národní
úložiště
šedé
literatury

Theoretical Characterization of Enclosures

Rohn, Jirí
2012
Dostupný z http://www.nusl.cz/ntk/nusl-111917

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložišť̌ šedé literatury (NUŠL).
Datum stažení: 17.07.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

Theoretical Characterization of Enclosures

Dedicated to memory of Argentinean writer Jorge Luis Borges (1899-1986)

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn
Technical report No. V-1158
20.04.2012

[^0]e-mail:rohn@cs.cas.cz

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Theoretical Characterization of Enclosures

Dedicated to memory of Argentinean writer Jorge Luis Borges (1899-1986)

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn
Technical report No. V-1158
20.04.2012

Abstract:
We give a theoretical characterization of enclosures of the solution set of interval linear equations formulated in terms of components of the solution set of the "dual" Oettli-Prager inequality. ${ }^{\text {[] }}$

Keywords:
Interval linear equations, solution set, enclosure, component, characterization.

[^1]
1 Introduction and notation

Anyone interested in interval linear equations knows the inequality

$$
\left|A_{c} x-b_{c}\right| \leq \Delta|x|+\delta ;
$$

this is the Oettli-Prager inequality [2] describing the solution set of a system of interval linear equations $\boldsymbol{A} x=\boldsymbol{b}$ with $\boldsymbol{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right] \in \mathbb{R}^{n \times n}$ and $\boldsymbol{b}=\left[b_{c}-\delta, b_{c}+\delta\right] \in \mathbb{R}^{n}$. Very little, if anything at all, is known, however, of its "dual" inequality

$$
\left|A_{c} x-b_{c}\right| \geq \Delta|x|+\delta .
$$

In this report we show that these two inequalities are related in a peculiar way. If \boldsymbol{A} is regular and $\delta>0$, then the solution set of the first inequality is connected whereas that one of the second inequality consists of exactly 2^{n} components (nonempty connected subsets maximal with respect to inclusion), and an interval vector encloses the solution set of the first inequality if and only if it intersects all the 2^{n} components of the solution set of the second inequality. It is just this result that we call the "theoretical characterization of enclosures". The proof employs two nontrivial results from [3, 4], of which particularly the second one is little known.

Notation used: $Y=\{-1,1\}^{n}$ is the set of all ± 1-vectors in \mathbb{R}^{n}, and T_{y} denotes the diagonal matrix with diagonal vector y (used for $y \in Y$ only).

2 The result

Denote

$$
\begin{equation*}
\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})=\left\{x| | A_{c} x-b_{c}|\leq \Delta| x \mid+\delta\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})=\left\{x| | A_{c} x-b_{c}|\geq \Delta| x \mid+\delta\right\} . \tag{2.2}
\end{equation*}
$$

Then we have the following main result.
Theorem 1. Let \boldsymbol{A} be regular and let $\delta>0$. Then an interval vector $[\underline{x}, \bar{x}]$ is an enclosure of $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$ if and only if it intersects all the components of $\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$.

Proof. The proof proceeds in three steps.
(a) For each $y \in Y$ define a set X_{y} by

$$
\begin{equation*}
X_{y}=\left\{x \mid T_{y} A_{c} x-\Delta t \geq T_{y} b_{c}+\delta,-t \leq x \leq t \text { for some } t\right\} \tag{2.3}
\end{equation*}
$$

The set described by the right-hand side system of linear inequalities is a convex polyhedron, therefore X_{y}, as its projection onto the x-subspace, is again a convex polyhedron. Next we prove that $X_{y} \subseteq \boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$. Let $x \in X_{y}$, then it satisfies

$$
\begin{equation*}
T_{y}\left(A_{c} x-b_{c}\right) \geq \Delta t+\delta, \quad t \geq|x| \tag{2.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
T_{y}\left(A_{c} x-b_{c}\right) \geq \Delta|x|+\delta \tag{2.5}
\end{equation*}
$$

which in virtue of nonnegativity of the right-hand side implies that $T_{y}\left(A_{c} x-b_{c}\right) \geq 0$, thus $T_{y}\left(A_{c} x-b_{c}\right)=\left|A_{c} x-b_{c}\right|$, and (2.5) turns into

$$
\begin{equation*}
\left|A_{c} x-b_{c}\right| \geq \Delta|x|+\delta \tag{2.6}
\end{equation*}
$$

which means that $x \in \boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$. Thus, $\bigcup_{y \in Y} X_{y} \subseteq \boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$. To prove the converse inclusion, take $x \in \boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$. Then it satisfies (2.6), thus also (2.5) for $y=\operatorname{sgn}\left(A_{c} x-b_{c}\right)$, and taking $t=|x|$, we see that it also satisfies (2.4) and (2.3), so that $x \in X_{y}$. In this way we have proved that

$$
\begin{equation*}
\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})=\bigcup_{y \in Y} X_{y} . \tag{2.7}
\end{equation*}
$$

