−Γ⋅+Φ++= −−−− )()1( 111

0
1

0 ρυ

( ) �
+≥

−− −⋅−−
1

11 ),(,
ts

s
t

f
t

bs
tt

f
ttt xjBxjP ϕϕρ , (1a)

k
t

k
t

k
t xx ϕ+= −1 , k=1,...,N, (1b)

s
t

s
t

s
t ϕ+Φ=Φ −1  , s≥t+1, (1c)

)(1 t
f

t
f

t
f

t fxx −= − ρ . (1d)

Here and in the sequel, scalar products indicated by dots are used to simplify the

notations concerning the security set N, wherever they do not cause ambiguity.

As stated in the introduction, I want the company to make a continuous

assessment of future cash flows (positive and negative), as far as they are generated
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by the current asset holdings. For this purpose, let us introduce variable s
tR  (s≥t+1)

as follows:
s
t

s
tt

s
t

s
t KxR +⋅+Φ= γ . (2)

The first two terms on the right hand side of (2) are subjective assessments at

date t of the net income from maturing discount bonds and the income from other

securities at date s, respectively (the corresponding term is negative in the case of a

negative position). Term K stands for the date t assessment of the exogenous

income shock at date s. In the case of the deposit-accepting institutions, the main

source of K is the net change of the deposit level.

A few words should be said about the dynamics of the net future income

variable s
tR . First of all, banking statistics confirm that its sign usually changes from

period to period. Besides, the distribution of its highs and lows for a given

measurement date t is both variable in t and can differ from country to country. Fig. 1

illustrates this with the example of future in- and out-payment schedules for the

Czech and the Austrian banking sectors. The Czech case is covered by a sequence

of four diagrams (Fig. 1a). This was enabled by the daily data availability from the

beginning of 1995. The last snapshot in Fig. 1a (December 1998) is matched by the

comparative diagram for Austrian banks in Fig. 1b.

Finally, s
tR , regarded as a function of parameter t, can be very volatile if the

financial sector portfolio contains many assets with a default risk. This is exactly the

case the Czech Republic, as Fig. 2 shows. Obviously, the dominant weight of

classified loans in the commercial banks' portfolios (ranging from minimal to total

losses) suggests a potential of frequent expectation revisions. All this supports the

view adopted in this paper of the important role that the estimates of future net cash

flows play in the decision-making of financial intermediaries, at least in the Czech

economy today.

Next I introduce the date t valuation of the net after-t income.

Let v be a strictly increasing and strictly concave function of the real variable,

with v(0)=0. Also, let (at)t>0 be a sequence of positive and sufficiently big numbers, to

be used in the after-t internal discount factors s
tA  as follows:

∏
+=

+=+
s

tn
n

s
t aA

1

)1(1 , s≥t+1, 0=s
sA
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Fig.1  Time Structure of Future Cash Flows
a)  Czech Banking Sector

31 March 1995
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b) Austrian Banking Sector

Data: OeNB

Fig. 2 Credit Categories in the Balance Sheets of Czech Commercial Banks

Data: CNB
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Weights (1+ s
tA )-1 express two things. First, their average level corresponds to

the inflationary discount applied to the valuation of future cash flows. Second, their

variability in parameter s expresses the relative importance of net cash flows on

different dates in the future, be it in view of changes in the expected inflation rate

across dates s, or for some other reason, e.g. special monitoring at preselected

future moments. (Accordingly, if one is not interested in variable inflation or privileged

monitoring dates, all parameters at can be assumed equal.) The weights must

decrease with sufficient speed to make the sum in (3) converge. The period value

function v goes to minus infinity more quickly than any straight line when its argument

becomes increasingly negative, generating an increasingly adverse marginal

valuation of growing dominance of income outflows over inflows. This happens

thanks to the strict concavity of v. The same concavity property assures a decreasing

marginal valuation of very high positive cash flows. If v were chosen very close to a

linear function, then wt would be almost proportional to the standard "fundamental"

price of the modeled financial company, i.e. the discounted sum of future net cash

flows. By choosing a strictly concave v instead, I stress the role of perceived market

imperfections in the company asset valuation.

Observe that wt in (3) contains no t-conditional uncertainties since, as was

noted at the end of subsection 2.1, all components of s
tR  are known at time t.

Next, define the period utility function of the financial company as a smooth

function ),,(),,( 00 ρρ wxuwx � , where the dependence on the dividend rate, ρ, is

strictly increasing, concave and satisfies the Inada conditions. Observe that the

current liquidity level x0 and the current valuation of future net investment incomes

(net cash flows) w are entering the period utility separately. That is, the measures of

ALM-performance and solvency are treated as imperfect substitutes. Otherwise, one

would have to include variable 0
sx  in the future income variable s

tR  in (2). However,

the usual ALM performance valuation practices speak in favor of the imperfect

substitute definition chosen here.

Function u admits negative values of both x0 and w, but is strictly concave in

each of them with −∞==
−∞→−∞→

),,(lim),,(lim 00
0

ρρ wxuwxu
wx

, so that a fall into debt or an
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adverse expected future cash flow results in a big disutility. Strict concavity also

generates diminishing marginal utility of increased cash holdings and future cash

flows.

Let θ  be the time preference parameter of the financial company. Its

optimization problem is that of maximizing

( )�
�

�
�
�

� +�
≥

−

1

0 ,,)1(
t

ttt
t wxuE ρθ (4)

with respect to time paths of the variables of choice ϕ, ϕs, ρ and ρf, subject to

constraints (1), (2), (3) and given the initial asset and technology values 0
0x , x0, s

0Φ

and fx0 . Alternatively, (4) is to be maximized with respect to the trajectories of x0, x,

xf, and Φs after ϕ, ϕs, ρ and ρf have been substituted away using the state-transition

equation system (1). Note that transversality conditions on the state variables are not

needed in this setting, since the restrictions on growth of optimal x0 and w follow from

their presence in the utility function.

The solution to (4) is described in the next subsection.

2.4 Solution of the Optimization Problem and Shadow
      Prices

As mentioned above the solution to the problem (1) to (4) can be obtained by

substituting the decision variables with their expressions following from (1) (see

Obstfeld and Rogoff, 1996, for the comprehensive exposition of the technique). Two

other ways of finding a solution are by formulating and analyzing the Jacobi-Bellman

equation, and by the Lagrange multiplier method. Under either approach, the

imposed strict concavity conditions on the period utilities u and v and the strict

convexity conditions on transaction functions j guarantee that the solution is an

internal one, characterized by the first order conditions. Multiple explosive paths can

be excluded by an appropriate transversality condition on the marginal utility of

dividends, 
ρρ ∂

∂= uu , at infinity. The latter can either be
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01111 11
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1
1 =++++⋅⋅⋅+ +−
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+∞→
)()()()(lim Ttuii T

TttT ρθ

or even weaker, just imposing the finiteness of the said limit. (The time argument by

the marginal utility is a shorthand which will be used throughout the text to avoid long

argument lists with individual time subscripts, for example, ( )ttt wxutu ρρρ ,,)( 0= . It

shall be noted that marginal utility uρ is a complete analogue of the marginal utility of

consumption found in traditional optimal portfolio models.

