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Húsek, Dušan
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Abstract:

Usual task in large data set analysis is the search for their appropriate representation in the space of less
dimension. One of the most efficient methods to solve this task is a factor analysis. In this study we
suggest a new approach to Boolean factor analysis, which is extension of the previously proposed Boolean
factor analysis method: Hopfield-like Attractor Neural Network with Increasing Activity. We increased its
functionality when complementing this method by a maximization of the learning set likelihood function
defined according to the proposed Boolean factor analysis generative model. Such a way we can obtain as
a result full set of generative model parameters. We demonstrated the efficiency of the new method using
the artificial signals generated according the generative model. Successful application of the method to
the real data is shown when analyzing the data from Kyoto Encyclopedia of Genes and Genomes database
which contains full genome sequencing for 1368 organisms.
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1 Introduction

Factor analysis is one of the most powerful statistical methods to reveal and reduce information redun-
dancy in high dimensional signals. Boolean Factor Analysis (BFA) implies that all: the components
of the signals, factor loadings and factor scores are binary variables. Each binary component of the
signal can be interpreted as a representation of the presence or the absence of an attribute in the
observation (pattern). The number of considered attributes is the dimension of the signal space, the
presence of an attribute is encoded as One, and its absence as Zero. The patterns are assumed to
be composed of many “objects”. We define an object as a collection of highly correlated attributes
and suppose that objects are relatively independent of one another. Hence the attributes of different
objects are only slightly correlated. In terms of BFA, objects are factors, attributes constituting the
object are factor loadings, and the presence or absence of an object in the pattern is identified by
the value of the factor score (One or Zero). Correlations between the attributes constituting each
factor can be revealed by statistics over the large data set constituted by patterns that contain each
factor many times in different combinations with other factors. The aim of BFA is to detect this
hidden structure of the signal space and to form a representation in which these independent objects
are presented explicitly. A factor may also be interpreted as a hidden cause resulting in the sets of
observations [1, 2]. For example in medical research, a cause is a syndrome and an observation is a
symptom [3, 4].

In spite of the fact that binary data representations are typical in many fields, including social
science, marketing, zoology, genetics, and medicine, BFA methods have only been rather moderately
developed. We proposed earlier [5] a BFA method that is based on the Hopfield-like attractor neural
network. This Attractor Neural Network with Increasing Activity is referred here as ANNIA. The
method builds on the well known property of Hopfield network to create attractors of the network
dynamics by assemblies of tightly connected neurons. Since the neurons representing a factor are
activated simultaneously each time when the factor appears in the patterns of the data set, and
neurons representing different factors are rather seldom activated simultaneously, then - due to the
Hebbian learning rule - the factor neurons become more tightly connected than the other neurons.
So factors can be revealed as attractors of the network dynamics. In our previous papers [6, 7, 8],
we demonstrated the method performance using artificial data set and sets of the real data such as
the mushroom, parliament voting and textual data sets. Although the method showed high ability to
reveal the hidden factor structure in the artificial data, it was impossible to evaluate its performance
in analyzing real data. The reason was the absence of a general blind measure of BFA efficiency that
would allow, on one hand, to compare different BFA methods and, on the other hand, to estimate
whether given data set is appropriate for BFA at all. To overcome this lack we recently proposed a
general information theoretic measure of BFA efficiency which is the difference of two entropies. The
first is the entropy of a data set when its hidden factor structure is unknown, and the second is the
entropy when it is revealed and taken into account [9]. Thus, this measure is the information gain
provided by BFA. Estimation of the entropy of the data set when its hidden structure is revealed is
based on the supposed generative model of signals, adequate for BFA. We have shown on artificial
signals that the information gain is sensitive to both the noise in the signals and the errors in the BFA
results. Thus, information gain seems to be a reliable basis for comparing different BFA methods and
for detecting the presence of hidden factor structures in a given data set as well.

The offered BFA generative model is not only the base for the new measure of BFA efficiency but it
also provides the possibility to improve ANNIA complementing it by the procedure of the Likelihood
Maximization (LM). In the experimental part of the paper, we estimate the efficiency of hybrid ANNIA
& LM method, called LANNIA (“Likelihood Attractor Neural Network with Increasing Activity”) in
the next, using artificially generated signals and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[10] data set containing full genome sequencing for 1368 organisms.

The paper is organized as follows. A general BFA generative model and information gain are
proposed in Sections 2 and 3. The procedure for likelihood maximization is described in Section 4.
The hybrid method composed of ANNIA and LM methods (LANNIA) is described in Section 5. The
performance of LANNIA on KEGG data set is described in Section 6.
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2 Generative model of signals appropriate for BFA

In formulating a generative model of signals appropriate for BFA, we follow the ideas of Barlow
[11], Marr [12], Kussul [13] and others who assumed that the search for a hidden factor structure in
incoming sensory signals is one of the main brain functions. Explaining Barlow’s ideas, Foldiak [14]
writes: “According to Barlow [11] objects (and also features, concepts or anything that deserves a
name) are collections of highly correlated properties. For instance, the properties ‘furry’, ‘shorter than
a meter’, ‘has a tail’, ‘moves’, ‘animal’, ‘barks’, etc. are highly correlated, that is the combination of
these properties is much more frequent than it would be if they were independent (the probability of
the conjunction is higher than the product of individual probabilities of the component features). It is
these non-independent, redundant features, the ‘suspicious coincidences’ that define objects, features,
concepts, categories, and these are what we should be detecting. While components of objects can be
highly correlated, objects are relatively independent of one another... The goal of the sensory system
might be to detect these redundant features and to form a representation in which these redundancies
are reduced and the independent features and objects are represented explicitly”.

In terms of BFA, each pattern of a signal space is defined by a binary row vector x = [x1, . . . , xN ],
where N is the total number of attributes. Every component of x takes value One or Zero, depending
on the presence or absence of the related attribute. Each factor fi = [fi1, . . . , fiN ] is a binary row vector
of dimension N whose entries with values equal to One correspond to highly correlated attributes of
the ith object. Although the probability of the presence of attribute of an object in an observation
simultaneously with its other attributes is high, it is not necessarily equal to 1. For example, the
attribute ‘has a tail’ is not always present in an observation when the object ‘dog’ is present. We
denote this probability by pij , where j is the index of the attribute and i is the index of the factor.
For attributes constituting the factor, i.e. for attributes with fij = 1, the probability pij is high, and
for the other attributes (with fij = 0), it is zero.

As in linear factor analysis, we suppose that in addition to common factors fi that influence more
than one attribute, each signal also contains N specific or unique factors that influence only particular
attributes. The contribution of specific factors is defined by a binary row vector η = [η1, . . . , ηN ]. Each
specific factor ηj is characterized by the probability qj with which ηj takes on the value One.