Finally we prove that all the X_{y} 's are mutually disjoint. Suppose it is not so, so that $x \in X_{y} \cap X_{y^{\prime}}$ for some $y \neq y^{\prime}$, where $y_{i}=1$ and $y_{i}^{\prime}=-1$ for some i. Then from (2.5) we obtain both $\left(A_{c} x-b_{c}\right)_{i} \geq 0$ and $-\left(A_{c} x-b_{c}\right)_{i} \geq 0$, hence $\left(A_{c} x-b_{c}\right)_{i}=0$ implying $(\Delta|x|+\delta)_{i}=0$ which is a contradiction because $\delta>0$ by assumption. Hence, (2.7) is a decomposition of $\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$ into a union of mutually disjoint convex (i.e., connected) polyhedra which, in turn, means that each X_{y} is a component of $\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$ (we shall see later that all the X_{y} 's are nonempty, so that there are exactly 2^{n} of them).
(b) Next we prove that if $[\underline{x}, \bar{x}]$ is an enclosure of $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$, then it intersects all the components $X_{y}, y \in Y$. To see this, take an arbitrary $y \in Y$ and consider the absolute value equation

$$
\begin{equation*}
A_{c} x-T_{y} \Delta|x|=b_{c}+T_{y} \delta . \tag{2.8}
\end{equation*}
$$

Since \boldsymbol{A} is regular by assumption, by Theorem 2.2 in [3] the equation (2.8) has exactly one solution x_{y} which belongs to $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$ and thus also to $[\underline{x}, \bar{x}]$. Rearranging the equation (2.8) to the form

$$
\begin{equation*}
T_{y}\left(A_{c} x-b_{c}\right)=\Delta|x|+\delta, \tag{2.9}
\end{equation*}
$$

we can see that x_{y} satisfies (2.5), (2.4) and (2.3), hence $x_{y} \in X_{y}$. Thus $x_{y} \in[\underline{x}, \bar{x}] \cap X_{y}$ for each $y \in Y$, so that $[\underline{x}, \bar{x}]$ intersects all the components of $\boldsymbol{X}_{\boldsymbol{d}}(\boldsymbol{A}, \boldsymbol{b})$.
(c) Finally we shall prove that if $[\underline{x}, \bar{x}] \cap X_{y} \neq \emptyset$ for each $y \in Y$, then $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b}) \subseteq[\underline{x}, \bar{x}]$. Take $x_{y} \in[\underline{x}, \bar{x}] \cap X_{y}$ for each $y \in Y$ and let $x \in \boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$. To prove that $x \in[\underline{x}, \bar{x}]$, we proceed as follows. Since $x \in \boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$, by definition of $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b})$ there exist $A \in \boldsymbol{A}, b \in \boldsymbol{b}$ such that $A x=b$. Now we have

$$
\begin{equation*}
\left|T_{y}\left(A x_{y}-b\right)-T_{y}\left(A_{c} x_{y}-b_{c}\right)\right|=\left|\left(A-A_{c}\right) x_{y}+\left(b_{c}-b\right)\right| \leq \Delta\left|x_{y}\right|+\delta, \tag{2.10}
\end{equation*}
$$

hence

$$
\begin{equation*}
T_{y}\left(A x_{y}-b\right) \geq T_{y}\left(A_{c} x_{y}-b_{c}\right)-\Delta\left|x_{y}\right|-\delta \geq 0, \tag{2.11}
\end{equation*}
$$

the nonnegativity being a consequence of (2.5) because $x_{y} \in X_{y}$. Thus we have proved that

$$
\begin{equation*}
T_{y}\left(A x_{y}-b\right) \geq 0 \tag{2.12}
\end{equation*}
$$

for each $y \in Y$. Now Theorem 2 in [4] tells us that this property implies existence of x^{*} such that $A x^{*}=b$ and x^{*} belongs to the convex hull of the points $x_{y}, y \in Y$. Since each x_{y}, $y \in Y$, belongs to the convex set $[\underline{x}, \bar{x}]$, its convex hull is a part of $[\underline{x}, \bar{x}]$, hence $x^{*} \in[\underline{x}, \bar{x}]$. But since $A x^{*}=b$ and $A x=b$ and A is nonsingular, it must be $x^{*}=x$, hence $x \in[\underline{x}, \bar{x}]$. In this way we finally have that $\boldsymbol{X}(\boldsymbol{A}, \boldsymbol{b}) \subseteq[\underline{x}, \bar{x}]$, which was to be proved.

3 Conclusion

The result remains highly theoretical because in practice we will hardly ever be able to check that an interval vector intersects 2^{n} sets. But it is of certain interest because of its three features: first, that such a characterization exists at all; second, due to a special way in which inequalities $\left|A_{c} x-b_{c}\right| \leq \Delta|x|+\delta$ and $\left|A_{c} x-b_{c}\right| \geq \Delta|x|+\delta$ are related together; and third, due to the sole fact that the solution set of $\left|A_{c} x-b_{c}\right| \geq \Delta|x|+\delta$ has exactly 2^{n} components that are explicitly described by (2.3).

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numerische Mathematik, 6 (1964), pp. 405-409. 1
[3] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39-78. 1, 2
[4] J. Rohn, An existence theorem for systems of linear equations, Linear and Multilinear Algebra, 29 (1991), pp. 141-144. [1, 2]

[^0]: Pod Vodárenskou věží 2, 18207 Prague 8, phone: +420 266051 111, fax: +420286585789 ,

[^1]: ${ }^{1}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