The list of first order conditions of optimality is given below. Symbols u0 and uw

stand for the corresponding partial derivatives of the utility function; symbols sjϕ , s
xj ,

jϕ and jx have analogous meaning.

Optimal transactions are represented as follows:

 ( ) k
t

k
t

f
t

kk
t QxjP =− ϕϕ ,1 , ( ) s

t
s
t

f
t

ss
t XxjB =− ϕϕ ,1 , s≥t+1, 1≡s

sX , (5a)
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θ

ρ
ρ , s≥t+1. (5c)

The optimal dividend payment (marginal rate of substitution between dividend

payments at two subsequent dates, in relation to the liquidity constraint) is

represented as follows:

)1(
1

)1(
)()( 10 ++�

�

�
�
�

�

+
+

+= tt i
tu

Etutu
θ

ρ
ρ . (5d)

Optimal investment in financial technology (with the abbreviation ( )f
tt ρυυ =)( )

is represented as follows:
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(5e)

Equation (5a) describes the form of instantaneous demand for securities, or

their supply, depending on the sign of the marginal transaction cost ϕj -1: Remember

that at the origin, the marginal transaction cost is zero and the partial derivatives ϕj

are strictly decreasing in ϕ. These pricing schedules are formulated in terms of

shadow values Q and X. The choice of names is motivated by the following. It can be

verified that Qk is equal to the ratio of the Lagrange multiplier of constraint (1b) to the

Lagrange multiplier of cash constraint (1a), provided problem (4) is solved by the

corresponding method. The same, with constraint (1b) replaced by (1c), is valid for
Xs. Naturally, the rigorously correct terminology would assign the name "shadow

price" to the multiplier/co-state variable itself. However, as I will not need the co-state

corresponding to (1a), separately, reserving the denomination "shadow price" for the

indicated ratios will cause no confusion.
Condition (5a) can be interpreted in the following way. If the current price Pk of

security k is greater than its shadow value, Qk, the optimal value of ϕk must be

negative, i.e. the firm sells the security shares; if Pk is lower than Qk, the security

shares are purchased (ϕk is positive). For the price at its shadow level (Pk= Qk), there

would be no transactions. The same is true for the current, s
tB , and the shadow, s

tX ,

price of the discount bond maturing at time s.

Equation (5b) can be solved forward (given the transversality condition) with
respect to Qt. This (fundamental) solution would show that the shadow security price

is the sum, for all future times, of the discounted dividend payments plus the

discounted weighted sums of the future dividend assessments in subsequent

periods. The weights are, naturally, determined by the subsequent marginal cash

flow valuations )()1( 1 s
t

s
t RvA ′+ − . If the agents did not care about the value of future

cash flows w, the shadow price would contain only the expected future dividends.

Besides, under zero transaction costs ( kkfk xj ϕϕ ≡),( ) or on condition of

continuously clearing markets for security k and the existence of a representative

investor (ϕk≡0), the shadow and the actual price would be equal. In that case, (5b)
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would reduce to the standard Consumption-based Capital Asset Pricing Model

(CCAPM) formula in discrete time (see Ross, 1976; Breeden, 1979).

Equation (5c) describes the term structure of interest rates. It links the time t

shadow price of the bond maturing at date s to the expected discounted shadow

price of the same bond a period later plus the marginal rate of substitution between

an expected income at time s and the current dividend payment. The latter term

comes about only if the agents have separate preferences for the cash flow value

variable w, which is the principal outstanding feature of the present model. Again, if

there are no transaction costs or if the market for this bond clears in all periods under

the representative agent condition, the shadow and the actual bond price coincide

and (5c) reduces to the usual term structure formula implied by the expectations

hypothesis. The role of the stochastic discount factor/pricing kernel is played by ratio

)()1(
)1(
tu

tu

ρ

ρ

θ+
+

, just like in standard discrete time term structure models (see Campbell

et al., 1997). This ratio is characterized by (5d). The latter condition, involving the

marginal utility of cash, does not appear in standard CCAPM, but has its analogues

in optimizing models with money in the utility function, such as Brock, 1974; Kouri,

1977, or Branson and Henderson, 1985. This equation can be characterized as the

law of motion for the shadow price of liquidity, whose driving variable is the marginal

utility of cash balances, u0. The liquidity shadow price itself happens to equal uρ, as

follows from the current value Hamiltonian optimization (for the shadow price

technique in deterministic models with money, see Sidrauski, 1967, for stochastic

models in continuous time, see Derviz, 1999a).

Finally, equation (5e) links the current marginal cost of financial technology

improvement to its discounted future value and the discounted future impact on

liquidity. Discounting happens by means of the same stochastic factor as in (5b) to

(5d).

2.5 Equilibrium

As was mentioned in subsection 2.1, the presence of future cash valuation w

and the company-specific income factor K drives the present model away from the
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representative agent setup. Particularly, even if the market for a given security clears

in aggregate, the mentioned trader heterogeneity generates a nontrivial subset of

sellers and the complementary subset of buyers in every period. For the applications

of the model to monetary policy transmission issues, it is important that there are

always security markets of relevance that have a nontrivial exogenous supply side.

More precisely, companies in nonbanking sector issue new debt and other securities

belonging to set N. The consequences of the money market rate change for financial

companies' demand for these new issues constitute the core of the financial-to-real

link in the monetary transmission chain.

In the money market itself, supply and demand generated outside the modeled

set of financial institutions play a crucial role. The most important example here is an

intervention by the central bank effectuated through the key rate change of the

discount bond with a selected maturity. This intervention roughly corresponds to the

announcement of a supply/demand schedule of the central bank in the corresponding

market segment (see Derviz, 1996, where a continuous time optimizing model

addresses the analogous problem of the central bank supply/demand schedule in the

foreign exchange market). It is especially important to remember that every such

intervention in the discount bond market has an impact both on the immediate

change in liquidity level of the financial sector and on the reverse cash flow at a

future date. Both effects have consequences for optimal demand in all securities

markets and in the resulting new equilibrium of the yield curve, as stated by

equations (5a) to (5d). These effects are, fortunately, rather transparent, since both

the monetary authority and the financial companies take them into account in the

course of decision-making. Another effect having to do with the change in the level of

deposits, however, has the nature of an externality. Indeed, deposit-taking financial

institutions regard the deposit flow as exogenous. Conversely the central bank ought

to be aware of the consequences of infusing liquidity of amount ),( 1
s
t

f
t

bs
t xjB ϕ−  in

period t, because at first such an infusion generates increased purchases of

corporate paper. Subsequently, one is faced with a deposit-increasing potential in all