As a result, any vector x can be presented in the form

xj = [
L

⋁
i=1

si ∧ f ′ij] ∨ ηj , (2.1)

where s = [s1, . . . , sL] is a binary row vector of factor scores of dimension L, L being the total number
of factors, f ′i = [f ′i1, . . . , f ′iN ] is a distorted version of factor loadings fi and η is a vector of specific
factors. Factor distortion implies that entries of fi having value equal to One can change their values
to Zero with probability 1−pij before mixing in the observed pattern but none of the entries of fi equal
to Zero can can change value to One in the distorted version of the factor because the probability
for them to transform to One is zero (pij = 0). We assume that factors appear in patterns (that is
related scores si take Ones) independently with probabilities πi (i = 1, . . . , L), factors are distorted
independently of other factors and specific factors, factor components are distorted independently of
other components, and specific factors are independent of each other and of the common factors.

The aim of Boolean factor analysis is to find the parameters of a generative modelΘ = (pij , qj , πi, i =
1, . . . , L, j = 1, . . . ,N) and factor scores sm (m = 1, . . . ,M) for all M patterns xm of the observed data
set. However, it is supposed that the factors found could also be detected in any arbitrary pattern
x, if generated by the same BFA model. Note that the finding of pij implies the finding of factor
loadings fij since fij = sgn(pij).

The procedure of generation of signals according to this generative model is given in Algorithm 2.

3 Informational gain

The proposed generative model allows to define the BFA information gain. If factor structure of
the signal space is unknown, then representing the jth component of vector x requires h(pj) bits of
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information, where h(x) = −x log2 x− (1− x) log2(1− x) is Shannon function and pj is the probability
of the jth component’s taking One. Representing the whole data set requires

H0 =M
N

∑
j=1

h(pj) (3.1)

bits of information. If the hidden factor structure of the signal space is detected, that is all the
generative model parameters and all factor scores in the data set are found, then representing the
whole data set requires

H =H1 +H2 (3.2)

bits of information. Here

H1 =M
L

∑
i=1

h(πi) (3.3)

is the information required to represent the factor scores and

H2 =
M

∑
m=1

N

∑
j=1

h(P (xmj ∣sm,Θ)) (3.4)

is the information required to represent all patterns of the data set when factor scores are given. In
(3.4)

P (xmj ∣sm,Θ) = xmj − (2xmj − 1)(1 − qj)
L

∏
i=1
(1 − pij)smi (3.5)

is the probability of the jth component of mth signal xm to take the value xmj .
The information gain is determined by the difference between H0 and H. We define the relative

information gain as

G = (H0 −H)/H0. (3.6)

From a practical point of view BFA is meaningful only if G > 0.
The information gain decreases when both the noise in data set increases and the errors in BFA

solution increases [9]. Thus it is a reliable measure of the BFA quality and the adequacy of BFA to a
given data set at all.

4 Likelihood maximization (LM)

If we have a generative model in terms of probabilities (as we did above) it is clear that we can set
up likelihood function and solve the task by using likelihood maximization.

Λ =
M

∑
m=1

Λm, (4.1)

where

Λm = log[P (sm∣Θ)P (xm∣sm,Θ)], (4.2)

P (xm∣sm,Θ) =
N

∏
j=1

P (xmj ∣sm,Θ), (4.3)
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P (sm∣Θ) =
L

∏
i=1

πsmi

i (1 − πi)1−smi , (4.4)

and P (xmj ∣sm,Θ) is given by (3.5).
To maximize Λ we use the iterative procedure that is the usual method for likelihood function

maximization [15]. The iterations alternatively increase Λ with respect to a set of factor scores smi

(m = 1, . . . ,M , i = 1, . . . , L), while holding Θ fixed (the E-step), and with respect to parameters of the
model Θ, while holding smi fixed (the M-step).

At the M-step, when scores are fixed, pij and qj can be found by maximization of Λ according to
the following iterative procedure:

∆pij = γij
∂Λ

∂pij
, ∆qj = γj

∂Λ

∂qj
, (4.5)

where γij and γj are positive learning rates and according to (4.1), (4.2) and (4.3)

∂Λ

∂pij
=

M

∑
m=1

P (xmj ∣sm,Θ)−1
∂P (xmj ∣sm,Θ)

∂pij

∂Λ

∂qj
=

M

∑
m=1

P (xmj ∣sm,Θ)−1
∂P (xmj ∣sm,Θ)

∂qj
,

and

∂P (xmj ∣sm,Θ)
∂pij

= (xmj − P (xmj ∣sm,Θ)) smi

1 − pij
(4.6)

∂P (xmj ∣sm,Θ)
∂qj

= (xmj − P (xmj ∣sm,Θ)) 1

1 − qj
.

As we assume that the probabilities pij are sufficiently high for the components constituting the ith

factor (fij = 1) and equal to zero for the other components (fij = 0), at each iteration cycle of step M
we put pij = 0, if

pij < 1 −∏
l≠i
(1 − πlplj), (4.7)

where the right side of the inequality is the probability that the j-th attribute appears in the pat-
tern due to other factors except fi. It is worth noting that without threshold truncation of pij , LM
does not converge at all because of uncertainties arising from the competition between common and
specific factors. For example one of the common factors can contain all Ones, then it will be func-
tionally indistinguishable from specific factors because there is no preference to prescribe Ones of the
observed signals to this common factor or to specific factors. To eliminate this uncertainty most of
the components of each factor are put to be zero.

In our computer experiments we set the learning rates in (4.5) to be

γij = pij(1 − pij)/(Mπi), γj = qj(1 − qj)/M. (4.8)

We terminated the search for pij and qj at the M-step by the condition ∑i,j ∣∆pij ∣/∑i,j pij < 10−5.
The generative model parameters pij and qj obtained at the M-step are used as the input for the

next E-step to find factor scores. For each individual signal xm of the data set, factor scores sm can be
found as those maximizing Λm. The global maximum of Λm can be provided only by the exhaustive
search. However, the number of possible sm is usually large (equal to 2L), then to use some iterative
procedure, even if it provides local maximum, is more reasonable. One of the possible procedures is
following.

At each iterative step the values Λm∣smi=1 and Λm∣smi=0 obtained by substituting smi = 1 and
smi = 0 into (4.2) are compared. The value of smi that provides the greater Λm∣smi is chosen and
the procedure goes to another i until it converges. In our experiments, we used a two-run iterative
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procedure to compute sm. At each external cycle of the procedure all components of sm were processed
to maximize Λm. The sequence of their processing was randomly permuted at each cycle. The
procedure was terminated when sm remained the same at the next cycle. The procedure converges
because at each iterative step the likelihood function does not decrease. The procedure starts with
all smi = 0. After computing sm the procedure is applied to the next signal xm+1 until the data set is
exhausted.

The scores found at the E-step are used as input to the next M-step. If for some factors, all found
loadings or scores are zeros, these factors are excluded from the list of found factors.

The LM-iterative procedure terminates when the increment of the Λ at the next step does not
exceed 10−6MN or the number of steps in the LM procedure reaches 10.

