A New Characterization of the Maximum Cut in a Graph. Dedicated to the memory of the Tibetan meditation master Geshe1 Langri Tangpa (1054-1123), author of the "Eight verses for training the mind"

Rohn, Jirí
2012
Dostupný z http://www.nusl.cz/ntk/nusl-111537

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 19.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A New Characterization of the Maximum Cut in a Graph

Dedicated to the memory of the Tibetan meditation master Geshe Langri Tangpa (1054-1123), author of the "Eight verses for training the mind"
Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1155
02.02.2012

[^0]
Institute of Computer Science

 Academy of Sciences of the Czech Republic
A New Characterization of the Maximum Cut in a Graph

Dedicated to the memory of the Tibetan meditation master Geshe ${ }^{[1]}$ Langri Tangpa (1054-1123), author of the
"Eight verses for training the mind"

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1155
02.02.2012

Abstract:

We prove a formula expressing the maximal cut in a graph in terms of solvability of a system of linear inequalities $-e \leq A x \leq e$ (e being the vector of all ones) appended with a nonlinear constraint $\|x\|_{1} \geq 1$. ${ }^{2]}$

Keywords:
Graph, maximum cut, linear inequalities, norm.

[^1]
1 Introduction

Maximum cut in a graph is a well known NP-complete problem. In the main result of this report (Theorem 1) we prove a formula expressing the maximal cut in a graph in terms of solvability of a system of linear inequalities

$$
-e \leq A x \leq e
$$

(e being the vector of all ones) appended with a nonlinear constraint

$$
\|x\|_{1} \geq 1
$$

In this way the original discrete problem is recast as a continuous weakly nonlinear problem which can be solved by nonlinear optimization techniques. A related decision problem of determining whether the maximum cut exceeds a prescribed nonnegative integer ℓ is handled in Corollary 3 .

2 Maximum cut: definition

Let $G=(N, E)$ be an undirected graph with set of nodes $N=\{1, \ldots, n\}$ and set of edges E. Let m denote the cardinality of E.

Let $A_{G}=\left(a_{i j}\right)$ be given by $a_{i j}=n$ if $i=j, a_{i j}=-1$ if $i \neq j$ and the nodes i, j are connected by an edge, and $a_{i j}=0$ if $i \neq j$ and i, j are not connected. Then A_{G} is an $M C$-matrix [4].

For $S \subseteq N$, define the cut $c(S)$ as the number of edges in E whose one endpoint belongs to S and the other one to $N \backslash S$. Then the maximum cut in G is defined by

$$
\operatorname{mc}(G)=\max _{S \subseteq N} c(S)
$$

Computation of the maximum cut in a graph is known to be an NP-complete problem [2].

3 Maximum cut: characterization

We denote $\mathcal{N}=\{0,1,2, \ldots\}$ (the set of nonnegative integers), $e=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$, and we use the norm $\|x\|_{1}=e^{T}|x|=\sum_{i=1}^{n}\left|x_{i}\right|$. Then we have this characterization which is the main result of this report.

Theorem 1. For each undirected graph G there holds

$$
\operatorname{mc}(G)=\max \left\{\ell \in \mathcal{N} \mid-e \leq\left(4 \ell-2 m+n^{2}\right) A_{G}^{-1} x \leq e,\|x\|_{1} \geq 1 \text { has a solution }\right\}
$$

Proof. The result follows from the relation

$$
\operatorname{mc}(G)=\frac{1}{4}\left(\max _{z \in\{-1,1\}^{n}} z^{T} A_{G} z+2 m-n^{2}\right)
$$

established in the proof of Theorem 3 in [4] and from Proposition 3 in [3].
It remains to be shown how a maximum cut $c(S)$ can be found.

Theorem 2. Let x be any solution of the system

$$
\begin{gathered}
-e \leq\left(4 \operatorname{mc}(G)-2 m+n^{2}\right) A_{G}^{-1} x \leq e \\
\|x\|_{1} \geq 1
\end{gathered}
$$

Then the set

$$
S=\left\{i \mid x_{i} \geq 0\right\}
$$

satisfies

$$
c(S)=\operatorname{mc}(G)
$$

Proof. This description is a consequence of construction made in the proof of Theorem 3 in [4].

4 Maximum cut: lower bounds

As immediate consequences of Theorems 1 and 2 we obtain these two corollaries.
Corollary 3. Let G be an undirected graph and ℓ a nonnegative integer. Then

$$
\begin{equation*}
\operatorname{mc}(G) \geq \ell \tag{4.1}
\end{equation*}
$$

holds if and only if the system

$$
\begin{gather*}
-e \leq\left(4 \ell-2 m+n^{2}\right) A_{G}^{-1} x \leq e \tag{4.2}\\
\|x\|_{1} \geq 1 \tag{4.3}
\end{gather*}
$$

has a solution.
Corollary 4. If the system (4.2), (4.3), where ℓ is a nonnegative integer, has a solution x, then the set

$$
S=\left\{i \mid x_{i} \geq 0\right\}
$$

satisfies

$$
c(S) \geq \ell
$$

If (4.2), (4.3) has no solution, then

$$
\operatorname{mc}(G)<\ell
$$

5 Maximum cut: algorithm

Corollary 3 shows us a way how to verify (or disprove) the inequality (4.1) via solving a system of inequalities of the type

$$
\begin{gather*}
-e \leq A x \leq e \tag{5.1}\\
\|x\|_{1} \geq 1 \tag{5.2}
\end{gather*}
$$

Such an algorithm, named basintnpprob [from BASic INTerval NP PROBlem], was described in [5]. As proved there, the algorithm in a finite number of steps either finds a solution to (5.1), (5.2), or states that no such solution exists.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, 1 (1976), pp. 237-267. [1
[3] J. Rohn, NP-hardness results for some linear and quadratic problems, Technical Report 619, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 1995. http://uivtx.cs.cas.cz/~rohn/publist/81.pdf 1
[4] J. Rohn, Computing the norm $\|A\|_{\infty, 1}$ is NP-hard, Linear and Multilinear Algebra, 47 (2000), pp. 195-204. [1, 2
[5] J. Rohn, An algorithm for solving the system $-e \leq A x \leq e,\|x\|_{1} \geq 1$, Technical Report 1149, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 2012. http://uivtx.cs.cas.cz/~rohn/publist/basintnpprob.pdf. 2

[^0]: Pod Vodárenskou věží 2, 18207 Prague 8, phone: +420 266051 111, fax: +420286585 789,
 e-mail:rohn@cs.cas.cz

[^1]: ${ }^{1}$ Equivalent to our "Dr".
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