periods following t. Finally, there emerges a deposit-decreasing potential induced by
s
tϕ−  (volume of the redeemed discount bills), in all periods following the redemption

date s. Inversely, a liquidity contraction (negative s
tϕ ) would generate a pair of effects

that are mirror images of the ones described above.
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In this paper, I adopt the view of a financial institution that takes investment

decisions without endogenizing the deposit flow factor. Nevertheless, the firms do

take into account the consequences of aggregate monetary expansion or contraction

for prospective deposit flows, e.g. when building up or depleting the buffer stock of

liquid reserves to accommodate the anticipated deposit changes. The relevant

information is, indeed, used in the formation of expectations on the s
tK -variable. The

exogeneity of K means that, in spite of the information acquired about future Ks in

aggregate, they do not belong to the private state variables controlled by an

individual financial company. Unlike the latter, the monetary authority can make a

direct use of the link between its money market actions and the deposit flow factor in

the investment decisions of the financial sector. Or, at least, it can derive useful

lessons for itself by analyzing the workings of this link observed from the outside.

In the next section, I derive a set of corollaries from the first order conditions of

the financial company optimization problem, which are then used in a number of

policy examples.
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3 Consequences and Examples

The first order conditions (5b to 5d) of the financial company optimization

problem (1) - (4) are backward stochastic difference equations. To facilitate their

analysis, I formulate an auxiliary result to be used throughout the text of this section.

Lemma: Let stochastic processes x, c and f in discrete time be adapted to an

information filter F= ( ) 0≥ttF , and let x satisfy the backward difference equation

[ ]11 )1( ++++= ttttt xcEfx , t≥0.

Put ∏
+=

+=+
s

t

s
t cC

1

)1(1
τ

τ , 0≡s
sC . Then, given the value of x at t=0,

( ) ( )�
−

=
+

−− +−+=
1

0
1

1
0

1
0 11

t

n
n

t
n

t
t gCxCx

for an F-adapted process g such that Et[gt+1]=ft for all t≥0. In addition, x satisfies the

forward difference equation

( ) ( )1
1

11 1 +
−

++ −+= tttt gxcx
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and the iterated backward equation

( ) �
�

�
�
�

� +++= �
−

=

1

)1(1
s

tn
n

n
ts

s
ttt fCxCEx , s≥t.

Proof: The last equation can be obtained by straightforward iteration. A direct check

shows that every solution of the backward equation must be of the form

( ) ( )�
−

=

−− +−++=
1

0

1
0

1
0 1)(1

t

n
n

t
nt

t
t fCxCx ς , where ζ is a martingale with ζ0=0. One can then

easily prove that ( ) ( )tt
t

tt Cfg ςς −+−= +
−

+ 1
1

01 1 ●

It will be convenient to have a compact symbol for the stochastic discount

factor mentioned in subsection 2.4. Therefore, put

)()1(
)(

1

2
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1 tu
tu
tt
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ρ

ρ

θ −+
=Λ .

Evidently, the definition is admissible for any combination of t1 and t2, the

formula 3

1

3

2

2

1

t
t

t
t

t
t Λ=ΛΛ  holds for any three time dates t1, t2 and t3, and, finally,

( ) 1
2

1

1

2

−
Λ=Λ t

t
t
t .

3.1 Term Structure of Interest Rates

The above lemma will now be applied to equation (5c), which is first divided by

uρ(t) and then regarded as a difference equation for sX . The role of (1+ct+1) is played

by 1+Λt
t , and the role of ft � by s

t

s
tw

A
Rv

tu
tu

+
′

1
)(

)(
)(

ρ

 (note that character f is used here in a

different meaning than in section 2). As a result, (5c) is restated as
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                                                                                                                                   (6)

where ε is a purely random noise.

A special case of this formula is obtained when s=t. First, observe that in view

of (5d),
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Since 1=s
sX  and the original date 0 is arbitrary, a special case of (6) can be

obtained by putting t=s, taking (s-1)-conditional expectations of both sides and

replacing 0 by t:
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On condition of perfect markets, the sum on the right hand side of (7) would vanish,

whereas X would be the prices of discount bonds undistorted by transaction costs.

Equation (7) then reduces to the standard term structure formula.

In its general form, (7) implies the recursive formula
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, (8)

from which it follows that the noise terms ε in (6) are zero.

Note that (7) is an equality between Fs-1-measurable random variables

(although s
tX  is Ft-measurable), which means that it describes the term structure of
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interest rates, observed at date t, only indirectly. That is why it includes, among other

things, the marginal valuation of s-date cash flow assessments s
nR  made at times

after the present moment. These are not particularly natural measures in practice.

Therefore, the analysis based on (6), where only past values of s
nR  are involved, is

often more convenient. To obtain a direct date t term structure formula, one must

take t-conditional expectations of both sides of (7) and make a reasonable

assumption about the mechanism of private s
nR -assessment updating. For example,

under the assumption of a Markovian nature of all involved random processes and a

Bayesian rationality of the optimizing firm, the outcome would be of the form
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(9)

for some nonnegative Ft-measurable random variables G(·,s). The exact expression

for function G proves to be very involved unless simplifying assumptions about u,

v and the belief-updating procedure are made, and its derivation would be outside

the scope of the paper.

According to (9), the current shadow price of the bond maturing at time s is

influenced by the current valuation of the expected cash flow on the redemption date

s. Namely, high values of expected s-income push the shadow price of the bond

downwards, since the first derivative of v is a decreasing function. Therefore, it is

more probable that the shadow price will fall short of the actual one, and the bond will

be sold rather than purchased (see the discussion in subsection 2.4).

Another consequence of (9) is that discount bonds have higher prices in the

presence of cash flow constraints than in the standard models that do not include

them. The difference is equal to the second term on the right hand side. Given that

function G does not decrease in s  and that the future cash flow values are bounded

from above, (9) can serve as an explanation of frequent episodes of downward

sloping yield curves observed in many transitional economies.

The shadow bond price corresponds to the equilibrium price level at which the

market clears without external interventions. If such an intervention takes place, the

equilibrium price and transaction volume depends on the whole supply/demand

curve. The latter follows from the transaction costs, i.e. the marginal transaction
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function, as described by (5a). The reservation price schedule for the redemption

date s segment can be written as

( )s
t

f
t

b

s
ts

t xj
XB

ϕϕ ,1−

= .

For example, the linear-quadratic transaction function mentioned earlier

generates the marginal transaction function f
t

s
t

s
b

x
bj

1

1
−

+=
ϕ

ϕ . This function is increasing

in parameter bs and decreasing in the level of financial technology. That is, the less

significant the role of the transaction cost factors expressed by parameter b is, the

flatter the supply/demand schedules of the money market participants are.