5 Hybrid ANNIA & LM method

As described in our previous papers [5, 8] our neural network based BFA method ANNIA itself does not
solve the task in its entirety. It provides an accurate estimation of the factor loadings, an approximate
estimation of factor scores, and no estimation of the parameters of the generative model pij and qj .
A way to overcome this drawback is to combine ANNIA with LM. We will show in the this section
that the LM procedure itself is able to provide complete solution of the BFA problem but requires
an appropriate initial approximation. If it starts from the random initial parameters it almost always
fails. In the combination of ANNIA and LM the role of ANNIA is to provide LM with the initial
approximation, particularly an initial set of the scores sm (m = 1, . . . ,M). Another aspect of the
ANNIA and LM interaction is a suppression of the dominant attractors in ANNIA using the data
provided by LM. Both these aspects of the hybrid LANNIA procedure are discussed in this Section.

The LANNIA performance is illustrated below when solving the so called Bars Problem (BP)
[14]. The BP in various modifications has been considered in many papers (see [1], for references)
as a benchmark for the learning of objects from complex patterns. In this problem, each pattern of
the data set is an n by n binary pixel image containing several of L = 2n possible (one-pixel wide)
horizontal and vertical bars (Fig. 5.1). Pixels constituting a bar take the values 1 and pixels not
constituting it take the values 0. For each image, each bar could be chosen with the probability C/L,
where C is the mean number of bars mixed in an image. At the point of intersection of a vertical and
a horizontal bar, the pixel takes the value 1. This Boolean summation of pixels belonging to different
bars simulates the occlusion of objects. The task is to recognize all bars as individual objects on the
basis of a data set containing M images consisting of bar mixtures. In most papers where the BP was
used as benchmark, C was set to 2 and n = 8.

In terms of BFA, bars are factors. Factor loadings fij (j = 1, . . . ,N) take value One for pixels
constituting the ith bar and value Zero for pixels not constituting it. Each image is a Boolean
superposition of factors, and the factor score takes the value One or Zero depending on the presence
or absence of a bar in the image. Thus, the bars problem is a special case of BFA. We consider the
case of the homogeneously distributed noise in the images, both in the form of the factor distortion
and in the form of the specific factors. Particularly, we put pij = pfij and qj = q. This means that
pixels constituting a bar can take Zero with the equal probabilities 1 − p and any pixel can take One
with the probability q due to the specific factor.

Initially the LANNIA performance is illustrated in the absence of noise, that is, when p = 1 and
q = 0 and then for the case of the rather noisy data (p = 0.7 and q = 0.2) when the hidden factor
structure of the input signals becomes practically invisible (Fig. 5.1C ).

The method ANNIA is based on the network of N neurons corresponding to N binary coordinates
of a signal space. All patterns of the data set are stored in the network by the Hebbian learning rule:

J ′ij =
M

∑
m=1
(xmi − am)(xmj − am), i, j = 1, . . . ,N, i≠j, J ′ii = 0, (5.1)

where am =
N

∑
i=1

xmi/N is the total activity of the m-th pattern.
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Figure 5.1: A Sixteen vertical and horizontal bars in 8 by 8 pixel images. B Examples of images in
the standard bars problem. Each image contains two bars on average. C Examples of noisy images
(p = 0.7, q = 0.2). D Factors found by LANNIA when solving BP with the noisy images, the number
of patterns in the data set is M = 800. E Factors found by LM in the absence of noise in the images,
M = 800. In D and E, the black pixels correspond to pij = 1, the white pixels correspond to pij = 0,
and the grey pixels correspond to the intermediate values of pij .

Under conditions discussed in our papers [16, 5, 8, 17], two global spurious attractors dominate in
the network dynamics. To suppress their dominance the matrix J ′′ij is subtracted from the connection
matrix J′ where

J ′′ij =M(pi − p̄)(pj − p̄), i, j = 1, . . . ,N, i≠j, J ′′ii = 0, (5.2)

pj is a frequency taking One in the data set for jth signal component and p̄ is pj averaged over all
components. Although these global attractors do not appear during solving BP, we use the general
procedure which guarantees their absence. Thus, both BP in this section and genome data set KEGG
in the next section are analyzed by ANNIA when they are eliminated, that is, when the connection
matrix is transformed to

J = J′ − J′′. (5.3)

ANNIA reveals factors as attractors of the network dynamics in a two-run recall procedure. Its
initialization starts by the presentation of a random initial pattern xin with kin active neurons (kin
is supposed to be smaller than the number of active neurons in any factor). On the presentation of
xin the network activity x evolves to an attractor according to synchronous discrete time dynamics.
At each time step, kin winners with the highest synaptic excitations are activated. The excitations
are calculated as xJ, where x is the network state at the previous time step. When activity stabilizes
at the initial level of activity kin, then a neuron with the maximal excitation T (kin) is selected over
all not active neurons, and added to already active kin neurons of the attractor. In fact, T (kin) is
a threshold of excitation for non-active neurons to activate only one of them. The obtained pattern
with kin + 1 active neurons is treated as the initial network state for the next iteration step, and the
network activity evolves to an attractor at the new level of activity kin + 1. The level of activity then
increases to kin + 2, and so on, until the number of active neurons reaches the final level kfin which
is supposed to be higher than the number of active neurons in any factor. Thus, one trial of the
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recall procedure contains kfin − kin external steps and several internal steps (usually 2-3) inside each
external step to reach an attractor for a given level of activity.

At the end of each external step, when the network activity stabilizes at the level of k active
neurons, a Lyapunov function is calculated:

λ(k) = x(t + 1)JxT (t)/k, (5.4)

where J is the matrix of synaptic connections and x(t + 1) and x(t) are the two network states in
a possible cyclic attractor of length 2 (for a point attractor, x(t + 1) = x(t)). In fact, λ(k) is the
mean synaptic excitation of k active neurons. As suggested in [5], the identification of factors is
based on the analysis of the dynamics of the Lyapunov function λ(k) and the activation threshold
T (k) in the recall procedure. At the initial part of the recall trajectory, when k < nf (nf = 8 is
the number of active neurons in the factor), stable states are factor fragments and their neurons are
tightly connected. Hence, their mean synaptic excitation increases almost proportionally to k, but
when k reaches nf , λ(k) sharply breaks (Fig. 5.2 a) because the neurons added to attractors when
k > nf do not belong to the factor and thus only slightly excite its neurons. For the same reason, the
activation threshold T (k) also increases proportionally to k when k < nf , and then jumps down at the
point k = nf ( Fig. 2(b)). As shown in Fig. 2(d), the derivative R′(k) = R(k)−R(k−1) of the function
R(k) = λ(k)/(k − 1) − T (k)/k has a distinctly exposed peak at this point. Thus, the maximum of
R′(k) was used as an indicator of the factor on each recall trajectory. The state of the neural network
activity at the maximum gives the factor loadings f for the found factor.

