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Abstract:

We give a theoretical characterization of enclosures of the solution set of interval linear equations
formulated in terms of components of the solution set of the “dual” Oettli-Prager inequality.1
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1Above: logo of interval computations and related areas (depiction of the solution set of the system
[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction and notation

Anyone interested in interval linear equations knows the inequality

|Acx− bc| ≤ ∆|x|+ δ;

this is the Oettli-Prager inequality [2] describing the solution set of a system of interval linear
equations Ax = b with A = [Ac −∆, Ac + ∆] ∈ IRn×n and b = [bc − δ, bc + δ] ∈ IRn. Very
little, if anything at all, is known, however, of its “dual” inequality

|Acx− bc| ≥ ∆|x|+ δ.

In this report we show that these two inequalities are related in a peculiar way. If A is
regular and δ > 0, then the solution set of the first inequality is connected whereas that
one of the second inequality consists of exactly 2n components (nonempty connected subsets
maximal with respect to inclusion), and an interval vector encloses the solution set of the first
inequality if and only if it intersects all the 2n components of the solution set of the second
inequality. It is just this result that we call the “theoretical characterization of enclosures”.
The proof employs two nontrivial results from [3], [4], of which particularly the second one
is little known.

Notation used: Y = {−1, 1}n is the set of all ±1-vectors in Rn, and Ty denotes the diagonal
matrix with diagonal vector y (used for y ∈ Y only).

2 The result

Denote
X(A, b) = {x | |Acx− bc| ≤ ∆|x|+ δ } (2.1)

and
Xd(A, b) = {x | |Acx− bc| ≥ ∆|x|+ δ }. (2.2)

Then we have the following main result.

Theorem 1. Let A be regular and let δ > 0. Then an interval vector [x, x] is an enclosure
of X(A, b) if and only if it intersects all the components of Xd(A, b).

Proof. The proof proceeds in three steps.
(a) For each y ∈ Y define a set Xy by

Xy = {x | TyAcx−∆t ≥ Tybc + δ, −t ≤ x ≤ t for some t }. (2.3)

The set described by the right-hand side system of linear inequalities is a convex polyhedron,
therefore Xy, as its projection onto the x-subspace, is again a convex polyhedron. Next we
prove that Xy ⊆ Xd(A, b). Let x ∈ Xy, then it satisfies

Ty(Acx− bc) ≥ ∆t + δ, t ≥ |x|, (2.4)

hence
Ty(Acx− bc) ≥ ∆|x|+ δ (2.5)
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which in virtue of nonnegativity of the right-hand side implies that Ty(Acx − bc) ≥ 0, thus
Ty(Acx− bc) = |Acx− bc|, and (2.5) turns into

|Acx− bc| ≥ ∆|x|+ δ (2.6)

which means that x ∈ Xd(A, b). Thus,
⋃

y∈Y Xy ⊆ Xd(A, b). To prove the converse
inclusion, take x ∈ Xd(A, b). Then it satisfies (2.6), thus also (2.5) for y = sgn(Acx − bc),
and taking t = |x|, we see that it also satisfies (2.4) and (2.3), so that x ∈ Xy. In this way
we have proved that

Xd(A, b) =
⋃

y∈Y

Xy. (2.7)

Finally we prove that all the Xy’s are mutually disjoint. Suppose it is not so, so that
x ∈ Xy∩Xy′ for some y 6= y′, where yi = 1 and y′i = −1 for some i. Then from (2.5) we obtain
both (Acx− bc)i ≥ 0 and −(Acx− bc)i ≥ 0, hence (Acx− bc)i = 0 implying (∆|x|+ δ)i = 0
which is a contradiction because δ > 0 by assumption. Hence, (2.7) is a decomposition of
Xd(A, b) into a union of mutually disjoint convex (i.e., connected) polyhedra which, in turn,
means that each Xy is a component of Xd(A, b) (we shall see later that all the Xy’s are
nonempty, so that there are exactly 2n of them).

(b) Next we prove that if [x, x] is an enclosure of X(A, b), then it intersects all the
components Xy, y ∈ Y . To see this, take an arbitrary y ∈ Y and consider the absolute value
equation

Acx− Ty∆|x| = bc + Tyδ. (2.8)

Since A is regular by assumption, by Theorem 2.2 in [3] the equation (2.8) has exactly one
solution xy which belongs to X(A, b) and thus also to [x, x]. Rearranging the equation (2.8)
to the form

Ty(Acx− bc) = ∆|x|+ δ, (2.9)

we can see that xy satisfies (2.5), (2.4) and (2.3), hence xy ∈ Xy. Thus xy ∈ [x, x] ∩Xy for
each y ∈ Y , so that [x, x] intersects all the components of Xd(A, b).

(c) Finally we shall prove that if [x, x] ∩ Xy 6= ∅ for each y ∈ Y , then X(A, b) ⊆ [x, x].
Take xy ∈ [x, x] ∩ Xy for each y ∈ Y and let x ∈ X(A, b). To prove that x ∈ [x, x], we
proceed as follows. Since x ∈ X(A, b), by definition of X(A, b) there exist A ∈ A, b ∈ b
such that Ax = b. Now we have

|Ty(Axy − b)− Ty(Acxy − bc)| = |(A−Ac)xy + (bc − b)| ≤ ∆|xy|+ δ, (2.10)

hence
Ty(Axy − b) ≥ Ty(Acxy − bc)−∆|xy| − δ ≥ 0, (2.11)

the nonnegativity being a consequence of (2.5) because xy ∈ Xy. Thus we have proved that

Ty(Axy − b) ≥ 0 (2.12)

for each y ∈ Y . Now Theorem 2 in [4] tells us that this property implies existence of x∗

such that Ax∗ = b and x∗ belongs to the convex hull of the points xy, y ∈ Y . Since each xy,
y ∈ Y , belongs to the convex set [x, x], its convex hull is a part of [x, x], hence x∗ ∈ [x, x].
But since Ax∗ = b and Ax = b and A is nonsingular, it must be x∗ = x, hence x ∈ [x, x]. In
this way we finally have that X(A, b) ⊆ [x, x], which was to be proved. 2
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3 Conclusion

The result remains highly theoretical because in practice we will hardly ever be able to check
that an interval vector intersects 2n sets. But it is of certain interest because of its three
features: first, that such a characterization exists at all; second, due to a special way in which
inequalities |Acx− bc| ≤ ∆|x|+ δ and |Acx− bc| ≥ ∆|x|+ δ are related together; and third,
due to the sole fact that the solution set of |Acx− bc| ≥ ∆|x|+ δ has exactly 2n components
that are explicitly described by (2.3).
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