We are particularly interested in the outcomes of a key money market interest

rate change in this context. Suppose that the maturity at which the central bank

intervenes is s-t (e.g. 2W in the Czech case). Setting the key rate s
tr  for this maturity

at time t is equivalent to announcing the price

s
t

s
t r

M
+

=
1

1

for the s bills at which the central bank is prepared to trade in period t and afterwards.

Let us assume that in the previous period the s segment of the money market was in

equilibrium with no trade, i.e. s
t

s
t XB 11 −− = . At date t, the outcome will depend on the

relation of s
tM  and this date's shadow price s

tX . If s
t

s
t XM < , the financial sector will

buy the bills from the central bank and reduce its liquidity, if s
t

s
t XM > , it is the central

bank that buys, while the liquidity flows into the financial sector. Since it is logical to

expect a weak influence of transaction costs on the money market (equivalently, high

price elasticity of demand or supply), even small changes in the key rate induce large

movements of liquidity, both in the model and in reality. Observe that the

conventional association of a monetary relaxation (tightening) with a reduction (hike)
of the central bank rate tacitly relies on stickiness of the shadow price Xs around the

previous period's equilibrium value. However, if the shadow price moves substantially
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between the periods, the key rate change may fail to induce the expected change in

the money supply.

Fig. 3 Central Bank Interventions in the Money Market and the Liquidity Flow

Fig. 3 shows the two possible relations of the s bill shadow price and the

central bank-imposed actual price during the intervention. In the first variant, the

actual price M1s is set higher than the shadow price, and monetary (abbreviated to M)

expansion occurs. On the negative ϕ axis, the financial institution reservation price

schedule of Fig. 3 is to be understood as inverse supply. In the second variant, the

actual price M2s lies under the shadow one, and the result is an M contraction. The

same reservation price schedule now works in the area of positive ϕ values and has

the meaning of s bill demand.

3.2 The Financial Sector's Demand for New Corporate
      Securities

Optimizing behavior of the financial institution described in subsection 2.4

implies the form of its demand for a generic security k from the set N.

M2s

M1s

Xs

ϕ

B

M-
expansion
(ϕ s<0)

M-
contraction
(ϕ s>0)

Money market
demand for s-bills

Money market
supply of s-bills
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Analogously to the previous subsection, the lemma will now be applied to

equation (5c), which is first divided by uρ(t) and then regarded as a difference

equation for Qk. The role of (1+ct+1) is again played by 1+Λt
t , and the role of ft � by
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)( . As a result, one derives the following formula for the

shadow value Qk of security k:
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where δ is a purely random noise. According to (8), the latter can be transformed by

making the substitution
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to get the following expression for k
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This equation has the advantage of containing observable variables, and can,

therefore, be subjected to a rigorous statistical test.

An important category of securities is the one with dividend or coupon

payments extended over a finite horizon. Suppose that such a security, with the face

value of unity, was issued at time 0, to be repaid at time T. Beside the principal at

maturity, the security holder receives an uncertain flow of cash income of ht for all

time periods t between 1 and T.

As usual, valuation of this security type has a lot in common with that of the

discount bonds. In particular, its finite life span allows one to derive pricing formulae

that, in contrast with (10), contain no noise terms δ. The result obtained will also

demonstrate the natural role of shadow price measures Q and X in the arbitrage-free

properties of the asset market.
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Proposition: The shadow price Qh of the security issued at t=0, with a unit time T

redemption value and a finite flow of random incomes ht (1≤t≤T), is given by

[ ] T
t
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tm
mt

m
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h
t XhEXQ += �

+= 1

, 0≤t≤T-1. (11)

Proof: It is easiest to proceed by backward induction. Due to the final time span of

security h, one can use the equality 1== h
T

h
T PQ  for the last day ex-dividend (shadow)

price to derive the induction base from the first order condition (5b):
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The second equality here follows from (8) for t=T-1. The induction step is now

a trivial combination of (5b) and (8) for the current time value ●.

The above proposition shows that the undisturbed arbitrage-free relationships

between assets with finite life horizons exist and are valid for their shadow prices, i.e.

those hypothetical prices for which the corresponding asset markets clear without
outside participation. In the example of equation (11), these are shadow prices Qh

and X. Most important is that for actual prices (Ph and B in this example), no-arbitrage

relationships are distorted by transaction costs and bid-ask spreads, i.e. the model

behaves exactly like the reality. However, no matter how much the actual market

clearing price is distorted by transaction costs, the no-arbitrage property can be

traced down to the shadow price values.

I now offer two applications of pricing equation (11).

Pricing of interest rate swaps: Consider a swap contract involving a fixed coupon

rate c and the flexible interest rate r∆ charged on discount bonds maturing ∆ periods

from the issuance date. (The discount bond price defined earlier is ∆
∆+

∆+

+
=

t

t
t r

B
1

1 .)

There are M payment instances, so that the life horizon of the swap agreement is

T=M∆. I consider a contract with no default risk. Then, according to (11), the shadow

price swQ0  of the swap (for the receiver of fixed payments) at time t=0 is
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The accepted convention defines the swap fair rate as such value of c for

which the initial price swP0  of this contract (and, therefore, its shadow price swQ0  as

well) is zero:
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This equation is the reason why long swap rates are usually considered

indicators of the expected future short interest rates. According to (12), the fair swap

rate is a weighted sum of all expected short rates for the dates of coupon payments

prior to and at maturity. The slope of the zero coupon yield curve determines which of

these expected rates receive higher weights.

Interest rates on new corporate loans: This application deals with the

demand for corporate outstanding debt, in other words, the supply of credit to the real

sector. Price Pk in this case corresponds to the terms of credit, whereas Γk and γk

denote the actual and the credit risk-adjusted anticipated, interest and principal

payments on the loan. The objective of the following exercise is to determine the fair
coupon rate a on a one unit principal of a corporate loan issued at t=0 and maturing

at T=∆M. As in the previous example, coupons are to be paid at intervals ∆ between

t=∆ and t=∆M.

For simplicity, I consider a loan with no risk of default and assume that the

loan can be traded in a secondary market. That is, the lender can sell the debt to

another holder or exercise an equivalent operation, such as pledging it as collateral

on another loan taken from a third party. Then, it is admissible to talk of the actual
price Pk and the shadow price Qk of this loan in the secondary market for any date up

to the maturity of the contract. The shadow price is given by (11) with ht replaced by

a.

The relation of the actual and the shadow price in this example is illustrated by

Fig. 4.
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Fig. 4 The Shadow and Actual Price of New Corporate Debt with Unit Principal

Just like in the case of the swap considered above, the loan has a specific

price at the time of issue. By definition, one must have 100 == kk xϕ , 10 =kP , since the

borrowed principal equals unity. If the transaction function jk of the lender is known,

then the shadow price ),(),( 11 1100
fkfkkk xjxjPQ −− == ϕϕ  is known as well (see (5a)).