Some trajectories in Fig. 2(d) have a second, weaker, peak of R′(k) at the points k = 15 or k = 16.
These peaks correspond to pairs of factors most often appearing together in the data set images. The
point k = 15 corresponds to the crossing bars, and k = 16 corresponds to the parallel bars. The similar
but weaker peaks appear also at points k = 22, k = 23 and k = 24 corresponding to images containing
three bars that most often appeared together in the data set, and so on. Thus, the method is able to
extract some additional information on the data set besides revealing its factor structure.

As shown in Fig. 2(a), sometimes Lyapunov function jumps up from one to another continuous
trajectory. In this step, the network activity transitions to an attractor far from the attractor at
the previous step. As shown in Fig. 2(d), such a transition could also produce a peak of R′. To
avoid falsely treating such transition as factors, we calculated at each point of each trajectory the
similarity Sim(k) between the patterns of the network activity in the current attractor xat(k) and in
the previous attractor xat(k − 1) as

Sim(k) = a − (k − 1)k/N
(k − 1)(1 − k/N)

, (5.5)

where a is the number of common Ones in xat(k) and xat(k − 1). If xat(k) contains xat(k − 1), then
Sim(k) = 1. If xat(k) and xat(k − 1) are independent, then Sim(k) is equal to zero on average. We
assumed that the pattern of the network activity changes smoothly along the trajectory if Sim(k) ≥
Simthr, where Simthr = 0.8. In the opposite case, we treated the transition from xat(k − 1) to xat(k)
as a jump. Thus, the point on the trajectory with the largest peak for R′ could be considered as
related to the factor only if there was no jump at this point.

The sizes of attraction basins around factors are distributed in a large range. They are proportional
to the values of the Lyapunov function of factors, which, in turn, is proportional to the frequency
of their appearance in the patterns of the data set [5]. When the initial network states are chosen
randomly, as in the procedure described above, the network activity tends to converge to the factors
with the largest attraction basins. To suppress the dominance of these factors and make the search of
new ones possible, we unlearned them from the network memory by subtracting the matrix ∆Ji from
the matrix of synaptic connections J for each found factor where

∆J i
jk =Mπi(1 − πi)pij(1 − p0ij)pik(1 − p0ik), k ≠ j, ∆J i

jj = 0, (5.6)

pij is a probability that the jth component takes One in the ith found factor, p0ij is a probability that

the jth component takes One in signals not containing ith found factors. Probability pij is a parameter
of the generative model, p0ij can be estimated as frequency of the jth component taking One in signals
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Figure 5.2: Lyapunov function λ (a), activation threshold T (b), function R = λ/(k − 1) − T /k (c)
and its derivative R′ (d) in dependence on the number of active neurons k. Dashed lines in (a) are
thresholds for separating true and spurious trajectories at the beginning (upper line) and at the end
(lower line) of the recall procedure. The example of a jump from one to another continuous trajectory
is marked in (a) and (d). The results were obtained for the artificial BP data set containing M = 400
patterns without noise (p = 1, q = 0).
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of the data set not containing the ith factor. Substantiation of the unlearning rule (5.6) is given in
Appendix 1. Since ANNIA does not provide direct estimates of generative model parameters required
for the unlearning rule (5.6), they are obtained by using the LM procedure.

The LM procedure is initiated from E-step. To estimate the probabilities pij required to start LM
procedure we use

pij =
⎧⎪⎪⎨⎪⎪⎩

hij/ max
j′=1...N

{hij′} if hij > 0

0 if hij ≤ 0
, (5.7)

where hi = Jfi is a vector of postsynaptic excitations of neurons when the ith found factor is activated
in the network. This estimation seems to be reasonable because hij is proportional to pij [8]. After
the LM convergence, the obtained probabilities pij and p0ij are used to suppress attractors for found
factors. This allows for searching the other factors with the lower Lyapunov function. The probabilities
pij and qj calculated at the current cycle of the LANNIA procedure are used as input to LM procedure
at its next cycle. At the first cycle of LANNIA the probabilities qj are taken to be zero.

The parameters of the generative model and the factor scores obtained by LM are used to calculate
the information gain provided by all found factors. The LANNIA procedure continues until G stops
to increase due to adding new found factors. This is the first criterion to terminate LANNIA.

The network dynamics can converge not only to the true attractors corresponding to the factors,
but also to spurious attractors far from all factors [5]. The Lyapunov function for the spurious
attractors is smaller than that for factors (Fig. 2(a)). To separate the true attractors from the spurious
ones, we use the following heuristic method. For each k we activate a random set of k neurons and find
the maximal synaptic excitation over all neurons of the network. We repeat this procedure 100 times
and calculate mean m(k) and standard deviation σ(k) of the maximal excitations. If the Lyapunov
function in the peak of R′ along the trajectory satisfies the following inequality

λ(kp) > hmax(kp) =m(kp) + 3σ(kp) (5.8)

we treat the found point on the trajectory as a factor, in the opposite case — as a spurious state. The
borders hmax separating true and spurious trajectories are shown in Fig. 2(a) by the dashed lines.
The upper curve corresponds to the beginning of the recall procedure when the first factor with the
highest Lyapunov function was found. The lower curve corresponds to the end of the recall procedure
when the last factor with the lowest Lyapunov function was found. Note that the border hmax(k)
separating the true and spurious trajectories markedly decreases as the factor discovering proceeds.
The spurious trajectories shown in Fig. 2(a) obtained in solving BP appeared only after unlearning all
factors. The appearance of only spurious attractors in the recall procedure indicates that all factors
are found. This is the second termination criterion LANNIA.

Let us summarize the main steps of LANNIA.
1. Signals of a data set are stored in the fully connected neural network according to Hebbian rule,

forming the matrix of synaptic connections between neurons J′ given by (5.1).
2. Two global attractors are excluded from the network dynamics by subtracting the matrix J′′

given by (5.2) from the matrix J′.
3. 10 – 50 trajectories sequentially start from random states containing kin active neurons and

continue according to the two-run procedure until the number of active neurons reachs kfin. The
initial activity kin is chosen to be lower and the final activity kfin is chosen to be higher than the
expected number of Ones in the factors. Usually we take kin = 5 and kfin = 100.

4. Only the trajectories satisfying the two following criteria are chosen from the obtained trajecto-
ries for a further analysis. First, they are smooth, according to the condition Sim(k) ≥ Simthr = 0.8,
where Sim(k) is given by (5.5). Second, they are true, according to (5.8). The patterns of the network
activity at peaks of R′ at the chosen trajectories are treated as revealed factors. If neither trajectory
satisfies both these criteria, LANNIA is terminated.

5. The probabilities pij for factors revealed at step 5 are estimated by (5.7). The probabilities πi

for these factors are set to be 0.5. The probabilities pij and πi for factors revealed earlier and the
probabilities qj are taken from the output of the LM procedure at the previous LANNIA cycle. At
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Figure 5.3: Increase of information gain at each cycle of LANNIA in solving the Bars Problem when
noise is absent (p = 1 and q = 0) (a) and present (p = 0.7 and q = 0.2) (b).

the first cycle of LANNIA only the probabilities pij estimated by (5.7) and πi = 0.5 are used as the
input to the LM procedure, and the seed probabilities qj are taken to be zero.