Substituting for the known values in (11), obtain

                           
��

=

∆
−

=

∆

− −
=

−
= M

m

m

T
fk

M

m

m

Tfk

X

B
xj

X

Xxj
a

1
0

0
1

1
0

01 1
1

1
),(

),(
ϕ

ϕ . (13)

The second equality in (13) follows from the natural assumption that

),( 1100
fkTT xjBX −= ϕ  for the same transaction function jk. Indeed, there is good reason to

assume that the transaction function which services the operations with the discount
bond maturing at t=T, is the same as the one applicable to the loan contract maturing

at that date.

A slightly more involved case of corporate lending is represented by a loan

with the same formal parameters, but taken out abroad. I will denote foreign variables

corresponding to the domestic counterparts defined earlier with asterisks. The
coupon paid out in domestic currency is denoted by a*. The actual price of the loan

contract (in foreign currency terms) is P*=1/S, where S is the nominal exchange rate.

1 ϕ

Qk

P

Pk

Market demand for new debt
contracts (function Qk1/jk

ϕ)
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The (foreign currency) shadow price of the same contract at time 0 is
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Just as in (13), I assume in the second equation above that the transaction
function j* is the same for the T discount bond and the fixed coupon loan with

maturity T.

3.3 Cash-Flow Determinants of the Forward Exchange Rate
      Premium

In this subsection, I analyze the difference between the yield differential and

the exchange rate change, i.e. the disparity term in the generalized uncovered

interest rate parity formula (Derviz, 1999b), which is the same as the forward

exchange rate premium.

Assume that there is a subset F⊂ N of securities that earn their returns abroad

(in short, foreign securities). For a given foreign security f∈ F, the price and dividend

in foreign units of account are P*f and Γ*f. The domestic investor, who uses home

cash units, faces the price equal to Pf=S P*f and the dividend equal to Γf=SΓ*f. The
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t xjPQ ϕϕ 1−=  of security f is defined in the same way as

the domestic shadow price Qf in (5a), so that f
tt

f
t QSQ *=  for all times t. (Observe that

this time, character f is used in a sense different from that in subsections 2.4, 3.1 and

3.2.) Next, I define the effective total returns yk and y*f on any domestic security

k∈ N\F and foreign security f∈ F, by
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Values yk and y*f stand for the yields earned by an investor facing the

transaction costs.

Now, dividing (5b) by the shadow security price and using the above definition

of effective total yields, I rewrite the first order condition (5b) for k∈ N\F and f∈ F as
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and apply the lemma to process u�(t+1) in both these difference equations. The

result is
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for some processes ηk and ηf for which [ ] 01 =+
fk

ttE ,η . These two equations can be

combined to render
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Taking conditional time t expectations and approximating the right hand side of

(16), one gets
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Here, h0 is the term originating from conditional covariances. It is usually small

and close to a constant. Equations (16) and (17) render two formulations of the

generalized uncovered asset return parity. The approximate form (17) is closer to the

standard statements of uncovered parity in that it separates the forward exchange

premium from the yield differential in an additive way.

The interpretation of the forward premium follows from that of the terms in

brackets summed up on the right hand side of (17). The ratios k
t

m
t

k

Q
)(γ  and f

t

m
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f

Q
)(γ  are

time t-expected effective period m-returns on investment in k and f, for the domestic

investor. In the home country of security f, however, the same return on investment is

evaluated as f
t
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* )(γ . The difference in returns appearing in (17) is equal to
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where t
mS  is the date m spot exchange rate expected at date t. Let us take the

simplest case when the national returns on investment are equal for both securities,

i.e. k
t

m
t

k

f
t

m
t

f

QQ
)()(

*

* γγ
= , m≥t+1. Then a high expected depreciation in late periods (high

values of t
mS ) generates a high forward premium, so that the depreciation in the next
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period is not expected to be too high, and vice versa. Contributions of future

expected depreciations to the current forward premium are weighted by m
t

m
t

A
Rv

+
′

1
)( ,

m≥t+1. Since v� is a decreasing function, periods with high expected cash flow

contribute less to the forward premium than periods with low cash flow. According to

(17), the forward premium is a nonconstant autoregressive process.
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4 Transmission of CNB Rates along the
   Yield Curve

The results of the model discussed in the previous two sections indicate that

the properties of monetary transmission in the modeled economy are significantly

dependent on the properties of the term structure of interest rates. The latter, in turn,

is determined by a number of factors in excess of the short rate statistics, unlike in

the standard theories. In particular, the shape of the yield curve in the present model

accommodates three distinct aspects of optimal behavior. The most traditional one is

intertemporal risk sharing, expressed by the marginal utility of current dividends

entering the stochastic discount factor. Another conventional aspect is the solvency

requirement, which, somehow less traditionally, is in this model associated with the

marginal utility of current cash holdings. The third aspect is more novel and has to do

with the asset-liability management decisions of financial intermediaries. Technically,

the presence of these decisions in the model is reflected by the marginal utility of the

net expected future cash flow as well as other future income valuation terms in the

term structure formulae.

In the sections to follow, I investigate the ability of the model to take account of

monetary policy actions and their transmission, most importantly via the credit

channel.

Since the central banks of many countries control overnight rates, the question

of short-long rate transmission is most often posed in the same way in theory, i.e. the
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instantaneous rate statistics are linked to the prices of all other discount bonds. This

approach would be difficult to apply to the Czech situation, where monetary policy is

exercised by means of 2W repo limit rates and some other auxiliary rates of longer

maturities, particularly 3M. The overnight rate is not controlled and, indeed, shows a

lot of excessive technical (nonfundamental) volatility out of line with other money

market instruments. The model of sections 2 and 3 accommodates this property by

making the one period interest rate endogenously dependent on the current liquidity

and preference structure of the agents, in contrast with all other rates, where explicit

market segments are subsumed. The short-long rate transmission is traced to the

mutual dependence of the prices of discount bonds that mature later than in the

period immediately following the current one.

The transmission of the 2W repo rate into the immediately corresponding

maturities in the money market can be regarded as an indirect consequence of the

model asset price formulae. Indeed, let the 2W repo be expected to remain constant

during the next T=∆M periods from now, where ∆=14 days and M is the number of

two-week periods before the maturity of the discount bond whose return we want to

know.
Let t=0 be the date when the 2W bond market segment is in equilibrium with

no net flow of liquidity to or from the central bank. In terms of the notations of

subsection 2.4, this means that the shadow price ∆
0X  of the 2W discount bond is now

equal both to the repo bill price and the actual price ∆
0B  of the 2W bond. Now,

consider a swap agreement of M fixed payments of a rate c against M payments of

the actual (variable) 2W money market rates (equal to 11 −∆+t
tB

, t=∆, 2∆,�,M∆), at

time intervals of ∆. As follows from the formula for the swap rate derived in

subsection 3.2, c is a weighted sum of the expected future values of the 2W rate,

with the weights determined by the current shape of the yield curve. If the 2W

segment of the money market is expected to remain in equilibrium with the
unchanged level of the repo rate for the next T days, then the swap rate c must be

equal to this central bank key rate as well. In other words, the market is indifferent

between the fixed and the flexible rate of return for maturity T=∆M, since it offers the

same rate on both sides of the swap agreement. Therefore, the annualized return on

the T discount bond must also be fairly close to the same value. The same
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conclusion is valid for the other maturities, even if they are not exactly divisible by ∆.

That is, a swift transmission of the key rate into other money market rates is achieved

on condition of a reliable time horizon of the constant key rate policy, whereas the

discount bond returns stay close to the key rate for the maturities lying inside this

constant policy interval.

The model offers one more inference concerning the shape of the zero-

coupon yield curve. Namely, it predicts a much higher occurrence of downward

sloping yield curve episodes than the term structure models coming from standard

portfolio optimization settings. A formal argument in support of this statement was

presented in subsection 3.1. Informally, the presence of constraints on payment

maturity mismatches (in the form of an additional state variable in the utility function

measuring individually assessed future net income) is a factor that pushes up the

prices of discount bonds with long maturities. Equivalently, long interest rates are

pushed down. This effect becomes more pronounced for periods in which the current

state of the balance sheet predicts large negative cash flows in the future, e.g. an

accumulation of debt service payments within a substantial time interval. The intuition

behind this phenomenon has to do with the positive correlation between the

predictable debt service accumulation in a future period and the current period prices

of hedging instruments (in the present context, of the discount bonds) related to the

same future dates. In other words, when a financial institution knows it will have to

disburse money later, its cash flow constraint dictates it to compensate this negative

future cash flow now by trading some of the current liquidity against future liquidity.

The traditional theory would typically result in a flat or upward sloping yield

curve, depending on the short rate statistics. Therefore, the depressing effect of the

cash flow constraint in the present model is insufficiently offset by the short rate

factor at times at which the market expects its decrease. What one gets is a fairly

realistic picture of the term structure in a transitional economy, where positive and

negative slopes can be observed equally often.
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5 The Shadow Interest Rate on New
   Loans and the Actual Credit
   Conditions

In the Czech economy, there is a distinct difference between the short-term

and the medium-to-long-term credits granted by banks to nonbanks. While the

volume of short-term loans has been growing on average during the reform years,

credit volumes in the other two categories have been stagnating (Fig. 5). As regards

the interest rates, all three categories more or less reflect the developments in the

money market, even if the connection of the short-term credit conditions with the

corresponding PRIBOR (Prague Interbank Offer Rate) rates is much more

pronounced than in the other two groups (Fig. 6). For the above reason of its weight

in the total credit volume, short-term credit seems to be the best object with which to

analyze the transmission mechanism.

The dependence of new corporate loan rates on the money market rates will

be checked for in three ways. First of all, I investigate the general wisdom about the

new loan rate being a simple markup over the chosen interbank rate. Most typical for

the Czech reported conventions is the 1Y PRIBOR. Fig. 7 shows the difference

between the average interest rate charged on a new short-term loan and the average

1Y PRIBOR value for the same month, together with a simple indicator of the

monetary policy stance, expressed by the 2W PRIBOR. (Deviations of the latter from

the 2W repo rate set by the Czech National Bank prove to be negligible.)
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Fig. 5  New Credit Volume in the Czech Economy
Data: CNB

Fig. 6 Interest Rates on Newly Granted Loans

Data: CNB
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Fig 7 New Lending Rate Mark-up over the Czech Money Market Rates and the
         CNB Monetary Policy

Data: CNB

There are two messages to be read off Fig. 7. First, the data do not confirm

the claimed simple mark up rule for setting new loan interest rates. The credit

conditions seem to be much softer than such a rule would imply. Near-zero or

negative deviations from the 1Y PRIBOR, falling into the periods of strict monetary

policy, are particularly conspicuous. Second, the overall correlation of the mark up

with the monetary conditions is doubtful. In short, despite the widespread view of the

Czech private credit market as an area of bank dominance, the data suggest a fairly

limited market power of lenders over borrowers. At some points in time, borrowers

were able to negotiate credit conditions that hardly remunerated the lenders at all.

Next, I regress the same short-term lending rate as above, which I denote rsh,

on the four relevant money market rates, i.e. the PRIBOR values for three, six and

nine months and one year, i3M, i6M, i9M and i1Y. The result of this regression exercise

is the following (standard errors in parentheses):

rsh   = 5.41 + 1.32 i3M � 1.65 i6M �  0.58 i9M +  1.59 i1Y,

          (0.46) (0.24)      (0.90)       (1.41)         (0.77)
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R2=0.86, the standard error of regression is 0.86, and the Durbin-Watson statistic is

2.01.

Let me say a few words about the risk of multicollinearity in the above

equation. Several findings on Czech money market rates suggest that the only rate
suffering from probable full spanning by other maturities is i9M. However, an

alternative regression omitting this maturity renders qualitatively similar results.

Therefore, I will refer to the formulation including all four rates in the regression, so
that I can compare it with the nonlinear formula for rsh resulting from the model of

sections 2 and 3, to be spelled out shortly. Another comment has to do with

alternative regressions of lending rates on money market rates, known from the

literature, particularly those utilizing first differences of the variables instead of their

levels (Bernanke and Blinder, 1992, or Cook and Hahn, 1989). For the purpose of the

present study, first differences would not be the right tool, since we are looking for

explicit credit-granting mechanisms and not just the general impact of the interbank

market on credit conditions. Therefore, the regression of first differences, whatever its

outcome might be, is unable to provide enough information about the lending policy

of banks.

Arguably, several properties of the obtained regression outcome are

counterintuitive. For example the constant value is too high and does not correspond

to any reasonable markup following from the direct comparison of time series means
for rsh and PRIBOR rates. However, an attempt to estimate a restricted equation

(without the intercept) leads to even more nonsensical results. Furthermore, while the
i1Y coefficient is too big, the sizes and signs of the remaining three coefficients are

hard to justify. On the other hand, satisfactory values of R2, DW, and a number of

other diagnostic tests suggest that, although the variables for the regression have

been chosen well, the simple linear functional form of the equation has been

unfortunate.

The disappointing result of the above linear regression does not mean that a

better model would not shed more light on the link between private credit and money

market interest rates. The formulae of subsection 3.2 provide a result that can serve

as an indicator of the right functional form to replace the unsatisfactory linear one.