6. The LM procedure alternates steps E and M until converges. The output of the procedure is a
set of the generative model parameters and factor scores.

7. The information gain provided by found factors for this temporary BFA solution is calculated.
If it is not higher than the gain obtained at the previous step, LANNIA is terminated. In the opposite
case the parameters of the generative model obtained at step 6 are used for unlearning the new found
factors from the neural network by the rule (5.6), and the procedure returns to step 3.

LANNIA algorithm is given in Appendix 2.
In the absence of noise all bars as the factors could be revealed during one cycle of LANNIA.

However, for the reason of clarity we started only one trajectory at each its cycle and used it for
further analysis. Thus, each trajectory shown in Fig. 5.2 was obtained after unlearning previously
found factors. The order of their finding corresponds to the decrease of their Lyapunov function λ
and threshold T .

Fig. 3(a) demonstrates the dependence of the information gain G on the number of found factors.
For each set of found factors the gain is shown depending on the number of the iterative steps in
LM. The maximal gain increase occurs at the first step. Since all bars are statistically equivalent,
the finding of each new bar provides the almost equal increment of the gain. For the shown example
LANNIA was terminated according to the step 5 because all true factors were deleted and all next
trajectories happened to be spurious. The factors found by LANNIA are just the same bars as shown
in Fig. 5.1(A).

The LANNIA performance for the case of noisy images (p = 0.7 and q = 0.2) is illustrated in
Figs. 3(b) and 5.4. All factors were revealed for three full cycles. Twenty trajectories were run in
ANNIA at the beginning of each LANNIA cycle. At the first cycle 11 trajectories were identified as
true (Fig. 4(a)). These trajectories were continuous and had the values of the Lyapunov function at
the peaks of R′ (Fig. 4(b)) exceeding the separation border. The increment of the information gain
provided by LM at the first cycle amounted to 0.06. LM converged for 4 steps. The largest increase
of G occurred at the first step.

After the factors found were unlearned from ANNIA at the end of the first LANNIA cycle, AN-
NIA found three factors at the second cycle. The increment of the gain amounted to 0.015, that is
proportional to the number of the found factors. At the third full LANNIA cycle, ANNIA found two
factors and the gain increased for about 0.01. After unlearning the factors found at the third cycle,
all trajectories at ANNIA happened to be spurious and the procedure was terminated.
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Figure 5.4: Lyapunov function λ (a) and function R′ (b) in dependence on the number of active
neurons k. Dashed lines in (a) are thresholds for separating true and spurious trajectories at four
cycles of LANNIA. Results were obtained for data set consisting of M = 800 noisy patterns (p = 0.7,
q = 0.2).

The factors found by LANNIA are shown in Fig. 5.1(D). They almost coincide with bars shown
in Fig. 5.1(A) but contain also pixels with small probabilities pij . Note that LANNIA revealed
correctly the hidden factor structure of the data set even when the structure is practically invisible
(see Fig. 5.1(C)). For this case the “theoretical” gain calculated for the precise generative model
parameters amounts to 0.061. The gain obtained by LANNIA was the same, that is, it provides
almost precise solution of BP.

The role of ANNIA in the hybrid procedure is illustrated in Fig. 5.1(E). There are shown the
factors found by LM alone when it starts from random initial scores, that is, without the approximate
solution provided by ANNIA. The analyzed data set contained M = 800 not noisy images similar to
that shown in Fig. 5.1(B). For each of 16 factors, the number of initial unitary scores was the same
as in the data set but they were chosen randomly, i.e. independently of the presence of the relating
factors in the images. LM found only 8 factors and consequently the gain amounts to only G = 0.43
that is almost twice smaller than “theoretical” gain G = 0.82 for the not noisy data. As shown in
Fig. 3(a), the gain achieved in the hybrid LANNIA is equal to “theoretical” one, that is, it provides
the perfect BP solution.

6 LANNIA application to the genome data set analysis

One of the important problems in modern biology is to identify functions of proteins in the organisms.
The extensive experimental studies are required to identify the function of even a single protein.
Therefore, even for well-studied model organisms, the functions of the most proteins are yet unknown
[18]. A fast growing number of organisms with fully sequenced genomes makes it possible to reveal
the protein function by comparing protein phylogenetic profiles of different organisms. The protein
phylogenetic profile is defined as a binary pattern that encodes by Ones and Zeros the presence or the
absence of proteins in a given organism with the fully sequenced genome, respectively [19]. When two
proteins show the correlated events of the presence or absence over the organisms, it is assumed that
these proteins are also functionally correlated. This idea is based on the observation that proteins
seldom act as single isolated species to perform their functions. Usually a set of proteins is involved in
each particular cellular process interacting in performing some function [20]. This leads to the concept
of the modularity which assumes that the genome functionality can be partitioned into a collection
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Figure 6.1: Lyapunov function λ (a) and function R′ (b) depending on the number of active neurons
k at the first cycle of LANNIA during the analysis of the KEGG data set. Dashed line in (a) is a
threshold for separating the true and spurious trajectories.

of modules. Each module is a discrete entity of elementary components and performs an identifiable
task, separable from the functions of the other modules [21]. Thus, revealing sets of proteins which
coherently appear in different organisms may facilitate the search for functional modules in the genome
structure. Recently there were many attempts to reveal the modular structure in genome data sets
by different blind statistical methods such as cluster analysis, independent component analysis and
others (see [18] for review). Since the concept of the genome functional modularity is completely
compatible with the BFA generative model described here it was a challenge for us to apply LANNIA
to reveal the hidden factor structure in some large genome data set. We consider its BFA analysis
only as an example of the LANNIA application to the large real data set and thus discuss only
formal indexes of its performance such as the number of found factors, their relation to the protein
phylogenetic profiles, and the information gain obtained which shows, particularly, the relevance of
the BFA generative model to the genome data. The analysis of the factor contents and their relation
to the known metabolic pathways is out of our competence and will not be discussed here.

For the BFA analysis we used the largest genome database KEGG [22], containing the fully se-
quenced genomes of M = 1368 organisms (January 2011). The protein phylogenetic profile of each
organism is a binary pattern xm of dimension N = 11451, where N is a whole number of proteins taken
into account (specifically, gene/protein ortholog groups). This number was obtained after excluding
duplicates from the whole set of 14139 gene/protein ortholog groups of KEGG.