Namely, the lending rate r set by an optimizing financial institution is given by (see

equation (13) of subsection 3.2)
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In this equation, T=M∆ is the loan maturity date, Tr0  is the return rate of a

discount bond with maturity T, ∆mX 0  is the shadow price of the discount bond

maturing at t=m∆, m=1,�,M, while the latter are the debt service dates at which the

coupon r is to be paid. Term g, which expresses the transaction costs and other

microstructural features of the market for private debt, is model-specific. Analogous

coefficients gm∆ are present in the markets for the corresponding discount bonds and

are connected to their shadow prices by the rule ∆
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, where ∆mB0

is the actual date zero price of the bond. Shadow prices coincide with actual prices

ones when the markets clear without trades with outside buyers or sellers (i.e. those

that are not explicitly modeled as the representative financial firm).

I will call the rate r defined above the shadow interest rate on the loan of unit

principal with maturity date T. Its meaning is the value of the interest rate which the

borrowers must pay if they wish to get a loan of the size which they fix themselves. In

reality, the bargaining between banks and nonbanking borrowers should result in a

joint determination of both the size and the interest on the granted loans, roughly

corresponding to the intersection of the supply and the demand schedule, like in any

other market. Nevertheless, the shadow rate is a useful benchmark if one wants to

measure the "price" of keeping a constant volume of granted credit in a changing

environment.

Under the assumption that all microstructural coefficients gm∆ are close

together and nearly constant (the latter is denoted by gT), the shadow interest rate is

equal to
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This is a value that can be calculated, using the available data on the money

market rates. The microstructural coefficients can be eliminated by assuming that g is
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close to gT and that their ratio is almost a constant. The shadow and the actual rates

on a one year loan with quarterly coupon payments are given in Fig. 8a. It shows a

much better correspondence between the two rates than was the case of the 1Y

PRIBOR and the new loan rate. In other words, the shadow rate hints at the true

nonlinear relation that exists between the PRIBORs and the private lending rate. The

model prescribes an almost constant distance between the shadow and the true rate

at all times, given that the volume of credit remains at a constant level. When this

distance falls short of the usual level, it indicates an overall tightening of credit

conditions and predicts a reduction in the volume of granted loans. This can be

identified with the credit channel of monetary transmission. The notion of the shadow

rate helps to separate it from the money, or interest rate channel, which presupposes

a direct transmission of money market rates.

Fig. 8a  Actual and Shadow Short Term Credit Conditions in the Czech
             Republik, CZK Loans

Data: CNB

Fig. 8b features the actual and the shadow short-term lending rate for the

Austrian economy. Here, the correspondence is very weak. The reason may be a

difference in microstructure compared to the Czech market. Indeed, the data on

Austrian lending rates indicate a very broad range of values, plus a considerable
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margin over the money market rate. The market power of the banks over clients in

Austria is a factor that makes the interbank-corporate rate spreads a variable with a

nontrivial law of motion of its own.

Fig. 8b  Actual and Shadow Short Term Credit Conditions in Austria, ATS
              Loans

Data: 0eNB

The calculations carried out in subsection 3.2 also cover the case of a loan

taken out abroad, and render the corresponding shadow rate. There, exchange rate

expectations play a predominant role. Therefore the calculated shadow rate values

based on ex post exchange rate movements (Fig. 9), are very much influenced by

forex market volatility. That is why the ex post shadow rate may sometimes seem

prohibitively high and at other times permissively low. However, the presence of

hedging instruments in the forex market suggests that the shadow rate of interest for

foreign loans is to be calculated on the basis of forward rather than spot exchange

rate values. In that case, it can become a much better indicator of the credit

conditions for domestic firms in foreign markets.
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Fig. 9  Actual and Shadow Lending Rate for Czech Clients in ATS
Data: CNB
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6 Portfolio Choice and Monetary Policy
   Effects

The discussion in the previous sections was aimed at showing that monetary

policy transmission, viewed through the lens of an optimizing agent in the financial

sector, is a process that materializes in the behavior of the money market instrument

prices. Within the chosen modeling approach, the latter are the discount bond rates

that define the term structure of the economy's interest rates. The central bank's key

rate decisions are transmitted as far as the horizon of its expected constancy can be

extended in the beliefs of the market participants. Open market operations, on the

other hand, in addition to guiding the current amount of liquidity, also change the

predicted cash flow schedules of financial institutions (a formal treatment of open

market operations was given at the end of subsection 3.1). Consequently, asset

prices, which depend on these cash flow assessments, often react in such a way that

the immediate consequence of a decision by the central bank to ease or tighten

monetary policy has a side effect. One example is the yield curve slope predicted by

the model, as discussed in section 4. The other is the credit channel effect discussed

in section 5, namely the input of the totality of the yield curve values up to the loan

horizon into the shadow lending rate characterizing the credit conditions for the

nonbanking sector. Naturally, in their impact on the yield curve, policy measures and

exogenous factors mix. In longer maturities, the exogenous factors clearly dominate,

so that the corresponding parts of the term structure and of asset prices in general
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display a highly autonomous behavior almost unaffected by the policy measures.

Below, I give two more examples of the limits that monetary policy has in the pursuit

of its traditional goals namely, control of the quantity of money and control of the

exchange rate, through central bank operations in the money market.

Control of M2: Between February 1996 and December 1997, the Czech

National Bank conducted a policy of monetary base targeting. After the policy was

changed to the direct inflation targeting in January 1998, the monetary aggregates

remained the key indicators. Particular attention was paid to the M2 aggregate (cash

plus most types of domestic and foreign currency deposits with maturities of up to

two years) and its extension, called L (M2 plus the official bills in the hands of

nonbank public). These two broad indicators were assigned the decisive role for the

central bank�s inflation target. A low sensitivity of the aggregates to the policy

measures was a disturbing circumstance. Instead, M2 (and L, which is not

significantly different) was following its own pace of autonomous growth. It is

interesting to note, recalling our discussion of credit to nonbanks in section 5, that the

broad money growth rate almost exactly coincides with the average growth rate of

the new credit volume in the Czech economy (Fig. 10). The credit volume, however,

shows an additional volatility, which is independent of the money quantity variable.

Fig. 10  CZK-money Quantity and New Credit

Data: CNB
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The mentioned policy insensitivity of M2, however disappointing it may be for a

central banker, is well explained by the model with an explicit choice-theoretic

foundation for the portfolio decisions of the banking sector. To show this in the setup

of the present model, it is necessary to associate the broadest possible money

aggregate in the economy with a wealth measure of a representative financial firm. I

base the argument on the fact that, while the analyzed broad measure of money is

the liability side of this agent�s balance sheet, it can be captured equally well by the

asset side in the form of aggregate financial wealth. As in most other applications of

the model, it is convenient to use the notion of shadow prices.

In the notations of section 2, let x be the vector of private security amounts in

the financial sector portfolio, and Φ be the vector of the discount bonds (indexed by

maturity dates) in the same portfolio. The respective shadow price vectors are

denoted by Q and X. Respecting the nature of the model, I must also take into

consideration the shadow price V of an auxiliary variable xf expressing the level of

financial technology in the economy (section 2 contains a detailed description).