LANNIA revealed 38 factors after four full cycles of LANNIA. Each cycle began by running twenty
random trajectories in ANNIA. The Lyapunov functions along the eleven true trajectories at the first
cycle of LANNIA are shown in Fig. 1(a). The peaks of R′ used for the factor identification are shown
in Fig. 1(b). During the first cycle the LM procedure converged for five steps and excluded two factors
of eleven. The information gain provided after each LM step is shown in Fig. 6.2. At the fifth step it
amounts to G = 0.27. At the second full LANNIA cycle ANNIA found fourteen factors. LM converged
in four steps, excluding one factor and providing the gain increase up to G = 0.31 (Fig. 6.2). During
the third and fourth full LANNIA cycles ANNIA found thirteen and twelve factors, LM excluded six
and three, respectively. In each of the next cycle of LANNIA the growth of G was lower. During the
fifth cycle the gain decreased and LANNIA was terminated. The maximal gain provided by LANNIA
for the KEGG data set amounts to 0.32. The relatively high gain obtained shows that, first, the
genome data indeed correspond to the generative BFA model and, second, LANNIA is the efficient
method for finding its parameters. The high information gain is in favor of the hypothesis of the
modular genome structure [21].
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Figure 6.2: Increase of the information gain at each cycle of LANNIA during the analysis of the KEGG
data set.

Fig. 6.3 demonstrates the distribution of proteins over found factors. We prescribed the protein j
to the factor i if the probability pij exceeded a threshold pth. The distributions are shown for three
thresholds. The factors were ranged according to the decrease of the number of proteins constituting
them for pth = 0.5. On average one factor contains 235 proteins with pij > 0.9, 407 proteins with
pij > 0.7 and 598 proteins with pij > 0.5. The number of proteins in the factors greatly exceeds
the number of proteins in the metabolic pathways described in KEGG. Thus, it is unlikely that the
factors correspond to metabolic pathways. Neither factor found by ANNIA contains more than 100
proteins. Thus, LM is able to enlarge the set of elements constituting a factor comparing with ANNIA
significantly. As mentioned above, it is also able to eliminate some factors found by ANNIA. Thus,
the results obtained actually represent the combined performance of ANNIA and LM, so the results
truly represent the synergy of both methods.

Fig. 6.4 demonstrates the distribution of the factors over the organisms. All the organisms are
grouped in types according to the taxonomy of KEGG from animals to bacteria. The type of the
organisms is depicted by the number on the top of Fig. 6.4. The meaning of numbering is given in the
legend. The factors are ranged in descending order according to the frequencies of their appearance
in the data set. The factor number one appeared in the most organisms (in 22% of the organisms)
and the factor number 38 appeared in the least of them (in 5% of the organisms). For the most
factors the frequencies of their appearance in the organisms are distributed around 0.1. In Fig. 6.4
the appearance of a given factor in a given organism is marked by the point. Thus, the frequency of
appearance of each factor in the data set corresponds to the number of points in each horizontal line.
Fig. 6.4 demonstrates that each type of the organisms is characterized by the specific set of factors.
For example, animals are characterized by factors 20 and 37, fungi by factor 20, plants by factors 2,
20 and 37 and so on. Factor 20 was identified only in eukaria and never in prokaria. Conversely, factor
1 was identified in all types of prokaria but never in eukaria. Thus, the distribution of factors over
the types of organisms seems to reflect some peculiarities of their functioning. It is interesting that
LANNIA revealed only little effect of specific factors: only 472 proteins over 11451 taken into account
have qj exceeding 0.01. Thus, almost all the organisms are completely described by common factors.
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Figure 6.4: Distribution of factors over types of organisms. Eukaryotes: 1 – Animals, 2 – Fungi, 3 –
Plants, 4 – Protists; Prokaryotes: 5 – Archaea; Bacteria: 6 – Acidobacteria, 7 – Actinobacteria, 8 – Al-
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13 – Deinococcus-Thermus, 14 – Deltaproteobacteria, 15 – Elusimicrobia, 16 – Epsilonproteobacteria,
17 – Fibrobacteres, 18 – Firmicutes, 19 – Fusobacteria, 20 – Gammaproteobacteria, 21 – Gemma-
timonadetes, 22 – Green nonsulfur bacteria, 23 – Green sulfur bacteria, 24 – Hyperthermophilic
bacteria, 25 – Other proteobacteria, 26 – Planctomycetes, 27 – Spirochaetes, 28 – Synergistetes, 29 –
Tenericutes, 30 – Verrucomicrobia.
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7 Discussion

The proposed BFA generative model of binary signals follows the general idea that the external world is
organized regularly and the typical form of such regularity is the existence of objects characterized by
a set of highly coherent attributes. To create notions of objects, the brain has to calculate the statistics
of incoming signals in order to characterize them by some representative variables, the number of which
is much smaller than signal dimension. It is generally accepted that such a reduction of information
redundancy of the incoming signals is one of the main functions of the brain [12, 23, 11, 14, 24].
We also believe that this kind of signal redundancy is typical for many fields such as social science,
marketing, zoology, genetics, medicine and others that operate with nominal data.

We assume that expression (2.1) defining the BFA generative model provides a rather general form
of binary signal representation. Most important here is the introduction of two kinds of noise: the
distortion of common factors and a noise in the form of specific factors. The presence of specific
factors is a typical assumption of linear factor analysis, whereas distortion of common factors is a
peculiarity of BFA. For example, for textual data, a factor is some topic characterized by keywords
related to factor loadings, and each factor score is defined by whether a given document is dedicated
to the topic. Though each topic is represented by a set of keywords, there are no or few documents
containing the whole set. Factor distortion means the absence of some keywords from a topic keyword
list in a given document dedicated to the topic. Each specific factor relates to each individual word.
It is characterized by the probability of the related word to be present in the document independently
of topics. In principle, the description of the generative model could be made more homogeneous
if we introduce instead of the vector of specific factors, additional special common factor f0 with
f0j = 1 for all j = 1, . . . ,N and p0j = qj which appears in all observations, i.e. with S0m = 1 for all
m = 1, . . . ,M . Then our generative model would be identical with the model suggested in [2]. However
this description of the generative model is incompatible with ANNIA which uses the assumption that
factors are coded sparsely [5]. Thus, we prefer to describe the model in terms of common and specific
factors similar to the notations of linear factor analysis.

Signals containing certain factors can be grouped. Since a signal can contain several factors, it can
be related to several groups. In this aspect, BFA is close to fuzzy clustering. However, BFA provides
an explicit knowledge explaining why the signal is shared between clusters. BFA efficiency for fuzzy
clustering is demonstrated by Frolov et al. [8]. When noise is absent, BFA is equivalent to Boolean
matrix factorization [25, 26]. In the BFA generative model scores are assumed to be nonnegative (1
or 0) so it could be related to the methods of Nonnegative Matrix Factorization [27]. On the other
hand factor scores are assumed to be sparse (BFA evidently fails for dense factor scores [5]) which
means that BFA could be related to the methods of Sparse Component Analysis [28]. What more,
BFA could be also related to the methods of Independent Component Analysis [29] because factors
are assumed to be independently distributed in the data set.

We have shown in [9] that the information gain is sensitive both to the noise in the data and to the
errors in the BFA. When the noise increases (in the form of factor distortion or specific factors), the
information gain decreases and becomes zero or negative. Looking at the bar images with small gain
(as shown, for example, in Fig. 5.1(C)), one might agree that zero gain corresponds to the threshold
when the hidden factor structure in the data set becomes invisible. The gain also decreases when some
true factors are missing or factor scores are found incorrectly. Thus, it can be used for comparing
different BFA methods. Note that gain is a measure of BFA efficiency that does not require any a
priori knowledge concerning signal structure.

We have also shown here that hybrid LANNIA method is able to find the hidden factor structure in
the artificial data set consisting even of rather noisy images when BFA provides almost zero gain. The
artificial images we used here are the Boolean superpositions of vertical and horizontal bars. Revealing
individual bars as entire objects in the data set containing their mixtures (so called Bars Problem,
BP) was introduced by Foldiak [14] as a benchmark for BFA. As shown in our previous papers [5, 8],
ANNIA itself is a good method to reveal the loadings of the factors in complex artificial or natural
data sets. However, it fails in finding the factor scores. Thus, we proposed in [8] some less elaborate
method to complement ANNIA by possibility of finding factor scores. Here we have developed the
idea of the likelihood maximization and presented it in the form similar to expectation-maximization
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method [15]. In this form the LM procedure consists of two intermittent steps M and E. Step M serves
to optimize generative model parameters estimation and step E serves to optimize the distribution of
factor scores over data set signals. Although LM is shown to be a rather effective procedure it requires
a reasonable initial approximation which is provided by ANNIA. In turn, LM provides ANNIA by the
generative model parameters to exclude the found factors from the ANNIA dynamics.

Since the hybrid LANNIA procedure occurs to be perfect in BFA even with the very noisy ar-
tificial data, it was a challenge for us to apply the method to a large set of natural data. As we
have already mentioned,identifying functions of proteins in the organisms is an important problem in
modern biology. A fast growing number of fully sequenced genomes makes it possible to reveal the
protein function by comparing the protein phylogenetic profiles of different organisms. The protein
phylogenetic profile is defined as a binary pattern that encodes by Ones and Zeros the presence or,
respectively, the absence of proteins in a given organism with fully sequenced genomes [19]. When
two proteins show correlated patterns of their presence or absence over the organisms, it is assumed
that these proteins are also functionally correlated. This leads to the concept of modularity which
assumes that the genome functionality can be partitioned into a collection of modules. Each module
is a discrete entity of elementary components and performs an identifiable task, separable from the
functions of other modules [21]. Thus, revealing sets of the proteins coherently appeared in different
organisms may facilitate the search for the functional modules in the genome structure. Since the
concept of the genome functional modularity is completely compatible with the BFA generative model
and taking into account the importance of the problem of the protein function identification, we chose
for LANNIA application the largest genome database KEGG [22], containing fully sequenced genomes
of 1368 organisms. LANNIA revealed 38 factors which happened to be reasonably distributed over
organisms so that each type of organisms contains the specific set of factors. The resulting high in-
formation gain G = 0.32, first, confirms the hypothesis of the genome modular structure and, second,
the high efficiency of LANNIA in processing natural data. The analysis of factor contents and their
relation to known metabolic pathways is out of our competence and is not discussed here. However,
we believe that the results obtained will attract the attention of genome researchers to BFA methods
and, particularly, to LANNIA.

8 Appendix 1

To clarify Equation (5.6) used for unlearning found factors from the network, let us consider the case
when all patterns of the data set have equal number of active neurons, i.e. am = const in (5.1). Then
according to (5.2) and (5.3)

Jij =
M

∑
m=1
(xmi − am)(xmj − am) −M(pi − p̄)(pj − p̄) =M(< xixj > − < xi >< xj >), (8.1)

where < xixj > is a frequency of the simultaneous activation of the ith and the jth neurons in the data
set and < xi > and < xj > are frequencies of their individual activation.

To estimate the contribution of the kth factor to the weight of synaptic connection between the
ith and the jth neurons due to these ‘suspicious coincidences’, let us suppose that the neurons are
independently activated by other factors. Since < xixj > − < xi >< xj >=< (1−xi)(1−xj) > − < 1−xi ><
1 − xj >, then according to (3.5) and (8.1)

< xixj > − < xi >< xj >= πk(1 − pki)(1 − pkj)(1 − p0ki)(1 − p0kj) + (1 − πk)(1 − p0ki)(1 − p0kj)
− [πk(1 − pki)(1 − p0ki) + (1 − πk)(1 − p0ki)][πk(1 − pkj)(1 − p0kj) + (1 − πk)(1 − p0kj)]
= πk(1 − πk)pkipkj(1 − p0ki)(1 − p0kj)

that directly results in the unlearning rule (5.6).
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9 Appendix 2

Algorithm 1: Hybrid algorithm of ANNIA and Likelihood Maximization for BFA

input : X is a set of M binary signals xm of dimension N with components xmj , m = 1 . . .M ,
j = 1 . . .N

output: Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are parameters of generative model, S is a set
of binary factor scores sm of dimension L with components sml, m = 1 . . .M , l = 1 . . . L

1 begin

2 for m← 1 to M do am ←
N

∑
j=1

xmj/N

3 for i← 1 to N do
4 for j ← 1 to N do

5 J̃ij ←
M

∑
m=1
(xmi − am)(xmj − am) −

1

M
[

M

∑
m=1
(xmi − am)][

M

∑
m=1
(xmj − am)]

6 J̃ii ← 0

7 G← 0, L← 0
8 for j ← 1 to N do qj ← 1/M
9 repeat

10 Gold ← G
11 if L = 0 then

12 J← J̃

13 else
14 for l ← 1 to L do

15 for i← 1 to N do p0li ←
M

∑
m=1

xmi(1 − sml)/
M

∑
m=1
(1 − sml)

16 for i← 1 to N do
17 for j ← 1 to N do

18 Jij ← J̃ij −Mπl(1 − πl)pli(1 − p0li)plj(1 − p0lj)
19 Jii ← 0

20 F ←FactorsRevealing(J)
21 if F = ∅ then break algorithm
22 foreach f ∈ F do
23 L← L + 1
24 h← Jf
25 for j ← 1 to N do
26 if hj > 0 then pij ← 0.99hj/maxi(hi) else pij ← 0

27 [Θ,S]←LikelihoodMaximization(X ,Θ)
28 G←InformationGain(X ,Θ,S)
29 until G < Gold
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Procedure FactorsRevealing(J)

input : matrix of synaptic connections J of dimensionality N ×N
output : set of found factors F
parameters: nin and nfin are initial and final number of active neurons along each trajectory,

Ktrial is number of trials of factor search, θov is minimal overlap between two
network states subsequently appeared in neurodynamics that are considered to be
in the same attractor basin

1 begin
2 F ← ∅
3 repeat Ktrial times
4 generate perm, a random permutation from 1 to N
5 for i← 1 to N do xi ← 0
6 for i← 1 to nin do xperm(i) ← 1
7 f ← 0, R′max ← 0
8 for k ← nin to nfin do
9 x1 ← x2 ← 0

10 while x ≠ x1 and x ≠ x2 do
11 x2 ← x1

12 x1 ← x
13 h← Jx // vector of synaptic excitation

14 x← 0
15 for i← 1 to k do
16 j ← argmaxl(hl)
17 xj ← 1, hj ←minl(hl)