Preferences of the representative financial firm, expressed by the period utility

function u, give rise to a stochastic process denoted 
)()(

)(
tu

tut
t

ρ

ρ

θ+
+

=Λ +

1
11  (it is the

analogue of the stochastic discount factor of the standard portfolio optimization

models under uncertainty; see Duffie, 1992). Here, ρ stands for the dividends

disbursed by the financial sector to the public per period. Parameter θ  is the time

preference rate. Symbol uρ  is used to denote the corresponding partial derivative.

The time argument in the utility is a shorthand indicating at what date its true

arguments were measured and substituted into the formula. It is assumed that the

utility dependence on ρ is of the HARA (hyperbolic absolute risk aversion) type.

Define the shadow ex-dividend wealth as

W=x0+Q·x+X·Φ+Vxf.

Under certain conditions on homogeneity and the multiplicative structure of the

utility and transaction functions, it can be shown that
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for some constant β dependent on risk-aversion.

As follows from the above formula, the cum-dividend wealth grows in line with

the long-term average rate of dividends which the financial firms disburse to their

owners according to an internal optimality rule. All the other shocks are dampened

because of the portfolio reshuffling decisions that to a large extent offset the changes

in asset supplies (the exact reason is the induced change in relative prices). In

aggregate, all that remains is a very indirect reaction of a decision variable inside the

utility function. Although the chosen wealth measure is based upon the shadow,

instead of the actual prices, the difference caused by the microstructure effects

should be very small in aggregate. Also, although the defined wealth stands for the

broadest possible money aggregate, the difference from the conventionally used

measure M2 or L is relatively small in the Czech case. The reason is the relatively

small weight of long-horizon instruments in the financial wealth. Accordingly, any high

monetary aggregate that one would choose to follow would exhibit a very low

sensitivity to monetary policy measures.

Key rate transmission into the spot exchange rate: No matter how much

discredited, the dogma persists in the minds of development economists and policy

advisers that freely floating currency depreciation can be achieved by cutting short-

term interest rates. Historically, this atavistic belief originates in the textbook

uncovered interest rate parity (UIP) statement. Even though both the empirical and

the theoretical deconstruction of UIP is by now almost complete (see, e.g.,

McCallum, 1994, Meredith and Chinn, 1998; a survey and a model for the Czech

currency can be found in Derviz, 1999b), policy recommendations of the mentioned

sort do not cease to come up. The reality behind UIP is such that it is not � and

cannot ever be � valid for the short end of the money market. Instead, there exists

strong evidence in favor of the uncovered parity between yields on long maturity

instruments. However, the latter are endogenous variables whose direct control by

monetary policy tools is impossible. A credible permanent reduction in the short rates

is, indeed, a precondition for the corresponding fall at the long end of the yield curve.

Nevertheless, this is seldom a result of the monetary policy alone. Rather, the

financial markets must be convinced that the fundamental condition of the economy
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has irrevocably moved it deep into the low rate area. Therefore, the relevant question

for the policymaker should not be the magnitude of the rate cut needed to achieve a

specific the exchange rate increase but, instead, how much of the key rate reduction

is consistent with the internal balance and price stability progress. As a reward, the

overall descent of the yield curve can be a good protection against uncontrolled

capital inflows and a sharp appreciation of the currency.

The evidence on what was happening with the yield curve and the Czech

koruna exchange rate with respect to the CNB's key rate policy is no different from

other examples known from empirical literature. The poor performance of the

classical UIP is shown in Fig. 11. In contrast, Fig. 12 features a strikingly close

correspondence of short-term moves of the yield differential between Czech and

German five-year government bonds and the logarithm of the nominal CZK/DEM

exchange rate. Just a few short episodes of the country premium revision disturb the

uncovered total return parity (a theoretical explanation of the country premium moves

is outlined in subsection 3.3). For comparison, the uncovered parity of the Austrian

schilling against the U.S. dollar, measured with the ten-year government bond yield

differential, is illustrated in Fig. 13. One observes that the time horizon for which the

relative exchange rate movements confirm the uncovered parity rule is different for

the two currencies. It lies between two weeks and two months for CZK, compared to

three to four months for the ATS and other EMU currencies. An explanation may be

hidden in the different typical holding times of Czech and EMU country government

bonds, since they probably attract different types of international investors. A detailed

treatment of the uncovered return parity of the exchange rate is given in Derviz,

1999b.
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Fig. 11  Czech-German Interest Rate Differential and the Exchange Rate
             Changes

a) 3 months

b) 6 months

Data: CNB
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Fig. 12 Czech-German 5Y Government Bond Yield Difference and the Nominal
            CZK/DEM Exchange Rate

Data: CNB

Fig. 13 Austrian vs. US 10 zear Government Bond Zields and the ATS/USD
            Exchange Rate
a) Average 3M Exchange Rate Movements
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b) Long-nominal 3M Exchange Rate Slope

Data: 0eNB
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7 Conclusion

The paper has identified a number of specific features of monetary policy

transmission inside the Czech financial sector during transition. It has visualized the

(uneven) performance of financial intermediaries as the key factor behind the credit

conditions in the Czech economy. The model proposed to explain the functioning of

the credit channel of monetary transmission is based on an optimizing decision-

making of a financial institution restricted by liquidity and cash flow constraints. The

environment of portfolio decisions is stochastic in discrete time. The key property of

the solution is the existence of the so-called shadow prices of assets in the financial

institution portfolio, which alone obey the standard no-arbitrage rules, while the actual

prices deviate from their arbitrage-free "shadows" for transaction cost and other

microstructural reasons.

The following features can be regarded as the main contributions of the proposed

model to the analysis of the transmission mechanism in a transitional economy.

•  The model explains the observed long periods of a negatively sloped yield curve,

in that it points at additional factors pushing up the discount bond prices;

•  It reveals a nonlinear implicit dependence of new loan rates on money market

rates;
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•  It draws a distinction between the "naive" and the microstructurally adjusted

arbitrage-free relationships between asset prices;

•  It gives an explanation of the empirically plausible autoregressive property of the

forward exchange rate premium and offers a structural decomposition of the

latter.

The following lessons for Czech monetary policy can be drawn by confronting the

formal analysis with the empirical evidence on the properties of transmission

mechanism:

1. The credit channel is present in the Czech economy and cannot be ignored. Its

current state can be assessed by comparing the actual and the shadow interest

rates on new debt. The consequences of the credit channel blockage can be

particularly severe for corporate debt with short maturities.

2. The short-long interest rate transmission can be explained by the cash-flow effect

in the term structure. Since the cash-flow variable is likely to be volatile in

transitional economies, the asset-liability management considerations of the firms

in the financial sector can either suppress the original monetary policy signal of

the key rates or multiply its effect to an undesirable magnitude. Therefore, key

rate change decisions must be avoided at times of upward movements of either a

part or the entirity of the yield curve.
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