18 λ← xTJx1/k, T ←maxl(hl)
19 R ← λ/(k − 1) − T /k
20 if k > kin and max

i,j=1,2
(Overlap(xi,xj

prev)) > θov then

21 R′ ← R −Rprev

22 if R′ > R′max then
23 R′max ← R′, f ← x, λf ← λ, nf ← k

24 Rprev ← R, x1
prev ← x1, x2

prev ← x2

25 xargmax(h) ← 1 // activating non-active neuron with maximal synaptic

excitation

26 if f = 0 or f ∈ F then goto line 3
27 hthr ←SpurTrueThreshold(nf ,J) // threshold separating true and spurious

attractors

28 if λf > hthr then add f to F

Function Overlap(x,y)

input : binary vectors x and y of dimensionality N so that ∣x∣ ≤ ∣y∣ where ∣x∣ is the number of
entries with value equal One in x

output: overlap Ov between x and y
1 begin

2 Ov ← 1

∣x∣(1 − ∣y∣/N)

N

∑
i=1
(xi − ∣x∣/N)(yi − ∣y∣/N)

18



Function SpurTrueThreshold(n, J)

input : n number of entries with value equal One, synaptic connection matrix J of
dimensionality N ×N

output : threshold hthr separating true and spurious attractors
parameters: kσ is standard deviation multiplier in calculation of maximal possible value of the

Lyapunov function for spurious attractors
1 begin
2 for k ← 1 to 100 do
3 generate perm, a random permutation from 1 to N
4 for i← 1 to N do xi ← 0
5 for i← 1 to n do xperm(i) ← 1
6 h← Jx
7 hmax

k ←maxi(hi)
8 hthr ←m + kσσ where m and σ are mean and standard deviation of hmax

k

Function InformationGain(X ,Θ,S)
input : X is set of signals with components xmj , m = 1 . . .M , j = 1 . . .N ,

Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are generative model parameters, S is set of
factor scores with components sml, m = 1 . . .M , l = 1 . . . L

output: relative information gain G for given X , Θ and S
1 begin
2 define the Shannon function h(x) = −x log2 x − (1 − x) log2(1 − x)

3 for j ← 1 to N do pj ←
M

∑
m=1

xmj/M

4 H0 ←M
N

∑
j=1

h(pj)

5 H1 ←M
L

∑
i=1

h(πi)

6 for m← 1 to M do
7 for j ← 1 to N do

8 P (xmj ∣sm,Θ)← xmj − (2xmj − 1)(1 − qj)
L

∏
i=1
(1 − pij)smi

9 H2 ←
M

∑
m=1

N

∑
j=1

h(P (xmj ∣sm,Θ))

10 G← H0 −H1 −H2

H0
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Procedure LikelihoodMaximization(X ,Θ)

input : X is set of signals with components xmj , m = 1 . . .M , j = 1 . . .N ,
Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are generative model parameters

output: parameters of generative model Θ, set of factor scores S with components sml,
m = 1 . . .M , l = 1 . . . L (number of factors L is less or equal to those at the input of the
algorithm)

1 begin
2 L← −∞
3 repeat
4 Lprev ← L
5 S ←ProcEstep(X ,Θ)
6 for i← 1 to L do

7 πi ←
M

∑
m=1

smi /M

8 if πi = 0 or πi = 1 then
9 discard πi, {pij}, {smi} for all j = 1, . . . ,N , m = 1, . . . ,M

10 L← L − 1
11 if L = 0 then break procedure

12 Θ←ProcMstep(X ,Θ,S)
13 for i← 1 to L do

14 if
N

∑
j=1

sgn(pij) = 0 then

15 discard πi, {pij}, {smi} for all j = 1, . . . ,N , m = 1, . . . ,M
16 L← L − 1
17 if L = 0 then break procedure

18 L←
M

∑
m=1
[

N

∑
j=1

logP (xmj ∣sm,Θ) + logP (sm∣Θ)]

19 until L −Lprev < 10−6MN

Procedure ProcEstep(X ,Θ)

input : X is set of signals with components xmj , m = 1 . . .M , j = 1 . . .N ,
Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are generative model parameters

output: set of factor scores S with components sml, m = 1 . . .M , l = 1 . . . L
1 begin
2 S ← ∅
3 for m← 1 to M do
4 for i← 1 to L do si ← 0
5 if xm = 0 then goto line 15
6 repeat
7 sold ← s
8 generate perm, a random permutation from 1 to L
9 for l ← 1 to L do

10 i← perm(l)
11 for j ← 1 to N do Pj ← (1 − qj) ∏

k≠i
(1 − pkj)sk

12 ∆I ←
N

∑
j=1
[xmj log

1 − (1 − pij)Pj

1 − Pj
+ (1 − xmj) log(1 − pij)] + log

πi

1 − πi

13 if ∆I > 0 then si ← 1 else si ← 0

14 until s = sold
15 add s to S
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Procedure ProcMstep(X ,Θ,S)
input : X is a set of signals with components xmj , m = 1 . . .M , j = 1 . . .N ,

Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are generative model parameters, S is a set of
factor scores with components sml, m = 1 . . .M , l = 1 . . . L

output: optimized parameters Θ of the generative model
1 begin
2 define ξ, a small positive number restricting pij and qj for the sake of avoiding singularities
3 for j ← 1 to N do
4 repeat
5 for i← 1 to L do pprevij ← pij

6 for m← 1 to M do Pm ← 1 − (1 − qj)
L

∏
i=1
(1 − pij)smi

7 for i← 1 to L do
8 γp ← pij(1 − pij)/(Mπi)

9 pij ← pij + γp
1

1 − pij
(

M

∑
m=1

smixmj

Pm
−Mπi)

10 constraint pij to belong to [0; 1 − ξ]
11 if pij < 1 −∏

l≠i
(1 − πlplj) then pij ← 0

12 γq ← qj(1 − qj)/M

13 qj ← qj + γq
1

1 − qj
(

M

∑
m=1

xmj

Pm
−M)

14 constraint qj to belong to [ξ; 1]

15 until
L

∑
i=1
∣pij − pprevij ∣ < 10−3L

Algorithm 2: Observation Generation

input : M is a number of observations, N is a dimensionality of the observations, L is a
number of factors, Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . ,N) are parameters of
generative model

output: X is a set of M binary signals of dimension N , S is a set of M binary factor scores of
dimension L

1 begin
2 for m← 1 to M do
3 Initialize x as N dimensional zero vector
4 Initialize s as L dimensional zero vector
5 for i← 1 to L do
6 Generate r, a pseudo-random number from [0,1]
7 if r < πi then
8 si ← 1
9 for j ← 1 to N do

10 Generate r, a pseudo-random number from [0,1]
11 if r < pij then xj ← xj ∨ 1

12 for j ← 1 to N do
13 Generate r, a pseudo-random number from [0,1]
14 if r < qj then xj ← xj ∨ 1
15 Add s to S
16 Add x to X
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